《整式的加减》---去分母

合集下载

《整式》整式的加减

《整式》整式的加减

合并同类项
在处理函数表达式时,需要合并同 类项,以简化表达式。
化简二次根式
对于包含二次根式的函数表达式, 需要利用化简二次根式的方法,将 表达式转化为更简单的形式。
03
整式加减的注意事项
确定符号
确定符号
01
在进行整式加减时,首先要确定每个项的符号,以便正确进行
运算。
括号内的项要一起加减
02
在处理括号时,需要将括号内的每一项都按照运算顺序进行加
减。
先化简,再加减
03
为了使运算更加简便,可以先对每个项进行化简,例如合并同
类项、提取公因式等,然后再进行加减运算。
符号运算规则
同号相加
同号是指相同的符号,如两个正 数或两个负数相加。同号相加时
,只需要将系数相加即可。
异号相加
异号是指不同的符号,如一个正 数和一个负数相加。异号相加时 ,需要先取绝对值较大的数的符 号作为结果的符号,然后将绝对
掌握有理数的加减法规则
有理数的加减法包括同号有理数相加、异号有理数相加、有理数的减法等,相加时需要将 绝对值相加,符号相同的数相加结果仍为同号有理数,异号有理数相加时需要取绝对值较 大的有理数的符号。
运用有理数的加减法解决实际问题
有理数的加减法可以用于解决一些实际问题,例如计算数值、解方程等。
THANK YOU
抽象思维
整式的加减涉及到抽象的数学概念,教师需要培养学生的抽象思维 能力,让学生能够将具体问题抽象成数学模型。
批判性思维
教师需要引导学生对解题方法和答案进行批判性思考,鼓励学生提 出疑问和不同的观点,培养学生的批判性思维能力。
06
整式加减的进一步学习建议
学习因式分解

