山东省文登市2014-2015学年高二下学期期末考试数学(理)试题 Word版含答案
学14—15学年下学期高二期末考试数学(文)(附答案)

12i nb ==∑B =( C .2006年以来我国二氧化碳年排放量呈减少趋势 D .2006年以来我国二氧化碳年排放量与年份正相关班级__________________________ 姓名___________________________4.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )1.8A 1.7B 1.6C 1.5D 5.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )A .5B .7C .9D .11 6.已知()0,1a =-,()1,2b =-,则(2)a b a +=( )A .1-B .0C .1D .2 7.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( ).0A .2B .4C .14D8.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( ).2A .1B 1.2C 1.8D9.已知长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP=x 。
将动点P 到AB 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为( )10. 在回归直线方程表示回归系数中b bx a y,ˆ+= ( )A .当0x =时,y 的平均值B .当x 变动一个单位时,y 的实际变动量A B C DC .当y 变动一个单位时,x 的平均变动量D .当x 变动一个单位时,y 的平均变动量11. 在对分类变量X, Y 进行独立性检验时,算得2k =7有以下四种判断(1) 有99﹪的把握认为X 与Y 有关; (2)有99﹪的把握认为X 与Y 无关;(3)在假设H 0:X 与Y 无关的前提下有99﹪的把握认为X 与Y 有关; (4)在假设H 1: X 与Y 有关的前提下有99﹪的把握认为X 与Y 无关 .以上4个判断正确的是 ( )A . (1)、(4)B . (2)、(3)C . (3)D . (4)12. 下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则180=∠+∠B AB .由平面向量的运算性质,推测空间向量的运算性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除二、填空题(本题共4个小题,第个小题5分,合计20分) 13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .14. 某大学的信息中心A 与大学各部门、各院系B ,C ,D ,E ,F ,G ,H ,I 之间拟建立信息联网工程,实际测算的费用如图所示(单位:万元).请观察图形,可以不建部分网线,而使得中心与各部门、院系彼此都能连通(直接或中转),则最少的建网费用(万元)是_____________________.15. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .16. 如图,用与底面成30︒角的平面截圆柱得一椭圆截线,则该椭圆的离心率为_______.三、解答题(17题10分,其他的题12分,合计70分)17.(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC 且BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.18.(本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度,(不要求计算出具体值,给出结论即可)5060809010070满意度评分频率/组距0.0050.010 0.015 0.020 0.025 0.0350.030 B 地区满意度调查频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19.(本小题满分12分)一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:((2)如果y对x有线性相关关系,求回归直线方程;20.(本小题满分12分)在对人们休闲的一次调查中,共调查了124人,其中女性70人,男性54人。
2014—2015学年度第二学期教学质量检测高二数学试题(理)附答案

2014—2015学年度第二学期教学质量检测高二数学试题(理)一、选择题(本大题共10小题,每小题5分,共50分)1. 复数23z i =-对应的点Z 在复平面的( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限2.函数2cos y x x =的导数为( ) A. 22cos sin y x x x x '=- B. 22cos sin y x x x x '=+ C. 2cos 2sin y x x x x '=-D. 2cos sin y x x x x '=-3.下列结论中正确的是( )A.导数为零的点一定是极值点B.如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值C.如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极小值D.如果在0x 附近的左侧0)('<x f ,右侧0)('>x f ,那么)(0x f 是极大值 4. 把三张不同的游园票分给10个人中的3人,分法有( )A .A 310 种B .C 310 种 C .C 310A 310 种 D .30 种5.已知17,35,4a b c =+=+=则a ,b ,c 的大小关系为( )A .a b c >>B .c a b >>C .c b a >>D .b c a >> 6.若11(2)3ln 2ax dx x+=+⎰,则a 的值为( )A. 6B. 4C. 3D.27. 抛物线2y x bx c =++在点(1,2)处的切线与其平行直线0bx y c ++=间的距离是( ) A .24 B . 322 C . 22D .2 8.函数()f x 的导函数()f x '的图像如图所示,那么()f x 的图像最有可能的是( )9. 在用数学归纳法证明不等式)2(2413212111≥≥+++++n n n n 的过程中,当由k n =推到1+=k n 时,不等式左边应( ) A.增加了)1(21+k B.增加了221121+++k k C.增加了221121+++k k ,但减少了11+k D. 以上都不对 10.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有A .(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>二、填空题(本大题共5小题,每小题5分,共25分)11.设复数1z i =+,则复数22z z +的共轭复数为 . 12.曲线3cos (0)2y x x π=≤≤与x 轴以及直线32x π=所围成的面积为 . 13.平面几何中,边长为a 的正三角形内任一点到三边距离之和为定值32a ,类比上述命题,棱长为 a 的正四面体内任一点到四个面的距离之和为 .14.现有5名学生要插入某工厂的四个车间去实习,每个车间至多去2人有________种不同方法. 15.已知函数()ln x f x ae b x =+(,a b 为常数)的定义域为D ,关于函数,给出下列命题:①对于任意的正数a ,存在正数b ,使得对于任意的x D ∈,都有()0f x >; ②当0,0a b ><时,函数()f x 存在最小值; ③若0ab <,则()f x 一定存在极值点;④若0,ab ≠时,方程()()f x f x '=在区间(1,2)内有唯一解. 其中正确命题的序号是________.三、解答题:(本题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(本题满分12分)已知函数32()212181f x x x x =-++(1)求函数()f x 的单调区间 (2)求函数()f x 在[]1,4-上的最值.17.(本题满分12分)数列{}n a 满足1()1,n n n a a a n n N ++=-+∈(1)当12a =时,求234,,a a a ,并猜想出n a 的一个通项公式(不要求证) (2)若13a ≥,用数学归纳法证明:对任意的1,2,3n =,都有2n a n ≥+.18.(本题满分12分)已知函数()1xf x e x =--(e 是自然对数的底数)(1)求证:1xe x ≥+(2)若不等式()1f x ax >-在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正数a 的取值范围19.(本题满分12分)已知ABC ∆的三个内角C B A ,,成等差数列,求证:对应三边,,a b c 满足cb ac b b a ++=+++311把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列. (1)43251是这个数列的第几项? (2)这个数列的第96项是多少? (3)求这个数列的各项和.21.(本题满分14分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
山东文登第一中学2014-2015学年高二文科数学综合测试一 Word版含答案

文登一中2013—2014学年第二学期阶段性适应练习一高二文科数学题时间:120分钟 分数:150分一.选择题:(每题5分,共50分)1.从一产品(其中正品和次品都多于两件)中任取两件,观察正品件数和次品件数,下列每对事件为对立事件的是( )A.恰好有一件次品和恰好有两件次品B.至少有一件次品和全是次品C. 至少有一件正品和至少有一件次品D. 至少有一件正品和全是次品2.已知y x ,满足:,422⎪⎩⎪⎨⎧≤+≤-≥y x xy y 则32222+-++=y x y x S 的最小值是( ) A .514 B .3C .4D .12+3.设2)1()(x x x f -=有( )个极值点A .0B .1C .2D .34.已知公差不为零的等差数列{}n a 与等比数列{}n b 满足:,,3311b a b a ==,57b a =那么( ) A.=11b 13a B.=11b 31a C.=11b 63a D.1163a b =5.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图像如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D .4个 6.在区间[-π,π]内随机取两个数分别为b a ,,则使得函数2222)(π+-+=b ax x x f 有零点的概率为( )A .1-8π B .1-4π C .1-2π D .1-34π 7.在吸烟与患肺病这两个分类变量中,下列说法正确的是 ( )A .若观测值为k 2>6.635,我们有99%的把握认为“吸烟与患肺病有关系”,三.解答题:16. (本题满分12分)(1)已知n 是大于1的自然数,求证:)2(log )1(log 1+>++n n n n (2)设0 < a, b, c < 1,求证:(1 a)b,(1 b)c, (1 c)a,不可能同时大于4117.(本小题满分12分)某学校共有教职工900人,分成三个批次进行教育培训,在三个批次中男女教职工人数如下表所示。
2014高二数学期末理试卷及答案

适用精选文件资料分享2014-2015 年高二数学期末(理)试卷及答案2014-2015 学年度第一学期八县(市)一中期末联考高中二年数学(理)科试卷一、选择题(本大题共 12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项吻合题目要求。
)1 .命题:“,”的否定形式是()A , B ,C , D ,2 .抛物线的焦点坐标为()A B C D 3.若向量,向量,且满足向量 // ,则等于() A B C D 4.“ ”是“方程表示的曲线是焦点在轴上的椭圆”的 ( ) A 充分不用要条件 B 必需不充分条件 C 充要条件 D 既不充分也不用要条件 5 .经过点,且与双曲线有同样渐近线的双曲线方程是()A B C D 6.以下列图,在平行六面体中,点为上底面对角线的中点,若,则()ABCD7 .中,,点在双曲线上,则 = ()A B C D 8.以下列图,在棱长为 1 的正方体中,是棱的中点,则与所成角的余弦值为()ABCD9.已知抛物线的焦点为,准线为,过抛物线上一点作垂直于,若,则的面积为()AB C D 10.假如命题“若,,则”是假命题,那么字母在空间所表示的几何图形可能是 () A 全部是直线 B 全部是平面 C 是直线,是平面 D 是平面,是直线 11 .已知椭圆与双曲线有共同的焦点和,且满足是与的等比中项,是与的等差中项,则椭圆的离心率为( ) A B C D 12 .在平面直角坐标系中,一条双曲线经过旋转或平移所产生的一系列双曲线都拥有同样的离心率和焦距,称它们为一组“共性双曲线”;比方将等轴双曲线绕原点逆时针转动,就会获得它的一条“共性双曲线” ;依据以上资料可推理得出双曲线的焦距为()ABCD二、填空题(本大题共 4 小题,每题 4 分,共 16 分。