(完整版)最新人教版七年级数学上册目录及知识点汇总

(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

2023~2024学年新沪教版七年级上《第2节 整式的加减》易错题集二

2023~2024学年新沪教版七年级上《第2节 整式的加减》易错题集二

2023~2024学年新沪教版七年级上《第2节 整式的加减》易错题集二考试总分:73 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1. 如图,将一个边长为的正方形纸片剪去两个小矩形,得到一个“”的图案,如图所示,再将剪下的两个小矩形拼成一个新的矩形,如图所示,则新矩形的周长可表示为 A.B.C.D.2. 一个三位数,百位上的数字为,十位上的数字比百位上的数字少,个位上的数字是百位上的数字的倍,则这个三位数为( )A.B.C.D.3. 已知,,则代数式的值是( )A.B.C.D.1a 23()2a −3b4a −8b2a −4b4a −10bx 32112x −30100x −30112x +30102x +30m −n =100x +y =−1(n +x)−(m −y)−99−101991014. 如果,那么代数式的值为( )A.B.C.D.5. 已知 ,则 的值是 ( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )6. 多项式化简后不含项,则为________.7. 一本书有页,小红第一天读了全书的,第二天又读了页,列代数式表示还没有读的页数为________.8. 若关于,的多项式中不含有项,则_________.9. 若,则的值________.10. 若整式的结果中不含项,项,则=________.11. 若单项式与的和是单项式,则=________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )12. 甲和乙在一起做数学题,有一题是:已知代数式的值,,,甲说“代数式的值与,无关”,乙说“代数式的值与,无关”,你同意谁的观−x −1=0x 23−6−5x 3x 268−6−8=4,=8a x a y a x+y 4812322−xy −8+3kxy −6x 2y 2xy k a 178a b 3(−2ab −)−a 2b 2(+mab +2)a 2b 2ab m =(2+mx −12)−2(n −3x +8)x 2x 2x x 2+m 2n 22x 2a+b y 2−13x 3y 3a−b a −b A =5b +2−3−a +8a 3a 4a 2b 2b 3B =6a −8+3−5b 3a 2b 2a 4b 4C =5b +5−11+5a −5a 3a 4a 2b 2b 3b 4A +B +C a b A +B −C a b13. 先化简,再求值:,其中,. 14.解方程;先化简,再求值:,其中,. 15. 张老师让同学们计算“当,时,求式子的值”.解完这道题后,小明同学说“,是多余的条件”.师生讨论后一致认为这种说法是正确的.请你说明小明正确的理由;受此启发,老师又出示了一道题目:“无论,取何值,多项式的值都不变,则,分别为多少?”请你用所学知识求解此题.(1)x −=1−x −12x +25(2)x −2(x −)+(−x +)1213y 23213y 2x =−2y =−12a =0.5b =−0.7(+2b −)−13a 2b 32(b −)+a 213b 3a =0.5b =−0.7(1)(2)x y −3y +mx +n y +x +3x 2x 2m n参考答案与试题解析2023~2024学年新沪教版七年级上《第2节 整式的加减》易错题集二一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1.【答案】B【考点】整式的加减列代数式【解析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:.故选2.【答案】A【考点】列代数式整式的加减【解析】首先用含的代数式表示十位和个位上的数字,然后根据各数位上数的意义即可列出代数式,最后化简即可.【解答】解:百位上的数字是,则十位上的数字为,个位上的数字为.根据题意,得2[a −b +(a −3b)]=4a −8b B.x x x −32x.所以,这个三位数是.故选.3.【答案】B【考点】整式的加减——化简求值【解析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵,,∴原式,故选4.【答案】D【考点】列代数式求值整式的加减【解析】此题暂无解析【解答】解:,,.故选.5.【答案】D=100x +10x −30+2x =112x −30112x −30A m −n =100x +y =−1=n +x −m +y =−(m −n)+(x +y)=−100−1=−101B.∵−x −1=0x 2∴−x =1x 23−6−5=3−3−3−5=3x(−x)−3−5x 3x 2x 3x 2x 2x 2x 2=3x −3−5=−3(−x)−5=−3−5=−8x 2x 2D整式的加减——化简求值【解析】【解答】解:根据同底数幂相乘,底数不变,指数相加可知:,带入已知条件可得:.故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )6.【答案】【考点】多项式合并同类项【解析】直接利用多项式的定义得出多项式的系数为,解答即可.【解答】解:∵多项式化简后不含项,∴合并同类项后项系数为,∴,解得.故答案为:.7.【答案】页【考点】列代数式×=a x a y a x+y =32a x+y D 1302−xy −8+3kxy −6x 2y 2xy xy 03k −1=0k =1313(a −8)67【解析】本题考查了根据题意列代数式,整式的加减.