) 13 .命题“若,则是直角三角形”的否命题的真假性为 14 .若“ ”是“ ”的充分不用要条件,则的取值范围为 15 .已知是以为直角极点的等腰直角三角形,此中 , (), 则 16 .在平面直角坐标系中,已知此中 , 若直线上有且只有一点,使得,则称直线为“黄金直线”,点为“黄金点”。
2014-2015学年山东省威海市文登一中高二(下)第五次段考数学试卷

2014-2015学年山东省威海市文登一中高二(下)第五次段考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.若非空集合A,B,C满足A∪B=C,且B不是A的子集,则()A.“x∈C”是“x∈A”的充分条件但不是必要条件B.“x∈C”是“x∈A”的必要条件但不是充分条件C.“x∈C”是“x∈A”的充要条件D.“x∈C”既不是“x∈A”的充分条件也不是“x∈A”必要条件【答案】B【解析】解:x∈A⇒x∈C,但是x∈C不能⇒x∈A,所以B正确.另外画出韦恩图,也能判断B选项正确故选B.找出A,B,C之间的联系,画出韦恩图此题较为简单,关键是要正确画出韦恩图,再结合选项进行判断.2.与向量=(1,-3,2)平行的一个向量的坐标是()A.(,1,1)B.(-1,-3,2)C.(-,,-1)D.(,-3,-2)【答案】C【解析】解:对于C中的向量:(-,,-1)=-(1,-3,2)=-,因此与向量=(1,-3,2)平行的一个向量的坐标是,,.故选:C.利用向量共线定理即可判断出.本题考查了向量共线定理的应用,属于基础题.3.复数的虚部是()A. B. C. D.【答案】B【解析】解:依题:.∴虚部为.故选B.本小题主要考查复数的相关运算及虚部概念.本题是对基本概念的考查.4.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acos B+bcos A=csin C,S=(b2+c2-a2),则∠B=()A.90°B.60°C.45°D.30°【答案】C【解析】解:由正弦定理可知acos B+bcos A=2R sin A cos B+2R sin B cos A=2R sin(A+B)=2R sin C=2R sin C•sin C∴sin C=1,C=.∴S=ab=(b2+c2-a2),解得a=b,因此∠B=45°.故选C先利用正弦定理把题设等式中的边转化成角的正弦,化简整理求得sin C的值,进而求得C,然后利用三角形面积公式求得S的表达式,进而求得a=b,推断出三角形为等腰直角三角形,进而求得∠B.本题主要考查了正弦定理的应用.作为解三角形常用的定理,我们应熟练记忆和掌握正弦定理公式及其变形公式.5.已知等比数列{a n}中,a2=1,则其前3项的和S3的取值范围是()A.(-∞,-1]B.(-∞,0)∪(1,+∞)C.[3,+∞)D.(-∞,-1]∪[3,+∞)【答案】D【解析】解:∵等比数列{a n}中,a2=1∴∴当公比q>0时,;当公比q<0时,.∴S3∈(-∞,-1]∪[3,+∞).故选D.首先由等比数列的通项入手表示出S3(即q的代数式),然后根据q的正负性进行分类,最后利用均值不等式求出S3的范围.本题考查等比数列前n项和的意义、等比数列的通项公式及均值不等式的应用.6.为维护国家主权和领土完整,我海监船310号奉命赴钓鱼岛海域执法巡航,当我船航行到A处时测得钓鱼岛在我船北偏东45°方向上,我船沿正东方向继续航行20海里到达B处后,又测得钓鱼岛在我船北偏东15°方向上,则此时B处到钓鱼岛的距离为()A.10海里 B.20海里 C.20海里 D.20海里【答案】C【解析】解:设钓鱼岛的位置为C,则△ABC中,∠A=45°,∠ABC=105°,∠C=30°,AB=20海里,∴°=°,∴BC=20海里.故选:C.设钓鱼岛的位置为C,则△ABC中,∠A=45°,∠ABC=105°,∠C=30°,AB=20海里,利用正弦定理可得结论.本题考查正弦定理的运用,考查学生的计算能力,比较基础.7.如图,正棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A. B. C. D.【答案】D【解析】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.8.m<0是方程2x2+7mx+5m2+1=0的两根一根比2大,一根比2小的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】解:设f(x)=2x2+7mx+5m2+1,则由方程f(x)=0的两根,一根大于2,另一根小于2,可得f(2)=8+14m+5m2+1<0,求得-<m<-1,反之不可,故m<0是方程2x2+7mx+5m2+1=0的两根一根比2大,一根比2小的必要不充分条件,故选:A.设f(x)=2x2+7mx+5m2+1,则由题意可得f(2)<0,由此求得m的范围即可.本题主要考查了一元二次方程的根的分布与系数的关系,二次函数的性质,属于基础题.9.设变量x,y满足约束条件:,则z=x-3y的最小值()A.-2B.-4C.-6D.-8【答案】D【解析】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(-2,2)取最小值-8故选D.我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x-3y的最小值.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.10.若不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是()A.a≤1B.a≤3C.a≥1D.a≥3【答案】D【解析】解:∵不等式|x-1|<a成立的充分条件是0<x<4,设不等式的解集为A,则(0,4)⊊A当a≤0时,A=∅,不满足要求;当a>0时,A=(1-a,1+a)若(0,4)⊊A则解得a≥3故选D.由已知中不等式|x-1|<a成立的充分条件是0<x<4,我们可以令不等式的解集为A,根据充要条件的集合判断法,得不等式的解集为A时,则(0,4)⊊A,进而根据绝对值不等式的解法,可以构造关于a的不等式组,解不等式组即可得到答案.本题考查解决一个命题是另一个命题的什么条件问题,若条件是数集则常转化为集合间的包含关系来处理,属于基础题.11.若数列{a n}满足=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A.2B.4C.6D.8【答案】B【解析】解:依题意可得b n+1=qb n,则数列{b n}为等比数列.又,则b50=2.∴,当且仅当b8=b92,即该数列为常数列时取等号.故选:B.由新定义得到数列{b n}为等比数列,然后由等比数列的性质得到b50=2,再利用基本不等式求得b8+b92的最小值.本题是新定义题,考查了等比数列的性质,训练了利用基本不等式求最值,是中档题.12.椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,P是椭圆上的一点,l:x=-,且PQ⊥l,垂足为Q,若四边形PQF1F2为平行四边形,则椭圆的离心率的取值范围是()A.(,1) B.(0,) C.(0,) D.(,1)【答案】A【解析】解:根据题意,得∵点P是椭圆上的动点∴P点横坐标x满足:-a≤x≤a(等号不能成立)∵四边形PQF1F2为平行四边形,∴|PQ|=|F1F2|=2c∵左准线方程为x=-,|PQ|=x+=2c,∴x=2c-,因此可得-a<2c-<a,各项都除以a,得-1<2e-<1解不等式,得<e<1.故选A.椭圆上动点P横坐标满足:-a≤x≤a,结合PQF1F2是平行四边形,得|PQ|=|F1F2|=x+=2c,所以x=2c-,由此建立关于ac的不等式,解之再结合椭圆离心率的取值范围,可求得结论.本题考查椭圆的基本性质,找出P的横坐标与椭圆长半轴的关系是解题的关键.二、填空题(本大题共7小题,共35.0分)13.函数的定义域为______ .【答案】{x|-4<x<-3或-3<或x≥1}【解析】解:由>,解得:-4<x<-3或-3<或x≥1.∴函数的定义域为{x|-4<x<-3或-3<或x≥1}.故答案为:{x|-4<x<-3或-3<或x≥1}.由根式内部的代数式大于等于0,分式的分母不等于0,对数式的真数大于0联立不等式组求解.本题考查函数的定义域及其求法,考查了一元二次不等式的解法,是基础的计算题.14.已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为______ .【答案】15【解析】解:设三角形的三边分别为x-4,x,x+4,则cos120°==-,化简得:x-16=4-x,解得x=10,所以三角形的三边分别为:6,10,14则△ABC的面积S=×6×10sin120°=15.故答案为:15因为三角形三边构成公差为4的等差数列,设中间的一条边为x,则最大的边为x+4,最小的边为x-4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC的面积.此题考查学生掌握等差数列的性质,灵活运用余弦定理及三角形的面积公式化简求值,是一道中档题.15.不等式的解集为______ .【答案】(-∞,-3]∪(0,1]【解析】解:∵,∴,∴,∴∴x∈(-∞,-3]∪(0,1]答案:(-∞,-3]∪(0,1].⇒⇒≤0⇒x∈(-∞,-3]∪(0,1]本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.16.正四面体ABCD中,棱AB与底面BCD所成角在余弦值是______ .【答案】【解析】解:正四面体ABCD,高为AH,则H为底面正三角形BCD的外心,则∠ABH=α,就是AB与平面BCD所成角,在R t△ABH中,设棱长为a,则BH=a××=,AH==,∴cosα===.故答案为:.在正四面体ABCD中,过A作AH⊥平面BCD于点H,则H为底面正三角形BCD的外心,连接BH,则∠ABH=α,就是AB与平面BCD所成角,解直角三角形ABH即可.考查直线和平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属中档题.17.某工厂产值月平均增长率为P,求该工厂的年增长率为______ .【答案】(1+p)11-1【解析】解:设1月份的产值为1,该工厂的年增长率为x,则(1+p)11=1+x,解得x=(1+p)11-1,故答案为:(1+p)11-1.设1月份的产值为1,该工厂的年增长率为x,则(1+p)11=1+x,解出即可.本题考查了指数的运算性质,考查了推理能力与计算能力,属于中档题.18.若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是______ .【答案】[-,]【解析】解:把y=k(x-2)+b代入x2-y2=1得(1-k2)x2-2k(b-2k)x-(b-2k)2-1=0,△=4k2(b-2k)2+4(1-k2)[(b-2k)2+1]=4[3(k-2b×)2+b2+1-4b2×]=1-,因为不论k取何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,所以△≥0,所以≤1,所以b的取值范围是[-,],故答案为:[-,].把y=k(x-2)+b代入x2-y2=1得(1-k2)x2-2k(b-2k)x-(b-2k)2-1=0,△=4k2(b-2k)2+4(1-k2)[(b-2k)2+1]=4[3(k-2b×)2+b2+1-4b2×],不论k取何值,△≥0,所以≤1,由此能求出b的取值范围.本题考查直线与双曲线的性质和应用,解题时要认真审题,仔细解答,注意根的判别式的合理运用.19.某公司欲将一批新鲜的蔬菜用汽车从A地运往相距125公里的B地,运费为每小时30元,装卸费为1000元,蔬菜在运输途中的损耗费(单位:元)是汽车速度(公里/小时)的2倍,为使运输的总费用不超过1200元,汽车的最高速度为每小时______ 公里.【答案】75【解析】解:设汽车的速度为x公里/小时,则,∴(x-25)(x-75)≤0,∴25≤x≤75,∴汽车的最高速度为每小时75公里.故答案为:75.设汽车的速度为x公里/小时,则,求出x的范围,即可得出结论.本题考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.三、解答题(本大题共7小题,共87.0分)20.在△ABC中角A,B,C的对边分别是a,b,c,且bsin A=cos B.(Ⅰ)求角B的大小;(Ⅱ)若a=4,c=3,D为BC的中点,求AD的长度.【答案】解:(Ⅰ)∵bsin A=cos B.∴由正弦定理可得:sin B sin A=sin A cos B,∵sin A≠0,∴sin B=cos B,即tan B=,∵B为三角形的内角,∴B=60°…5分(Ⅱ)∵a=4,c=3,∵D为BC的中点,∴BD=2,∴在△ABD中,利用余弦定理可得:AD2=AB2+BD2-2AB•BD cos B==7.∴AD=…10分【解析】(Ⅰ)由正弦定理化简已知可得:sin B sin A=sin A cos B,由sin A≠0,解得tan B=,又B为三角形的内角,即可解得B的值.(Ⅱ)由D为BC的中点,可得BD=2,在△ABD中,利用余弦定理即可解得AD的值.本题主要考查了正弦定理,余弦定理的综合应用,属于基本知识的考查.21.设p:x2-5x+a<0;q:x2-4x+3<0或2<26x-8(1)当a=6时,“p∨q”为真,求x的范围(2)¬p是¬q的充分不必要条件时,求a的取值范围.【答案】解:(1)若q为真,则x2-4x+3<0,或x2-6x+8<0,解得1<x<4,当a=6时,p为真,则x2-5x+6<0,解得2<x<3,∵p∨q为真,∴p,q中至少一个为真,当p为真时,q为假时<<,或,无解,当p为假,q为真时,,或<<,解得1<x≤2,或3≤x<4,当p,q均为真时,<<<<,解得2<x<3,综上所述,x的范围为1<x<4,(2)¬p是¬q的充分不必要条件,∴q是p的充分不必要条件,∴q⇒p,由于x2-5x+a<0,当△=25-4a>0时,即a<时,解得<x<,∴<><解得a<4,∴a的取值范围(-∞,4).【解析】(1)分别求出p,q为真时不等式的解集,再根据p∨q为真,p,q中至少一个为真,分类讨论即可得到x的范围;(2)利用¬p是¬q的充分不必要条件,q是p的充分不必要条件,建立条件关系进行求解即可.本题主要考查充分条件和必要条件的应用,利用逆否命题的等价性将¬p是¬q的充分不必要条件转化为q是p充分不必要条件,是解决本题的关键,属于中档题.22.已知f(x)=(Ⅰ)解关于a的不等式>的解集是{a|a>},求x的值;(Ⅱ)解关于x的不等式:>(a≤0)【答案】解:(Ⅰ)由于关于a的不等式>的解集是{a|a>},可得=0,求得x=3.(Ⅱ)关于x的不等式:>(a≤0),即(ax-1)(x2-1)>0,即(-ax+1)(x2-1)<0.当-1<a<0时,<-1,求得它的解集为{x|x<,或-1<x<1}.a=-1时,不等式即>0,可得它的解集为{x|x<1,且x≠-1},a<-1时,0>>-1,求得它的解集为{x|x<-1,或<x<1}.【解析】(Ⅰ)由题意可得=0,求得x=3.(Ⅱ)关于x的不等式:>(a≤0),即(ax-1)(x2-1)>0,即(-ax+1)(x2-1)<0,分类讨论a的范围,求得它的解集.本题主要考查分式不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.23.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=AC=2A1C1=2,D为BC中点.(Ⅰ)证明:平面A1AD⊥平面BCC1B1;(Ⅱ)求直线BB1与面AA1CC1所成角(Ⅲ)求二面角A-CC1-B的大小.【答案】证明:(Ⅰ)∵A1A⊥平面ABC,BC⊂平面ABC,∴A1A⊥BC.∵AB=AC=2A1C1=2,D为BC中点,∴BC⊥AD,∵AA1∩AD=A,∴BC⊥平面A1AD,∵BC⊂平面BCC1B1,∴平面A1AD⊥平面BCC1B1.解:(Ⅱ)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,B(2,0,0),B1(1,0,),=(-1,0,),面AA1CC1的法向量=(2,0,0),设直线BB1与面AA1CC1所成角为θ,则cosθ==,θ=60°,∴直线BB1与面AA1CC1所成角为60°.(Ⅲ)C(0,2,0),=(-1,0,),=(-2,2,0),设平面CC1B的法向量=(x,y,z),则,取z=1,得=(,,),平面ACC1的法向量=(1,0,0),设平面二面角A-CC1-B的平面角为α,则cosα==,∴.∴二面角A-CC1-B的大小为arccos.【解析】(Ⅰ)推导出A1A⊥BC,BC⊥AD,从而BC⊥平面A1AD,由此能证明平面A1AD⊥平面BCC1B1.(Ⅱ)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出直线BB1与面AA1CC1所成角.(Ⅲ)求出平面CC1B的法向量,平面ACC1的法向量利用向量法能求出二面角A-CC1-B 的大小.本题考查面面垂直的证明,考查线面角的求法,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.24.不等式,对任意实数x都成立,满足条件自然数k最大值为a,若已知mn>0,m≠n,试比较log(3m2+4mn+n2)与log(2m2+6mn)的大小.【答案】解:不等式≥k对于任意的实数x均成立,等价于(k-3)x2+(k-2)x+k-2≤0对于任意的实数x均成立.当k=3时,x+1≤0,∴x≤-1,不满足题意;当k≠3时,<<,解得k<3,∵满足条件自然数k最大值为a,∴a=3,∵mn>0,m≠n∴3m2+4mn+n2-2m2-6mn=m2-2mn+n2=(m-n)2>0,∴3m2+4mn+n2>2m2+6mn,∵对数函数y=为减函数,∴log(3m2+4mn+n2)<log(2m2+6mn).【解析】不等式,对任意实数x都成立,等价于(k-3)x2+(k-2)x+k-2≤0对于任意的实数x均成立,分类讨论,利用根的判别式即可求得k的取值范围,继而求出a的值,在作差比较真数的大小,根据对数函数的单调性质即可比较.本题考查二次函数在R中的恒成立问题,可以通过判别式法予以解决,也可以分离参数k,分类讨论解决,以及对数函数的性质,属于中档题.25.设数列{a n}满足a1=0且-=1(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n=n•()n a n,求数列{c n}的前n项和T n.(Ⅲ)设b n=,记s n为数列{b n}的前n项和.证明s n<1.【答案】(Ⅰ)解:∵a1=0,∴==1,又∵-=1∴数列{}是首项、公差均为1的等差数列,∴=n,∴a n=;(Ⅱ)由(I)可知c n=n•()n a n=(n-1)•,∴T n=1•+2•+…+(n-1)•,T n=1•+2•+…+(n-2)•+(n-1)•,两式错位相减得:T n=+++…+-(n-1)•,∴T n=++++…+-(n-1)•=-(n-1)•=1-(n+1)•;(Ⅲ)证明:由(I)可知b n===-,∴S n=1-+-+…+-=1-<1.【解析】(Ⅰ)通过a1=0、==1可知数列{}是首项、公差均为1的等差数列,计算即得结论;(Ⅱ)通过(I)可知c n=(n-1)•,利用错位相减法计算即得结论;(Ⅲ)通过(I)裂项可知b n=-,进而并项相加即得结论.本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.26.已知=(x-1,y),=(x+1,y).||+||=4(1)求M(x,y)的轨迹方程C.(2)P为曲线C上一动点,F1(-1,0),F2(1,0),求•的最大值和最小值;(3)直线l与曲线C交于A,B两点,若以AB为直径的圆过原点O,试探究点O到直线l的距离是否为定值?若是,求出该定值,若不是,说明理由.【答案】解:(1)由得:;∴点(x,y)到定点(1,0),(-1,0)的距离之和为4;∴M(x,y)的轨迹是焦点为(-1,0),(1,0),长轴长为4的椭圆;∴c=1,a=2,;∴椭圆的方程,即M(x,y)的轨迹方程C为:;(2)设P(x0,y0),P点在曲线C上,∴;∴;∴,,===;∵-2≤x0≤2;∴;∴;∴的最大值为3,最小值为2;(3)以AB为直径的圆过原点O;∴;设A(x1,y1),B(x2,y2),则x1x2+y1y2=0;①若直线l不存在斜率,设l的方程为x=t,则由:得,;∴,;∴;∴;∴O到l的距离为;②若直线l存在斜率,设方程为y=kx+m;∵x1x2+y1y2=0;∴x1x2+(kx1+m)(kx2+m)=0;(Ⅰ);将y=kx+m带入得,(3+4k2)x2+8kmx+4m2-12=0;∴,;带入(Ⅰ)得:7m2=12(1+k2);∴O到直线l的距离为;综上得,点O到直线l的距离为定值,定值为.【解析】(1)根据条件便可得到,这便说明点(x,y)到定点(-1,0),(1,0)的距离为4,从而可得到M(x,y)的轨迹为椭圆,并且椭圆方程可求出为;(2)可设P(x0,y0),从而可以求出,而根据点P在椭圆上,便可消去y0得到关于x0的式子,再根据x0的范围即可得出的范围,即可求出其最大、最小值;(3)可设A(x1,y1),B(x2,y2),根据条件便得到,从而可得到x1x2+y1y2=0,考虑用直线l的方程,从而讨论l的斜率:不存在斜率时,可设直线方程为x=t,联立椭圆的方程即可得出x1x2,y1y2,从而可以求出t=,这便得到O到l的距离为;l存在斜率时,可设方程为y=kx+b,从而可以得到,而联立直线方程和椭圆方程,消去y便可得出关于x的一元二次方程,根据韦达定理即可求出x1x2,x1+x2,带入前面的式子便可以得到7m2=12(1+k2),从而可以求出点O 到直线l的距离,从而判断O到l的距离是否为定值.考查根据向量坐标求向量长度,椭圆的定义及椭圆的标准方程,椭圆上的点的横坐标的范围,以及向量垂直的充要条件,直线的点斜式方程,韦达定理,点到直线的距离公式,不要漏了直线l的斜率不存在的情况.。
山东省威海市文登市2015届高三数学下学期第二次模拟试卷理(含解析)

2015年山东省威海市文登市高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合,B={y|y=2x+1,x∈R},则∁R(A∩B)=()A.(﹣∞,1] B.(﹣∞,1)C.(0,1] D.[0,1]2.若复数z满足(2+i)z=1+2i(i是虚数单位),则z的共轭复数所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知A,B,C为不共线的三点,则“”是“△ABC是钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.一个算法的程序框图如图所示,该程序输出的结果为()A.B.C.D.5.不等式|x﹣1|+|x+2|≤4的解集是()A.B.C.D.6.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A.B.C.y=sin2x D.7.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.增函数B.周期函数 C.奇函数D.偶函数8.已知棱长为的正方体的俯视图是一个面积为2的正方形,则该正方体的正视图的面积不可能等于()A.B.2 C.D.9.已知点F是双曲线的右焦点,点E是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若∠AEB是钝角,则该双曲线的离心率e的取值范围是()A. B.C.(2,+∞)D.10.已知函数,若|f(x)|≥2ax,则a的取值范围是()A.(﹣∞,0] B.[﹣2,1] C.[﹣2,0] D.[﹣1,0]二、填空题(共5小题,每小题5分,满分25分)从散点图分析,y与x线性相关,且回归方程为,则为.12.若在区间[﹣5,5]内任取一个实数a,则使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为.13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于.14.设为单位向量,非零向量,若的夹角为,则的最大值等于.15.设抛物线C:y2=2x的焦点为F,直线l过F与C交于A,B两点,若|AF|=3|BF|,则l的方程为.三、解答题:本大题共6小题,共75分.把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.16.△ABC中,A,B,C所对的边分别为a,b,c,,且.(Ⅰ)求A的大小;(Ⅱ)若,求△ABC的面积并判断△ABC的形状.17.盒子里装有大小相同的8个球,其中3个1号球,3个2号球,2个3号球.