【解答】解:根据题意可得,第一天读了页,第二天读了页,还没有读的页数为页.故答案为:页.8.【答案】【考点】整式的加减【解析】原式去括号合并得到最简结果,根据结果不含项,求出的值即可.【解答】解:,因为此多项式不含项,所以,解得:.故答案为:.9.【答案】【考点】合并同类项【解析】直接利用合并同类项法则得与为同类项,可得出的值进而得出答案.【解答】解:解得:故a 178a−(a +8)=17a−a −8=17(a −8)67(a −8)67−6ab m 3(−2ab −)−a 2b 2(+mab +2)a 2b 2=2−(6+m)ab −5a 2b 2ab 6+m =0m =−6−62−4x 2−y 3x 3y 2−3αb ∵−4+=−3x 2−3y 3x 3y 2−3x 3y 3a +5=3,2−b =3a =−2,b =−1ab =210.【答案】【考点】整式的加减【解析】原式去括号、合并同类项进行计算,根据结果不含项,项,确定出与的值,再代入计算即可求解.【解答】==,∵结果中不含项,项,∴=,=,解得=,=,∴==.11.【答案】【考点】合并同类项【解析】根据同类项定义可得:,再解即可.【解答】由题意得:,解得:,则=,三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )12.37x x 2m n (2+mx −12)−2(n −3x +8)x 2x 22+mx −12−2n +6x −16x 2x 2(2−2n)+(m +6)x −28x 2x x 22−2n 0m +60n 1m −6+m 2n 236+1370{2a +b =33a −b =2{2a +b =33a −b =2{ a =1b =1a −b 0解:∵,,,∴,,∴与有关,甲不对;∵,,∴与,无关,∴乙对.【考点】整式的加减合并同类项【解析】先求出的值与代数式的值即可得出结论.【解答】解:∵,,,∴,,∴与有关,甲不对;∵,,∴与,无关,∴乙对.13.【答案】,【考点】整式的加减——化简求值【解析】根据单项式乘以多项式计算,后去括号,合并同类项,化简求值即可.A =5b +2−3−a +8a 3a 4a 2b 2b 3B =6a −8+3−5b 3a 2b 2a 4b 4C =5b +5−11+5a −5a 3a 4a 2b 2b 3b 4A +B +C =5b +2−3−a +a 3a 4a 2b 2b 38+6a −8+3−5+5b +5−11+5a −5b 3a 2b 2a 4b 4a 3a 4a 2b 2b 3b 4=10b +10−22+10a −10+8a 3a 4a 2b 2b 3b 4ab A +B −C=5b +2−3−a +8+6a −8a 3a 4a 2b 2b 3b 3a 2b 2+3−5−5b −5+11−5a +5a 4b 4a 3a 4a 2b 2b 3b 4=8a b A +B +C A +B −C A =5b +2−3−a +8a 3a 4a 2b 2b 3B =6a −8+3−5b 3a 2b 2a 4b 4C =5b +5−11+5a −5a 3a 4a 2b 2b 3b 4A +B +C =5b +2−3−a +a 3a 4a 2b 2b 38+6a −8+3−5+5b +5−11+5a −5b 3a 2b 2a 4b 4a 3a 4a 2b 2b 3b 4=10b +10−22+10a −10+8a 3a 4a 2b 2b 3b 4ab A +B −C=5b +2−3−a +8+6a −8a 3a 4a 2b 2b 3b 3a 2b 2+3−5−5b −5+11−5a +5a 4b 4a 3a 4a 2b 2b 3b 4=8a b [加加)2y x 225.【解答】解:原式当时,原式14.【答案】解:,去分母,得,去括号,得,移项,得,合并同类项,得,系数化为,得. ,当,时,原式.【考点】解一元一次方程整式的加减——化简求值【解析】根据一元一次方程的解法来做即可.首先根据整式的运算法则把整式化简,然后再把所给的字母的值代入化简后的整式即可.【解答】解:,去分母,得,去括号,得,移项,得,合并同类项,得,系数化为,得. ,=4+6xy +2y −6⋅y −4=4yx 2y 2x 2x 2y 2x 2x =5y =12=2××=255212(1)x −=1−x −12x +2510x −5(x −1)=10−2(x +2)10x −5x +5=10−2x −410x −5x +2x =10−4−57x =11x =17(2)x −2(x −)+(−x +)1213y 23213y 2=x −2x +−x +1223y 23213y 2=−3x +y 2x =−2y =−12=−3×(−2)+(−=6+=12)214254(1)x −=1−x −12x +2510x −5(x −1)=10−2(x +2)10x −5x +5=10−2x −410x −5x +2x =10−4−57x =11x =17(2)x −2(x −)+(−x +)1213y 23213y 2=x −2x +−x +1223y 23213y 2=−3x +y 21原式.15.【答案】解:原式,原式的值为常数,与,取值无关,故小明说法正确.原式,由多项式的值与,的取值无关,得到,,解得,.【考点】整式的加减——化简求值合并同类项【解析】此题暂无解析【解答】解:原式,原式的值为常数,与,取值无关,故小明说法正确.原式,由多项式的值与,的取值无关,得到,,解得,.=−3×(−2)+(−=6+=12)214254(1)=+2b −−2b ++=113a 2b 3a 223b 3a b (2)=(−3+n)y +(m +1)x +3x 2x y −3+n =0m +1=0m =−1n =3(1)=+2b −−2b ++=113a 2b 3a 223b 3a b (2)=(−3+n)y +(m +1)x +3x 2x y −3+n =0m +1=0m =−1n =3。