(Ⅰ)若第一次从盒子中任取一个球,放回后第二次再任取一个球,求第一次与第二次取到球的号码和是5的概率;(Ⅱ)若从盒子中一次取出2个球,记取到球的号码和为随机变量X,求X的分布列及期望.18.已知数列{a n}是各项均为正数的等差数列,首项a1=1,其前n项和为S n,数列{b n}是等比数列,首项b1=2,且b2S2=16,b3S3=72.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)令c1=1,c2k=a2k﹣1,c2k+1=a2k+kb k,其中k=1,2,3…,求数列{c n}的前2n+1项和T2n+1.19.如图,在正三棱柱ABC﹣A1B1C1中,AB=1,AA1=2,M是AB1上的动点,且AM=λAB1,N是CC1的中点.(Ⅰ)若,求证:MN⊥AA1;(Ⅱ)若直线MN与平面ABN所成角的大小为,试求λ的值.20.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好经过抛物线的准线,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l的方程为x=﹣4.AB是经过椭圆左焦点F的任一弦,设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.试探索k1,k2,k3之间有怎样的关系式?给出证明过程.21.已知函数,g(x)=(1+a)x,(a∈R).(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;(Ⅱ)若对∀x>0,总有f(x)≥g(x)成立.(1)求a的取值范围;(2)证明:对于任意的正整数m,n,不等式恒成立.2015年山东省威海市文登市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合,B={y|y=2x+1,x∈R},则∁R(A∩B)=()A.(﹣∞,1] B.(﹣∞,1)C.(0,1] D.[0,1]考点:交、并、补集的混合运算.专题:集合.分析:求出A中不等式的解集确定出A,求出B中y的范围确定出B,求出A与B的解集,进而确定交集的补角即可.解答:解:由A中不等式变形得:x(x﹣1)≥0,且x﹣1≠0,解得:x≤0或x>1,即A=(﹣∞,0]∪(1, +∞),由B中y=2x+1>1,即B=(1,+∞),∴A∩B=(1,+∞),则∁R(A∩B)=(﹣∞,1],故选:A.点评:此题考查了交、并、补角的混合运算,熟练掌握运算法则是解本题的关键.2.若复数z满足(2+i)z=1+2i(i是虚数单位),则z的共轭复数所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简,求得后得答案.解答:解:由(2+i)z=1+2i,得,∴,则z的共轭复数所对应的点的坐标为(),位于第四象限.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知A,B,C为不共线的三点,则“”是“△ABC是钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:从两个方向判断:一个是看能否得到△ABC为钝角三角形,另一个看△ABC 为钝角三角形能否得到,这样即可判断出“”是“△ABC是钝角三角形”的什么条件.解答:解:如图,(1)若,则cos>0;∴∠A>90°,即△ABC是钝角三角形;(2)若△ABC为钝角三角形,则∠A不一定为钝角;∴不一定得到;∴是△ABC为钝角三角形的充分不必要条件.故选A.点评:考查数量积的计算公式,向量夹角的概念及范围,以及钝角三角形的概念,充分条件、必要条件、充分不必要条件的概念.4.一个算法的程序框图如图所示,该程序输出的结果为()A.B.C.D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=10时,不满足条件i ≤9,退出循环,输出S的值,由裂项法求和即可得解.解答:解:模拟执行程序框图,可得i=1,S=0满足条件i≤9,S=,i=2满足条件i≤9,S=+,i=3…满足条件i≤9,S=++…+,i=10不满足条件i≤9,退出循环,输出S的值.由于S=++…+=(1﹣+﹣+﹣…+﹣)=×(1+)=.故选:A.点评:本题主要考查了循环结构的程序框图,用裂项法求数列的和,综合性较强,属于基本知识的考查.5.不等式|x﹣1|+|x+2|≤4的解集是()A.B.C.D.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:令f(x)=|x﹣1|+|x+2|,通过零点分区间的方法,对x的范围的讨论去掉绝对值符号,转化为分段函数,再解即可.解答:解:令f(x)=|x﹣1|+|x+2|,则f(x)=,∴当x≤﹣2时,|x+2|+|x﹣1|≤4⇔﹣2x﹣1≤4,∴﹣≤x≤﹣2;当﹣2<x<1时,有3≤4恒成立,当x≥1时,|x+2|+|x﹣1|≤4⇔2x+1≤4,∴1≤x≤.综上所述,不等式|x+2|+|x﹣1|≤4的解集为[﹣,].故选B.点评:本题考查绝对值不等式的解法,可以通过对x的范围的讨论去掉绝对值符号,转化为分段函数解决,也可以利用绝对值的几何意义解决,考查转化思想与运算能力,属于中档题.6.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A.B.C.y=sin2x D.考点:简单线性规划;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质;不等式的解法及应用.分析:作出不等式组对应的平面区域,利用线性规划的知识求出m的值,利用三角函数的图象关系进行平移即可.解答:解:作出不等式组对应的平面区域如图,∵m>0,∴平移直线,则由图象知,直线经过点B时,直线截距最大,此时z最大为2,由,解得,即B(1,1),则1+=2,解得m=2,则=sin(2x+),则的图象向右平移后,得到y=sin[2(x﹣)+]=sin2x,故选:C.点评:本题主要考查三角函数解析式的求解以及线性规划的应用,根据条件求出m的取值是解决本题的关键.7.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.增函数B.周期函数 C.奇函数D.偶函数考点:函数的周期性.专题:计算题;函数的性质及应用.分析:可判断f(x+1)=(x+1)﹣[x+1]=x﹣[x]=f(x);从而说明周期是1即可.解答:解:由题意,f(x+1)=(x+1)﹣[x+1]=(x+1)﹣([x]+1)=x﹣[x]=f(x);故函数f(x)=x﹣[x]在R上为周期为1的周期函数,故选B.点评:本题考查了函数的周期性的判断,属于基础题.8.已知棱长为的正方体的俯视图是一个面积为2的正方形,则该正方体的正视图的面积不可能等于()A.B.2 C.D.考点:简单空间图形的三视图.专题:数形结合法;空间位置关系与距离.分析:根据题意,画出图形,求出该正方体的正视图面积的取值范围,定义ABCD选项判断即可.解答:解:根据题意,得;水平放置的正方体,如图所示;当正视图为正方形时,其面积最小=2;当正视图为对角面时,其面积最大为×=2.∴满足棱长为的正方体的正视图面积的范围为[2,2].∴B、C、D都有可能,A中﹣1<2,∴A不可能.故选:A.点评:本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力的应用问题,是基础题目.9.已知点F是双曲线的右焦点,点E是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若∠AEB是钝角,则该双曲线的离心率e的取值范围是()A. B.C.(2,+∞)D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线的对称性及∠AEB是钝角,得到AF>EF,求出AF,CF得到关于a,b,c的不等式,求出离心率的范围.解答:解:∵双曲线关于x轴对称,且直线AB垂直x轴∴∠AEF=∠BEF∵∠AEB是钝角,∴AF>EF∵F为右焦点,过F且垂直于x轴的直线与双曲线交于A、B两点,∴AF=,∵EF=a+c∴>a+c,即c2﹣ac﹣2a2>0解得>2或<﹣1双曲线的离心率的范围是(2,+∞)故选:C.点评:本题考查双曲线的对称性、考查双曲线的三参数关系:c2=a2+b2、考查双曲线的离心率问题就是研究三参数a,b,c的关系.10.已知函数,若|f(x)|≥2ax,则a的取值范围是()A.(﹣∞,0] B.[﹣2,1] C.[﹣2,0] D.[﹣1,0]考点:分段函数的应用.专题:函数的性质及应用.分析:作出函数f(x)和y=ax的图象,将方程问题转化为两个函数的交点个数问题,利用数形结合进行求解即可.解答:解:作出函数y=|f(x)|的图象如图:若a>0,则|f(x)|≥2ax,若a=0,则|f(x)|≥2ax,成立,若a<0,则|f(x)|≥2ax,成立,综上a≤0,故选:A.点评:本题主要考查函数与方程的应用,利用分段函数作出函数的图象,利用数形结合是解决本题的关键.二、填空题(共5小题,每小题5分,满分25分)从散点图分析,y与x线性相关,且回归方程为,则为﹣0.61 .考点:线性回归方程.专题:应用题.分析:本题考查回归直线方程的求法.依据所给条件可以求得、,因为点(,)满足回归直线的方程,所以将点的坐标代入即可得到a的值.解答:解:依题意可得,==3.5,==4.5,则a=﹣1.46=4.5﹣1.46×3.5=﹣0.61.故答案为:﹣0.61.点评:回归分析部分作为新课改新加内容,在高考中一直受到重视,从山东考题看,一般以选择题或填空题出现.本题给出了线性回归直线方程考查的常见题型,体现了回归直线方程与样本中心点的关联.12.若在区间[﹣5,5]内任取一个实数a,则使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为.考点:几何概型.专题:计算题;概率与统计.分析:利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a,最后根据几何概型的概率公式可求出所求.解答:解:∵直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点,∴≤,解得﹣1≤a≤3,∴在区间[﹣5,5]内任取一个实数a,使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为=故答案为:.点评:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于180 .考点:二项式定理.专题:计算题.分析:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,即可求得常数项.解答:解:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间项的二次项系数最大.∵展开式中只有第六项的二项式系数最大,∴n=10∴展开式的通项为=令=0,可得r=2∴展开式中的常数项等于=180故答案为:180点评:本题考查二项展开式,考查二项式系数,正确利用二项展开式是关键.14.设为单位向量,非零向量,若的夹角为,则的最大值等于.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:利用数量积运算性质、二次函数的单调性即可得出.解答:解:||===,只考虑x>0,则===,当且仅当=﹣时取等号.∴则的最大值等于.故答案为:.点评:本题考查了数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.设抛物线C:y2=2x的焦点为F,直线l过F与C交于A,B两点,若|AF|=3|BF|,则l的方程为.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由题意设出直线AB的方程,联立直线和抛物线方程,利用韦达定理,结合|AF|=3|BF|得到x1=3x2+2,求出k得答案.解答:解:由y2=2x,得F(,0),设AB所在直线方程为y=k(x﹣),代入y2=2x,得k2x2﹣(k2+2)x+k2=0.设A(x1,y1),B(x2,y2),则x1+x2=1+,x1x2=结合|AF|=3|BF|,x1+=3(x2+)解方程得k=±.∴直线L的方程为.故答案为:点评:本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了学生的计算能力,是中档题.三、解答题:本大题共6小题,共75分.把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.16.△ABC中,A,B,C所对的边分别为a,b,c,,且.(Ⅰ)求A的大小;(Ⅱ)若,求△ABC的面积并判断△ABC的形状.考点:余弦定理;正弦定理.专题:解三角形.分析:(Ⅰ)由两向量的坐标,及已知等式,利用平面向量的数量积运算法则求出cosA的值,即可确定出A的大小;(Ⅱ)根据已知等式求出a的值,利用余弦定理列出关系式,把a,b+c,cosA的值代入求出bc的值,利用三角形面积公式求出三角形ABC面积,并判断其形状即可.解答:解:(Ⅰ)∵=(1,2),=(cos2A,cos2),且•=1,∴•=cos2A+2cos2=2cos2A﹣1+1+cosA=2cos2A+cosA=1,∴cosA=或cosA=﹣1,∵A∈(0,π),∴A=;(Ⅱ)由题意知a=,∵a2=b2+c2﹣2bccosA=(b+c)2﹣2bc(1+cosA),∴3=12﹣2bc(1+cos),∴bc=3,∴S△ABC=bcsinA=×3×=,由,得b=c=,∵a=,∴△ABC为等边三角形.点评:此题考查了余弦定理,三角形面积公式,平面向量的数量积运算,熟练掌握余弦定理是解本题的关键.17.盒子里装有大小相同的8个球,其中3个1号球,3个2号球,2个3号球.(Ⅰ)若第一次从盒子中任取一个球,放回后第二次再任取一个球,求第一次与第二次取到球的号码和是5的概率;(Ⅱ)若从盒子中一次取出2个球,记取到球的号码和为随机变量X,求X的分布列及期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)分别求出第一次是3,第二次是2和第一次是2,第二次是3的概率相加即可;(Ⅱ)X可能取的值是2,3,4,5,6,分别求出其概率值,列出分布列,求出数学期望即可.解答:解:(Ⅰ)记“第一次与第二次取到的球上的号码的和是5”为事件A,则;(Ⅱ)X可能取的值是2,3,4,5,6,,,,,.∴X的分布列为:X 2 3 4 5 6P∴,故所求的数学期望为.点评:本题考查了离散型随机变量的分别列及其期望,熟练掌握公式是解题的关键,本题属于中档题.18.已知数列{a n}是各项均为正数的等差数列,首项a1=1,其前n项和为S n,数列{b n}是等比数列,首项b1=2,且b2S2=16,b3S3=72.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)令c1=1,c2k=a2k﹣1,c2k+1=a2k+kb k,其中k=1,2,3…,求数列{c n}的前2n+1项和T2n+1.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则d>0,利用等差数列与等比数列的通项公式即可得出;(II)利用“错位相减法”、等比数列的前n项和公式即可得出.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则d>0,依题意有,解得:或(舍去),∴a n=1+2(n﹣1)=2n﹣1,.(Ⅱ)T2n+1=c1+c2+c3+c4+…+c2n+1,∴T2n+1=c1+a1+(a2+b1)+a3+(a4+2b2)+…+a2n﹣1+(a2n+nb n)=1+S2n+(b1+2b2+…+nb n),令①∴②,∴①﹣②得:,∴,∵,∴.点评:本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.19.如图,在正三棱柱ABC﹣A1B1C1中,AB=1,AA1=2,M是AB1上的动点,且AM=λAB1,N是CC1的中点.(Ⅰ)若,求证:MN⊥AA1;(Ⅱ)若直线MN与平面ABN所成角的大小为,试求λ的值.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质.专题:计算题;综合题.分析:(I)结合几何体中的线面关系证明线面垂直即AA1⊥面ABC,进而可得AA1⊥CE,又MN∥CE,所以可得答案.(II)建立坐标系求出平面的法向量与直线所在的向量,利用向量的基本运算,求出两个向量的夹角再结合线面角的范围求出线面角即可.解答:解(Ⅰ)证明:取AB中点E,连接ME,CE,则有ME与NC平行且相等.∴四边形MNCE为平行四边形,MN∥CE∵AA1⊥面ABC,CE⊂面ABC∴AA1⊥CE,∴MN⊥AA1.(Ⅱ)以AB,AA1为x轴,z轴,在面ABC内以过A点且垂直于AB的射线为y轴建系如设是平面ABN的一个法向量,则∴,令y=1∴设MN与面ABN所成角为θ则,化简得3λ2+5λ﹣2=0,λ=﹣2或由题意知λ>0,∴.点评:解决此类问题的关键是熟悉几何体的结构特征,便于判断线面的位置关系以及建立坐标系通过向量法解决空间角、空间距离问题.20.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好经过抛物线的准线,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l的方程为x=﹣4.AB是经过椭圆左焦点F的任一弦,设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.试探索k1,k2,k3之间有怎样的关系式?给出证明过程.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设C方程为,利用顶点恰好经过抛物线的准线,求出b,根据椭圆经过点,求出a,即可求椭圆C的方程;(Ⅱ)设直线AB的方程代入,利用韦达定理,结合斜率公式,即可探索k1,k2,k3之间的关系式.解答:解:(Ⅰ)设C方程为,∵抛物线的准线,∴…(1分)由点在椭圆上,∴,∴a2=4…(3分)∴椭圆C的方程为.…(4分)(Ⅱ)由题意知,直线斜率存在.∵F(﹣1,0),∴设直线AB的方程为y=k(x+1),代入,得(4k2+3)x2+8k2x+4k2﹣12=0,…(5分)设A(x1,y1),B(x2,y2),由韦达定理得.…(6分)由题意知M(﹣4,﹣3k),…(8分)∵y1=k(x1+1),y2=k(x2+1),代人k1,k2得,∴…(10分)=…(12分)∴k1+k2=2k3…(13分)点评:本题考查直线与圆锥曲线的综合问题,考查了分析转化的能力与探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能解答出.21.已知函数,g(x)=(1+a)x,(a∈R).(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;(Ⅱ)若对∀x>0,总有f(x)≥g(x)成立.(1)求a的取值范围;(2)证明:对于任意的正整数m,n,不等式恒成立.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ),先求出导函数,再分情况①当a≤0时②当0<a<1时③当a=1时④当a>1时进行讨论(Ⅱ)(1)由题意得到即h(x)≥0恒成立,分离参数,利用导数函数最小值即可.(2)当时,,转化为,分别令x=m+1,m+2,…,m+n,利用放缩法,从而证得结论.解答:解:(Ⅰ)h(x)=f(x)﹣g(x)=x2+alnx﹣(1+a)x,定义域为{x|x>0},∴h′(x)=x+﹣(1+a)=,…(1分)①当a≤0时,令h′(x)>0,∵x>0,∴x>1,令h′(x)<0,∴0<x<1;②当0<a<1时,令h′(x)>0,则x>1或0<x<a,令h′(x)<0,∴a<x<1;…(3分)③当a=1时,恒成立;④当a>1时,令h′(x)>0,则x>a或0<x<1,令h′(x)<0,∴1<x<a;…(4分)综上:当a≤0时,h(x)的增区间为(1,+∞),h(x)的减区间为(0,1);当0<a<1时,h(x)的增区间为(0,a)和(1,+∞),h(x)的减区间为(a,1);当a=1时,h(x)的增区间为(0,+∞);当a>1时,h(x)的增区间为(0,1)和(a,+∞),h(x)的减区间为(1,a).…(5分)(Ⅱ)(1)由题意,对任意x∈(0,+∞),f(x)﹣g(x)≥0恒成立,即h(x)≥0恒成立,只需h(x)min≥0.…(6分)由第(Ⅰ)知:∵,显然当a>0时,h(1)<0,此时对任意x∈(0,+∞),f(x)≥g(x)不能恒成立;…(8分)当a≤0时,,∴;综上:a的取值范围为.…(9分)(2)证明:由(1)知:当时,,…(10分)即lnx≤x2﹣x,当且仅当x=1时等号成立.当x>1时,可以变换为,…(12分)在上面的不等式中,令x=m+1,m+2,…,m+n,则有==∴不等式恒成立.…(14分)点评:本题考察了函数的单调性,导数的应用,不等式的证明,渗透了分类讨论的思想,属于难题.。
高二数学第二学期期末试卷 理(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤34.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=15.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 76.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>18.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2} 11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 812.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°考点:直线的参数方程.专题:直线与圆.分析:设直线的倾斜角为α,则α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.可得直线的斜率,即可得出.解答:解:设直线的倾斜角为α,α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.∴直线的斜率,则直线的倾斜角α=150°.故选D.点评:本题考查了把直线的参数方程化为普通方程、直线的斜率与倾斜角的关系,属于基础题.2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:因为“x2﹣x>0”可以求出x的X围,再根据充分必要条件的定义进行求解;解答:解:∵x2﹣2x<0⇔0<x<2,若0<x<2可得0<x<4,反之不成立.∴“x2﹣2x<0”是“0<x<4”的充分非必要条件,故选B.点评:此题主要考查一元二次不等式的解法,以及充分必要条件的定义,是一道基础题;3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤3考点:特称命题.分析:根据所给的特称命题写出其否定命题:任意实数x,使x2+ax+1≥0,根据命题否定是假命题,得到判别式大于0,解不等式即可.解答:解:∵命题“存在x∈R,使x2+(a﹣1)x+1<0”的否定是“任意实数x,使x2+ax+1≥0”命题否定是真命题,∴△=(a﹣1)2﹣4≤0,整理得出a2﹣2a﹣3≤0∴﹣1≤a≤3故选D.点评:本题考查命题的否定,解题的关键是写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况.4.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=1考点:简单曲线的极坐标方程;圆的切线方程.专题:直线与圆.分析:利用圆的极坐标方程和直线的极坐标方程即可得出.解答:解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.点评:正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》5.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 7考点:基本不等式.专题:计算题.分析:将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解答:解:由x+3y﹣2=0得x=2﹣3y代入3x+27y+1=32﹣3y+27y+1=+27y+1∵,27y>0∴+27y+1≥7当=27y时,即y=,x=1时等号成立故3x+27y+1的最小值为7故选D.点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.6.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]考点:绝对值不等式的解法.专题:综合题.分析:本题为含有参数的分式不等式,若直接求解,比较复杂,可直接由条件2∉M出发求解.2∉M即2不满足不等式,从而得到关于a的不等关系即可求得a的取值X围.解答:解:依题意2∉M,即2不满足不等式,得:||≤a,解得a≥,则a的取值X围为[,+∞).故选B.点评:本题考查绝对值不等式的解法和等价转化思想,属于基础题.7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>1考点:绝对值不等式的解法.