人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

七年级数学上册目录及知识点汇总

七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程一——合并同类项与移项3.3 解一元一次方程二——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数..根据需要;有时在正数前面也加上“+”②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数..与正数具有相反意义..③0既不是正数也不是负数..0是正数和负数的分界;是唯一的中性数..注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数1整数:正整数、0、负整数统称整数;2分数;正分数和负分数统称分数;3有理数:整数和分数统称有理数..2、数轴1定义:通常用一条直线上的点表示数;这条直线叫数轴;2数轴三要素:原点、正方向、单位长度;3原点:在直线上任取一个点表示数0;这个点叫做原点;4数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来;但数轴上的点;不都是表示有理数..3、相反数:只有符号不同的两个数叫做互为相反数..例:2的相反数是-2;0的相反数是04、绝对值:1数轴上表示数a的点与原点的距离叫做数a的绝对值;记作|a|..从几何意义上讲;数的绝对值是两点间的距离..2 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0..两个负数;绝对值大的反而小..1.3 有理数的加减法①有理数加法法则:1、同号两数相加;取相同的符号;并把绝对值相加..2、绝对值不相等的异号两数相加;取绝对值较大的加数的符号;并用较大的绝对值减去较小的绝对值..互为相反数的两个数相加得0..3、一个数同0相加;仍得这个数..加法的交换律和结合律②有理数减法法则:减去一个数;等于加这个数的相反数..1.4 有理数的乘除法①有理数乘法法则:两数相乘;同号得正;异号得负;并把绝对值相乘;任何数同0相乘;都得0;乘积是1的两个数互为倒数..乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数;等于乘这个数的倒数;两数相除;同号得正;异号得负;并把绝对值相除;0除以任何一个不等于0的数;都得0..1.5 有理数的乘方1、求n个相同因数的积的运算;叫乘方;乘方的结果叫幂..在a的n次方中;a叫做底数;n叫做指数..负数的奇次幂是负数;负数的偶次幂是正数..正数的任何次幂都是正数;0的任何次幂都是0..2、有理数的混合运算法则:先乘方;再乘除;最后加减;同级运算;从左到右进行;如有括号;先做括号内的运算;按小括号、中括号、大括号依次进行..3、把一个大于10的数表示成a×10的n次方的形式;使用的就是科学计数法;注意a的范围为1≤a <10..4、从一个数的左边第一个非0数字起;到末位数字止;所有数字都是这个数的有效数字..四舍五入遵从精确到哪一位就从这一位的下一位开始;而不是从数字的末尾往前四舍五入..比如:3.5449精确到0.01就是3.54而不是3.55.第二章整式的加减2.1 整式1、单项式:由数字和字母乘积组成的式子..系数;单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此;判断代数式是否是单项式;关键要看代数式中数与字母是否是乘积关系;即分母中不含有字母;若式子中含有加、减运算关系;其也不是单项式.2、单项式的系数:是指单项式中的数字因数;3、单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和..判断代数式是否是多项式;关键要看代数式中的每一项是否是单项式.每个单项式称项;常数项;多项式的次数就是多项式中次数最高的次数..多项式的次数是指多项式里次数最高项的次数;这里是次数最高项;其次数是6;多项式的项是指在多项式中;每一个单项式.特别注意多项式的项包括它前面的性质符号.5、它们都是用字母表示数或列式表示数量关系..注意单项式和多项式的每一项都包括它前面的符号..6、单项式和多项式统称为整式..2.2整式的加减1、同类项:所含字母相同;并且相同字母的指数也相同的项..与字母前面的系数≠0无关..2、同类项必须同时满足两个条件:1所含字母相同;2相同字母的次数相同;二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项..可以运用交换律;结合律和分配律..4、合并同类项法则:合并同类项后;所得项的系数是合并前各同类项的系数的和;且字母部分不变;5、去括号法则:去括号;看符号:是正号;不变号;是负号;全变号..6、整式加减的一般步骤:一去、二找、三合1如果遇到括号按去括号法则先去括号. 