专题:函数的性质及应用.分析:利用绝对值的意义求得|x﹣3|+|x﹣4|的最小值为1,再结合条件求得实数a的取值X围.解答:解:|x﹣3|+|x﹣4|表示数轴上的x对应点到3、4对应点的距离之和,它的最小值为1,故a>1,故选:D.点评:本题主要考查绝对值的意义,属于基础题.8.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再与半径比较大小即可得出.解答:解:圆ρ=2cosθ即ρ2=2ρcosθ,化为x2+y2=2x,配方为(x﹣1)2+y2=1,∴圆心C (1,0),半径r=1.直线2ρcos(θ+)=﹣1展开为=﹣1,化为x﹣y+1=0.∴圆心C到直线的距离d==1=r.∴直线与圆相切.故选:B.点评:本题考查了把极坐标方程化为直角坐标方程的方法、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题考点:命题的真假判断与应用.专题:简易逻辑.分析:由指数函数的单调性和命题的否命题,即可判断A;由含有一个量词的命题的否定,即可判断B;运用对数函数的单调性和充分必要条件的定义,即可判断C;由复合命题的真假,结合真值表,即可判断D.解答:解:A.命题“若x>y,则2x>2y”的否命题是“若x≤y,则2x≤2y”是真命题,故A错;B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1≥0”,故B错;C.设x,y为实数,x>1可推出lgx>lg1=0,反之,lgx>0也可推出x>1,“x>1”是“lgx>0”的充要条件,故C正确;D.若“p∧q”为假命题,则p,q中至少有一个为假命题,故D错.故选C.点评:本题主要考查简易逻辑的基础知识:四种命题及关系、命题的否定、充分必要条件和复合命题的真假,注意否命题与命题的否定的区别,是一道基础题.10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2}考点: Venn图表达集合的关系及运算.专题:计算题;新定义.分析:利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.解答:解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.点评:本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 8考点:平均值不等式.专题:计算题;转化思想.分析:利用题设中的等式,把n+的表达式转化成++后,利用平均值不等式求得最小值.解答:解:∵n+=++∴n+=++(当且仅当n=4时等号成立)故选C点评:本题主要考查了平均值不等式求最值.注意把握好一定,二正,三相等的原则.12.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P考点:基本不等式.专题:不等式的解法及应用.分析:由于a+b>c,a+c>b,c+b>a,可得ac+bc>c2,ab+bc>b2,ac+ab>a2,可得SP >S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,可得S≥P,即可得出.解答:解:∵a+b>c,a+c>b,c+b>a,∴ac+bc>c2,ab+bc>b2,ac+ab>a2,∴2(ac+bc+ab)>c2+b2+a2,∴SP>S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,∴S≥P>0.∴P≤S<2P.故选:D.点评:本题考查了基本不等式的性质、三角形三边大小关系,考查了变形能力与计算能力,属于中档题.二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为{x|﹣1<x<1} .考点:绝对值不等式的解法.专题:计算题;转化思想.分析:首先分析题目求不等式|2x﹣1|﹣|x﹣2|<0的解集,可以考虑平方去绝对的方法,先移向,平方,然后转化为求解一元二次不等式即可得到答案.解答:解:|2x﹣1|﹣|x﹣2|<0移向得:丨2x﹣1丨<丨x﹣2丨两边同时平方得(2x﹣1)2<(x﹣2)2即:4x2﹣4x+1<x2﹣4x+4,整理得:x2<1,即﹣1<x<1故答案为:{x|﹣1<x<1}.点评:此题主要考查绝对值不等式的解法的问题,其中涉及到平方去绝对值的方法,对于绝对值不等式属于比较基础的知识点,需要同学们掌握.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为 3 .考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为{﹣1,0,1} .考点:集合的包含关系判断及应用.专题:阅读型.分析:根据B⊆A,利用分类讨论思想求解即可.解答:解:当a=0时,B=∅,B⊆A;当a≠0时,B={﹣}⊆A,﹣=1或﹣=﹣1⇒a=1或﹣1,综上实数a的所有可能取值的集合为{﹣1,0,1}.故答案是{﹣1,0,1}.点评:本题考查集合的包含关系及应用.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为[2,4] .考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先求出命题p,q的等价条件,然后利用p是¬q的必要非充分条件,建立条件关系即可求出m的取值X围.解答:解:∵log2|1﹣|>1;∴:|x﹣3|≤2,即﹣2≤x﹣3≤2,∴1≤x≤5,设A=[1,5],由:(x﹣m+1)(x﹣m﹣1)≤0,得m﹣1≤x≤m+1,设B=[m﹣1,m+1],∵¬p是¬q的充分而不必要条件,∴q是p的充分而不必要条件,则B是A的真子集,即,∴,即2≤m≤4,故答案为:[2,4].点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题p,q的等价条件是解决本题的关键.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,代入两个圆的极坐标方程,化简后可得⊙O1和⊙O2的直角坐标方程;(2)把两个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为极坐标方程.解答:解:(1)∵圆O1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,∴化为直角坐标方程为(x﹣2)2+y2=4,∵圆O2的极坐标方程ρ=﹣sinθ,即ρ2=﹣ρsinθ,∴化为直角坐标方程为 x2+(y+)2=.(2)由(1)可得,圆O1:(x﹣2)2+y2=4,①圆O2:x2+(y+)2=,②①﹣②得,4x+y=0,∴公共弦所在的直线方程为4x+y=0,化为极坐标方程为:4ρcosθ+ρsinθ=0.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求直线的极坐标方程,属于基础题.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.考点:带绝对值的函数.专题:计算题;证明题;函数的性质及应用.分析:(I)利用绝对值不等式即可证得f(x)≥1;(II)利用基本不等式可求得≥2,要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2即可.解答:解:(Ⅰ)证明:由绝对值不等式得:f(x)=|x﹣1|+|x﹣2|≥|(x﹣1)﹣(x﹣2)|=1 …(5分)(Ⅱ)∵==+≥2,∴要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2,即,或,或,解得x≤,或x≥.故x的取值X围是(﹣∞,]∪[,+∞).…(10分)点评:本题考查带绝对值的函数,考查基本不等式的应用与绝对值不等式的解法,求得≥2是关键,属于中档题.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.考点:参数方程化成普通方程;直线与圆的位置关系.专题:直线与圆.分析:(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.解答:解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识点是参数方程与普通方程,直线与圆的位置关系,极坐标,熟练掌握极坐标方程与普通方程之间互化的公式,及直线参数方程中参数的几何意义是解答的关键.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.考点:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.专题:计算题.分析:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.解答:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.点评:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)原不等式可化为|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,从而求得a的值.(2)由题意可得|n﹣1|+|2n﹣1|+2≤m,构造函数y=|n﹣1|+|2n﹣1|+2,求得y的最小值,从而求得m的X围.解答:解:(1)原不等式可化为|2x﹣a|≤6﹣a,∴,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,∴a=1.(2)∵f(x)=|2x﹣1|+1,f(n)≤m﹣f(﹣n),∴|n﹣1|+1≤m﹣(|﹣2n﹣1|+1),∴|n﹣1|+|2n﹣1|+2≤m,∵y=|n﹣1|+|2n﹣1|+2,当n≤时,y=﹣3n+4≥,当≤n≤1时,y=n+2≥,当n≥1时,y=3n≥3,故函数y=|n﹣1|+|2n﹣1|+2的最小值为,∴m≥,即m的X围是[,+∞).点评:本题主要考查绝对值不等式的解法,带有绝对值的函数,体现了转化的数学思想,属于中档题.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.考点:简单曲线的极坐标方程;轨迹方程.专题:坐标系和参数方程.分析:设出点M的极坐标(ρ,θ),表示出OP、PB,列出的极坐标方程,再化为普通方程,求出点M的轨迹长度即可.解答:解:设M(ρ,θ),θ∈(0,),则OP=2cosθ,PB=2sinθ;∴ρ=OP+PM=OP+PB=2cosθ+2sinθ,∴ρ2=2ρcosθ+2ρsinθ;化为普通方程是x2+y2=2x+2y,∴M的轨迹方程是(x﹣1)2+(y﹣1)2=2(x>0,y>0);∴点M的轨迹长度是l=×2π×=π.点评:本题考查了极坐标的应用问题,解题时应根据题意,列出极坐标方程,再化为普通方程,从而求出解答来,是基础题.。
山东省文登市2014-2015学年高二上学期期末考试数学(理)试题

山东省文登市2014-2015学年高二上学期期末考试理科数学试题2015.2本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共 4页.满分150分,考试时间120分钟. 考试结束,将试卷答题卡交上,试题不交回.第Ⅰ卷 选择题(共50分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号涂写在答题卡上.2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.第Ⅱ卷试题解答要作在答题卡各题规定的矩形区域内,超出该区域的答案无效. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.第Ⅱ卷 非选择题(共100分)1.已知命题p :a R ∀∈,函数xy a =是单调函数,则p ⌝: ( ) A.a R ∀∈,函数xy a =不一定是单调函数 B.a R ∀∈,函数xy a =不是单调函数 C.,a R ∃∈ 函数xy a =不一定是单调函数 D.,a R ∃∈ 函数xy a =不是单调函数 2.ABC ∆顶点(2,3),(0,0),(4,0)A B C ,则“方程2x =”是“BC 边上中线方程”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知数列{}n a 是等比数列,命题:p “若公比1q >,则数列{}n a 是递增数列”,则在其逆命题、否命题和逆否命题中,假命题的个数为 ( ) A.4 B.3 C.2 D.14.在相距km 2的B A 、两点处测量目标点C ,若75CAB ∠=︒,60CBA ∠=︒,则C B 、 两点之间的距离为 ( ) A.km )13(- B.km )13(+ C.km 6 D.km )13(2+5.已知}{n a 是首项为32的等比数列,n S 是其前n 项和,且646536=S S ,则数列|}log {|2n a 前10项和为 ( ) A.58 B.56 C.50 D.45BACDA 1B 1C 1D 1第7题图6.已知双曲线22:x C a -221y b=的焦距为10,点(1,2)P 在C 的渐近线上,则C 的方程为( )A.25x 2120y -= B.220x 215y -= C.280x 2120y -= D.220x 2180y -= 7.已知长方体1111ABCD A B C D -,下列向量的数量积一定不为0的是 ( ) A.11AD BC ⋅ B.1BD BC ⋅ C.1AB AD ⋅ D.1BD AC ⋅8.若变量,x y 满足约束条件 0,4,0,x y x y y k -≥⎧⎪+≤⎨⎪+≥⎩且 3z x y =+的最小值为8-,则k =( )A.2B.2-C.3D.3-9.已知四面体OABC 各棱长为1,D 是棱OA 的中点,则异面直线BD 与AC 所成角的余弦值 ()B.1410.已知椭圆的左焦点为1F ,右焦点为2F .若椭圆上存在一点P ,满足线段2PF 相切于以椭圆的短轴为直径的圆,切点为线段2PF 的中点,则该椭圆的离心率为( )A.3 B.13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中相应题的横线上. 11.不等式2|1||12|>--+x x 的解集为 .12.已知正方体ABCD A B C D ''''-的棱长为1,设,,AB a AD b AA c '===,则1||2a b c ++= . 13.已知等差数列}{n a 中,满足103S S =,且01>a ,n S 是其前n 项和,若n S 取得最大值,则n = .14.在直三棱柱ABC A B C '''-中,底面是边长为a 的正三角形,AA '=则直线AB '与侧面AC '所成角的正切值为 . 15.下列四种说法:①垂直于同一平面的所有向量一定共面;②等差数列{}n a 中,134,,a a a 成等比数列,则公比为12;③已知0,0,1a b a b >>+=,则23a b+的最小值为5+; ④在ABC ∆中,已知cos cos cos a b cA B C==,则60A ∠=︒. 正确的序号有 .二、解答题:本大题共6小题,共75分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知0cos )sin 3(cos cos =-+B A A C . (Ⅰ) 求角B 的大小;(Ⅱ) 若4,13=+=c a b ,求△ABC 的面积.17.(本小题满分12分)已知命题P :在R 上定义运算⊗:.)1(y x y x -=⊗不等式1)1(<-⊗x a x 对任意实数x 恒成立;命题Q :若不等式2162≥+++x ax x 对任意的*N x ∈恒成立.若P Q ∧为假命题,P Q ∨为真命题,求实数a 的取值范围.18.(本小题满分12分)已知抛物线C 的顶点在坐标原点O ,对称轴为x 轴,焦点为F ,抛物线上一点A 的横坐标为2,且10FA OA ⋅=.(Ⅰ)求此抛物线C 的方程;(Ⅱ)过点(4,0)做直线l 交抛物线C 于,A B 两点,求证:OA OB ⊥.19.(本小题满分12分)如图,已知AB ⊥平面,//,B C E C D A B B C E∆是正三角形,2A B B CC D ==. (Ⅰ)在线段BE 上是否存在一点F ,使//CF 平面A D E ?(Ⅱ)求证:平面ABE ⊥平面A D E ;(Ⅲ)求二面角B D E A --的余弦值.20. (本小题满分13分)已知数列}{n a 的前n 项和n S ,满足a a S a S n n n )(1(+-=为常数,且)0>a ,且34a 是1a 与22a 的等差中项.(Ⅰ)求}{n a 的通项公式;(Ⅱ)设n n a n b )12(+=,求数列}{n b 的前n 项和n T .21.(本小题满分14分)已知椭圆22221(0)x y a b a b+=>>上的点P 到左右两焦点12,F F的距离之和为,(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点2F 的直线l 交椭圆于A B 、两点.(1)若y 轴上一点1(0,)3M 满足||||M A M B =,求直线l 斜率k 的值;EBCADF(2)是否存在这样的直线l ,使ABO S 的最大值为2O 为坐标原点)?若存在,求直线l 方程;若不存在,说明理由.高二理数学参考答案 2015.2三、16.解:(Ⅰ)由已知得0cos sin 3cos cos )cos(=-++-B A B A B A , 即有0cos sin 3sin sin =-B A B A , ……2分0sin ≠A ,0cos 3sin =-∴B B ,0cos ≠B ,3tan =∴B ……4分 ),0(π∈B ,3π=∴B . …6分(Ⅱ)由)cos 1(2)(cos 22222B ac c a B ac c a b +-+=-+=,)3cos1(24132π+-=∴ac ,1=∴ac , ……10分433sin 121sin 21=⨯⨯==∴∆πB ac S ABC . ……12分 17.解:由题意知,x a x x a x )1)(1()1(--=-⊗若命题P 为真,01)1()1(2>+---x a x a 对任意实数x 恒成立,……………1分∴①当01=-a 即1=a 时,01>恒成立,1=∴a ; ……………2分②当01≠-a 时,⎩⎨⎧<---=∆>-0)1(4)1(012a a a ,13<<-∴a ,……………3分综合①②得,13≤<-a ………………4分 若命题Q 为真,0>x ,01>+∴x ,则有)1(2)6(2+≥++x ax x 对任意的*N x ∈恒成立 , ………5分 即2)4(++-≥xx a 对任意的*N x ∈恒成立, 令2)4()(++-=xx x f ,只需max )(x f a ≥, ………6分224242)(-=+-=+⋅-≤xx x f ,当且仅当)(4*N x x x ∈=即2=x 时取“=”2-≥∴a ………8分P Q ∧为假命题,P Q ∨为真命题,Q P ,∴中必有一个真命题,一个假命题,………9分(1)若P 为真Q 为假,则⎩⎨⎧-<≤<-213a a ,23-<<-a , ………10分(2)若P 为假Q 为真,则⎩⎨⎧-≥>-≤213a a a 或,1>∴a , ………11分综上:123>-<<-∴a a 或 ………12分 18解:(Ⅰ)设22(0)y px p =>,点0(2,)A y ,则有204y p = ……………1分200(,0),(2,),4431022p pF FA y FA OA p y p ∴=-⋅=-+=+= …………3分 2p ∴=,所以抛物线C 的方程为24y x =. ……………5分(Ⅱ)当直线l 斜率不存在时,此时:4l x =,解得(4,4),(4,4)A B - 满足0,OA OB OA OB ⋅=∴⊥ …………7分 当直线l 斜率存在时,设:(4)l y k x =-,联立方程222224(84)160(4)y x k x k x k y k x ⎧=⇒-++=⎨=-⎩设1122(,),(,)A x y B x y ,则21212284,16k x x x x k++== …………9分 22212121212222(1)4()1616(1)3216160OA OB x x y y k x x k x x k k k k ∴⋅=+=+-++=+--+=OA OB ∴⊥ ……………11分 综上,OA OB ⊥成立. ……………12分19.(Ⅰ)当F 为BE 的中点时,//CF 平面ADE …1分 证明:取BE 的中点F 、AE 的中点G ,连结FG GD CF、、1,//2GF AB GF AB∴=1,//2DC AB CD AB =//CD GF ∴CFGD ∴是平行四边形…………3分EBCADF G//CF GD 又CF ⊄平面,ADE DG ⊂平面ADE//CF ∴平面ADE ……………4分(Ⅱ),CF BF CF AB ⊥⊥CF ∴⊥平面ABE//CF DG DG ∴⊥平面ABE …………6分DG ⊂平面ADE ∴平面ABE ⊥平面ADE …7分(Ⅲ) 方法1向量法:以,BC BA 所在射线分别为,x z轴,以垂直于BC 所在线为y 轴建立直角坐标系,如图. 设22AB BC CD ===,(0,0,0),(2,0,1),(0,0,2),B DA (1E(2,0,1),(1,3,0),(2,0,1),BD BE AD ∴===-(12)AE =-设平面BDE 的法向量为1(,,),n xy z =112200(1,2)00x z n BD n x n BE ⎧+=⎧⋅=⎪⎪∴⇒⇒=-⎨⎨=⎪⋅=⎪⎩⎩……9分设平面ADE 的法向量2(,,),na b c =2222002)200a c n AD n a c n AE ⎧-=⎧⋅=⎪⎪∴⇒⇒=⎨⎨+-=⎪⋅=⎪⎩⎩…10分12cos ,n n <>==所以二面角B DE A --…………12分方法2几何法AB BE = AE BG ∴⊥,ABE ADE ⊥面面,ABEADE AE =面面,BG ∴⊥平面ADE过G 作GM DE ⊥,连结BM ,则BM DE ⊥则BMG ∠为二面角A DE B --的平面角 ………9分设22ABBC CD ===,则BG GE ==RtDCE ∆中,1,2CD CE ==DE ∴又DG CF ==EBCADFGM在Rt DGE ∆中,由DE GM DG EG ⋅=⋅得5GM =,…10分 在Rt BGM ∆中,BM ==,……11分5cos BMG ∠== ∴二面角A DE B --的余弦值为412分(1)-(2)得:2311311112[()()...()](21)()222222n n n T n +=+⨯+++-+⨯ 1111()31422(21)()12212n n n ++-=+⨯-+⨯-1)21)(52(25++-=n n …………12分n n n T )21)(52(5+-=∴ …………13分21.(本小题满分14分)解:(Ⅰ)|212PF |+|PF |a ==a =……………1分c e a ==1c =,∴222211b a c =-=-= ……………2分椭圆的标准方程为2212x y += ……………3分 (Ⅱ)已知2(1,0)F ,设直线的方程为(1)y k x =-,1122(,)(,)A x y B x y联立直线与椭圆方程22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,化简得:2222(12)4220k x k x k +-+-= ∴22121222422,1212k k x x x x k k -+==++,121222()212k y y k x x k k -+=+-=+ ……4分 ∴AB 的中点坐标为2222(,)1212k kG k k -++ ………5分 ①当0k ≠时,2222213121123||||,26012MG k k k k MA MB k k k kk ------+=∴===-+, 整理得22310,k k -+=解得1k =或12k = …………7分第11页 共11页221,0,4()1,2ABO k R k k S ∆∈≠∴+>∴<综上,max ABO S ∆= 所以满足题意的直线存在,方程为1x =. ………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二期末模块检测理科数学 2015.6本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共 4页.满分150分,考试时间120分钟. 考试结束,将试卷答题卡交上,试题不交回.第Ⅰ卷 选择题(共50分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号涂写在答题卡上.2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.第Ⅱ卷试题解答要作在答题卡各题规定的矩形区域内,超出该区域的答案无效. 参考公式:如果事件B A ,互斥,那么)()()(B P A P B A P +=如果事件B A ,互相独立,那么)()()(B P A P B A P ⋅=⋅如果事件A 在一次试验中发生的概率是P ,那么它在n 次独立重复试验中恰好发生k次的概率 =)(k P n C k n k knp p --)1(一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.1i z i ⋅=-(i 为虚数单位),则z =A.1i -B.1i +C.1i -+D.1i -- 2.