2结合同类项. 3合并同类项第三章一元一次方程3.1 一元一次方程1、方程是含有未知数的等式..2、方程都只含有一个未知数元x;未知数x的指数都是1次;这样的方程叫做一元一次方程..注意:判断一个方程是否是一元一次方程要抓住三点:1未知数所在的式子是整式方程是整式方程;2化简后方程中只含有一个未知数;3经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值;这个值就是方程的解..4、等式的性质: 1等式两边同时加或减同一个数或式子;结果仍相等;2等式两边同时乘同一个数;或除以同一个不为0的数;结果仍相等..注意:运用性质时;一定要注意等号两边都要同时变;运用性质2时;一定要注意0这个数.3.2 、3.3解一元一次方程在实际解方程的过程中;以下步骤不一定完全用上;有些步骤还需重复使用. 因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数;不要漏乘不含分母的项;分子是一个整体;去分母后应加上括号;去分母与分母化整是两个概念;不能混淆;②去括号:遵从先去小括号;再去中括号;最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边;其他项都移到方程的另一边移项要变符号移项要变号;④合并同类项:不要丢项;解方程是同解变形;每一步都是一个方程;不能像计算或化简题那样写能连等的形式;⑤系数化为1::字母及其指数不变系数化成1;在方程两边都除以未知数的系数a;得到方程的解..不要分子、分母搞颠倒..3.4 实际问题与一元一次方程一.概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题;特别注意关键的字和词的意义;弄清相关数量关系;②设出未知数注意单位;③根据相等关系列出方程;④解这个方程;⑤检验并写出答案包括单位名称..⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案..二、思想方法本单元常用到的数学思想方法小结⑴建模思想:通过对实际问题中的数量关系的分析;抽象成数学模型;建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程;实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形;不断地用新的更简单的方程来代替原来的方程;最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时;借助于线段示意图和图表等来分析数量关系;使问题中的数量关系很直观地展示出来;体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论;在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.三、数学思想方法的学习1. 解一元一次方程时;要明确每一步过程都作什么变形;应该注意什么问题.2. 寻找实际问题的数量关系时;要善于借助直观分析法;如表格法;直线分析法和图示分析法等.3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.四、一元一次方程典型例题例1. 已知方程2x m-3+3x=5是一元一次方程;则m= .解:由一元一次方程的定义可知m-3=1;解得m=4.或m-3=0;解得m=3所以m=4或m=3警示:很多同学做到这种题型时就想到指数是1;从而写成m=1;这里一定要注意x的指数是m-3.例2. 已知2x=-是方程ax2-2a-3x+5=0的解;求a的值.解:∵x=-2是方程ax2-2a-3x+5=0的解∴将x=-2代入方程;得a·-22-2a-3·-2+5=0化简;得 4a+4a-6+5=01∴ a=8点拨:要想解决这道题目;应该从方程的解的定义入手;方程的解就是使方程左右两边值相等的未知数的值;这样把x=-2代入方程;然后再解关于a的一元一次方程就可以了.例3. 解方程2x+1-34x-3=91-x.解:去括号;得 2x+2-12x+9=9-9x;移项;得 2+9-9=12x-2x-9x.合并同类项;得 2=x;即x=2.点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边;已知项移到方程的右边;其实;我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正;为了减少计算的难度;我们可以根据等式的对称性;把所有的未知项移到右边去;已知项移到方程的左边;最后再写成x=a的形式.例4. 