否定“自然数,,a b c 中恰有一个偶数”时正确的反设为 A.,,a b c 都是奇数 B.,,a b c 都是偶数C.,,a b c 至少有两个偶数D.,,a b c 至少有两个偶数或者都是奇数 3.某校组织一次校外活动,有10名同学参加,其中有6名男生,4名女生,从中随机抽取3名,其中至多有1名女生的概率 A.13 B.12 C.23 D.564.下列求导正确的是A.211()1x xx'+=+B.2(cos )2sin x x x x '=- C.3(3)3log x xe '= D.21(log )ln 2x x '=5.有一批产品,其中12件是正品,4件是次品,有放回的任取4件,若X 表示取到次品的件数,则=)(X DA.43 B.89 C.38 D.256.若ln (),xf x e b a x=<<,则 A.()()f a f b > B.()()f a f b < C.()()f a f b = D.()()1f a f b > 7.某企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了72名员工进行调查,所得的数据如下表所示:(参考公式与数据:21212211222112)(++++-=n n n n n n n n n χ.当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关; 当23.841χ<时认为事件A 与B 无关.)A.有99%的把握说事件A 与B 有关B.有95%的把握说事件A 与B 有关C.有90%的把握说事件A 与B 有关D.事件A 与B 无关8.现有16个不同小球,其中红色,黄色,蓝色,绿色小球各4个,从中任取3个,要求这3个小球不能是同一颜色,且红色小球至多1个,不同的取法为 A.232 B.256 C.408 D.472 9.设a R ∈,若函数2xy e ax =+,x R ∈有大于0的极值点,则A.1a e<-B.1a e>-C.12a <-D.12a >-10.给出下面三个命题:①已知随机变量ξ服从正态分布2(0,)N σ,且(22)0.9P ξ-≤≤=,则(2)0.05P ξ>=;②某学生在最近的15次数学测验中有5次不及格.按照这个成绩,他在接下来的6次测验中,恰好前4次及格的概率为4221()()33;③假定生男孩、生女孩是等可能的.在一个有两个孩子的家庭中,已知有一个是女孩,则另一个孩子也是女孩的概率是14. 则正确的序号为A.①②B.①③C.①D.②第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中相应题的横线上. 11.已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a .12.把4本不同的课外书分给甲、乙两位同学,每人至少一本,则不同的分法有 种. 13.某地区恩格尔系数(表示生活水平高低的一个指标)(%)y 与年份x 的统计数据如下表:从散点图可以看出y 与x 线性相关,且可得回归直线方程为ˆˆ4055.25ybx =+,据此模型可预测2015年该地区的恩格尔系数为 %.14.曲线21y x =-与直线2,0x y ==所围成的区域的面积为 .15.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中}6,5,4,3,2,1{,∈b a ,若1||≤-b a ,就称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为 .三、解答题:本大题共6小题,共75分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知复数z 同时满足下列两个条件:①z 的实部和虚部都是整数,且在复平面内对应的点位于第四象限; ②421≤+<zz . (Ⅰ)求出复数z ; (Ⅱ)求|22|iiz +-+.17.(本小题满分12分) 已知nx x )2(2+的展开式中,只有第六项的二项式系数最大. (Ⅰ)求该展开式中所有有理项的项数; (Ⅱ)求该展开式中系数最大的项. 18.(本小题满分12分)某区要进行中学生篮球对抗赛,为争夺最后一个小组赛名额,甲、乙、丙三支篮球队要进行比赛,根据规则:每两支队伍之间都要比赛一场;每场比赛胜者得3分,负者得0分,没有平局,获得第一名的将夺得这个参赛名额.已知乙队胜丙队的概率为51,甲队获得第一名的概率为61,乙队获得第一名的概率为151. (Ⅰ)求甲队分别战胜乙队和丙队的概率21,P P ;(Ⅱ)设在该次比赛中,甲队得分为X ,求X 的分布列及期望.19.(本小题满分12分)已知曲线32()228f x x x ax =--++在(1,(1))f 处的切线与直线310x y -+=垂直. (Ⅰ)求()f x 解析式;(Ⅱ)求()f x 的单调区间并画出()y f x =的大致图象;(Ⅲ)已知函数2()()2g x f x x mx =+-,若对任意12,[1,2]x x ∈,总有121()[()x x g x --2()]0,g x > 求实数m 的取值范围.20.(本小题满分13分)已知111()123f n n =++++.经计算得5(4)2,(8),2f f >>7(16)3,(32)2f f >>. (Ⅰ)由上面数据,试猜想出一个一般性结论; (Ⅱ)用数学归纳法证明你的猜想.21.(本小题满分14分)设函数()(1)ln(1)f x x m x x =-++,其中m 为非负实数. (Ⅰ)求()f x 的极大值;(Ⅱ)当1m =时,若直线2y t =与函数()f x 在1[,1]2-上的图象有交点,求实数t 的取值范围;(Ⅲ)证明:当0a b >>时,(1)(1)b a a b +<+.高二理数学参考答案 2015.6一、BDCDA BADCA二、11. 1- 12. 14 13. 25.25 14.43 15. 49三、16.解:(Ⅰ)设)0,0,,(<>∈+=b a Z b a bi a z 且 ,则i b a b a b b a b a a z z 22222222)2()2(2+-+++++=+ …………2分 421≤+<z z ,⎪⎩⎪⎨⎧≤+++<=-+∴)2(4)2(1)1(0)2(222222b a b a a b a b , …………4分 由(1)知:2,022=+∴<b a b . …………5分 代入(2)得: 4241≤<a ,即221≤<a . …………6分 Z b a ∈, ,0,0<>b a ,⎩⎨⎧-==∴11b a ,i z -=∴1. …………8分(Ⅱ)由题意:23481125555i i z i i i -+=++-=++, …………10分∴281||||255i z i i -+=+==+…………12分 17.解:(Ⅰ)由题意可知:162n+=,10=∴n . …………1分 251010221010122r rr rrr rr xC xxC T ---+==∴,),100(N r r ∈≤≤且 ………3分要求该展开式中的有理项,只需令Z r∈-2510, …………4分 ∴10,8,6,4,2,0=r ,所有有理项的项数为6项. …………6分(Ⅱ)设第1+r T 项的系数最大,则⎪⎩⎪⎨⎧≥≥++--1110101110102222r r r r r r rrC C C C ,即⎪⎪⎩⎪⎪⎨⎧+≥--≥121011112r r r r , …………8分解得:322319≤≤r ,N r ∈ ,得7=r . …………10分 ∴展开式中的系数最大的项为22522577108153602--==xxC T . …………12分18.解:(Ⅰ)由题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,∴甲队获得第一名的概率为6121=⨯P P ; ① …………1分 同理:乙队获得第一名的概率为15151)1(1=⨯-P . ② ………2分由①②得:41,3221==P P . 所以甲队战胜乙队的概率为32,甲队战胜丙队的概率41. …………5分(Ⅱ)X 可能取的值为:6,3,0. …………6分41)411)(321()0(=--==X P ;…………7分12741)321()411(32)3(=-+-==X P ;…………8分614132)6(=⨯==X P . …………9分X…………10分4116161273410)(=⨯+⨯+⨯=X E . …………12分 19解:(Ⅰ)对()f x 求导2()342f x x x a '=--+,由题意(1)3423f a '=--+=- ……………1分2a ∴=,32()248f x x x x ∴=--++. ………………2分(Ⅱ)/2()344(32)(2)f x x x x x =--+=--+由/()0f x ≥得223x -≤≤,由/()0f x ≤得23x ≥或2x ≤- ……………4分 ∴单调增区间为22,3⎡⎤-⎢⎥⎣⎦,单减区间为(,2)-∞-,2(,)3+∞ ……………5分()f x 极小值=(2)0f -=,()f x 极大值=213()9327f = …………6分大致图像如图……………8分(Ⅲ)32()(42)8g x x x m x =--+-+, 由题意知)(x g 在]2,1[∈x 上为增函数,即2()32(42)0g x x x m '=--+-≥在]2,1[∈x 恒成立. …………9分∴22324m x x ≤--+在]2,1[∈x 恒成立.令2()324h x x x =--+,只需min 2()m h x ≤, ……………10分)(x h 在]2,1[∈x 上为减函数,min ()(2)12h x h ∴==-,6m ∴≤-,所以实数m 的取值范围为(,6]-∞-. ………………12分20.解(Ⅰ)由题意知,2322532(2)2,(2)222f f ++>=>=…1分 4542752(2)3,(2)222f f ++>=>=.……………2分 由此得到一般性结论:13(2)2n n f ++>.……………5分(或者猜测2(2)(2,)2nn f n n N +>≥∈也行) (Ⅱ)证明:(1)当1n =时,211125413(2)12341222f +=+++=>=, 所以结论成立.………7分 (2)假设(1,)n k k k N =≥∈时,结论成立,即13(2)2k k f ++> ……8分那么,1n k =+时,21112111111(2)123221222k k k k k f +++++=++++++++++ 1123111221222k k k k ++++>++++++ …………10分12222311132132222222k k k k k k k k +++++++++>++++=+=所以当1n k =+时,结论也成立. ……………12分综上所述,上述结论对1,n n N ≥∈都成立,所以猜想成立. ……………13分 21.解:(Ⅰ)()1ln(1)f x m x m '=-+-,定义域为(1,)-+∞,0m =时,()10f x '=>,()f x ∴在(1,)-+∞是增函数,()f x 不存在极大值. …2分 0m >时,令()0f x '>得ln(1)1m x m +<-101mmx e-∴<+<,令()0f x '<得11m mx e-∴+>()f x ∴在1(1,1]m me---上单调递增,在1[1,)m me--+∞上单调递减,…………4分所以()f x 极大值=11(1)1m m mmf e me---=-.综上,0m =时,()f x 不存在极大值,0m >时,()f x 极大值11m mme -=-. ……5分(Ⅱ)当1m =时,()(1)ln(1)f x x x x =-++, 由题意知,直线2y t =与函数()f x 在1[,1]2-上的图象有交点等价于方程()2f x t =在1[,1]2-上有实数解 . ……………6分 由(I )知,()f x 在1[,0]2-上单调递增,在[0,1]上单调递减.又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+,1(1)()02f f ∴--< ………8分∴当2[1ln 4,0]t ∈-时,即1[ln 2,0]2t ∈-时,方程()2f x t =有解,即直线2y t =与函数()f x 在1[,1]2-上的图象有交点. ……………9分(Ⅲ)要证:(1)(1)baa b +<+ 只需证ln(1)ln(1)b a a b +<+,只需证:ln(1)ln(1)a b a b++< ……………10分 设ln(1)(),(0)x g x x x+=>则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++'==+. …12分由(I )知(1)ln(1)x x x -++在(0,)+∞单调递减,(1)ln(1)0x x x ∴-++<即()g x 在(0,)+∞上是减函数,而0a b >>()()g a g b ∴<,故原不等式成立. ……………14分。