解方程 175321416181=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-x . 解析:方程两边乘以8;再移项合并同类项;得111351642x ⎡-⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦同样;方程两边乘以6;再移项合并同类项;得113142x -⎛⎫+= ⎪⎝⎭ 方程两边乘以4;再移项合并同类项;得112x -= 方程两边乘以2;再移项合并同类项;得x=3.说明:解方程时;遇到多重括号;一般的方法是从里往外或从外往里运用乘法的分配律逐层去特号;而本题最简捷的方法却不是这样;是通过方程两边分别乘以一个数;达到去分母和去括号的目的..例5. 解方程4 1.550.8 1.20.50.20.1x x x ----=. 解析:方程可以化为 (4 1.5)2(50.8)5(1.2)100.520.250.110x x x -⨯-⨯-⨯-=⨯⨯⨯ 整理;得 2(4 1.5)5(50.8)10(1.2)x x x ---=-去括号移项合并同类项;得 -7x=11;所以x=117-. 说明:一见到此方程;许多同学立即想到老师介绍的方法;那就是把分母化成整数;即各分数分子分母都乘以10;再设法去分母;其实;仔细观察这个方程;我们可以将分母化成整数与去分母两步一步到位;第一个分数分子分母都乘以2;第二个分数分子分母都乘以5;第三个分数分子分母都乘以10.例6. 解方程 1.6122030x x x x +++= 解析:原方程可化为1.23344556x x x x +++=⨯⨯⨯⨯ 方程即为 1.23344556xx x x x x x x -+-+-+-=所以有 1.26x x -=再来解之;就能很快得到答案: x=3.知识链接:此题如果直接去分母;或者通分;数字较大;运算烦琐;发现分母6=2×3;12=3×4;20=4×5;30=5×6;联系到我们小学曾做过这样的分式化简题;故采用拆项法解之比较简便.例7. 参加某保险公司的医疗保险;住院治疗的病人可享受分段报销;•保险公司制度的报销细则如下表;某人今年住院治疗后得到保险公司报销的金额是1260元;那么此人的实际医疗费是A. 2600元元解析:设此人的实际医疗费为x元;根据题意列方程;得500×0+500×60%+x-500-500 ×80%=1260.解之;得x=2200;即此人的实际医疗费是2200元. 故选B.点拨:解答本题首先要弄清题意;读懂图表;从中应理解医疗费是分段计算累加求和而得的. 因为500×60%<1260<2000×80%;所以可知判断此人的医疗费用应按第一档至第三档累加计算.例8. 我市某县城为鼓励居民节约用水;对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米;则按每立方米1元收费;若每月用水超过7立方米;则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费;那么这户居民今年5月的用水量为__________立方米.解析:由于1×7<17;所以该户居民今年5月的用水量超标.设这户居民5月的用水量为x立方米;可得方程:7×1+2x-7=17; 解得x=12.所以;这户居民5月的用水量为12立方米.例9. 足球比赛的记分规则为:胜一场得3分;平一场得1分;输一场得0分;一支足球队在某个赛季中共需比赛14场;现已比赛了8场;输了1场;得17分;请问:⑴前8场比赛中;这支球队共胜了多少场⑵这支球队打满14场比赛;最高能得多少分⑶通过对比赛情况的分析;这支球队打满14场比赛;得分不低于29分;就可以达到预期的目标;请你分析一下;在后面的6场比赛中;这支球队至少要胜几场;才能达到预期目标解析:⑴设这个球队胜了x场;则平了8-1-x场;根据题意;得:3x+8-1-x=17.解得x=5.所以;前8场比赛中;这个球队共胜了5场.⑵打满14场比赛最高能得17+14-8×3=35分.⑶由题意知;以后的6场比赛中;只要得分不低于12分即可.∴胜不少于4场;一定能达到预期目标. 而胜了3场;平3场;正好达到预期目标. 所以在以后的比赛中;这个球队至少要胜3场.例10. 国家为了鼓励青少年成才;特别是贫困家庭的孩子能上得起大学;设置了教育储蓄;其优惠在于;目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元;他的父母现在就参加了教育储蓄;小雷和他父母讨论了以下两种方案:⑴先存一个2年期;2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案;哪种开始存入的本金较少教育储蓄整存整取年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%.解析:了解储蓄的有关知识;掌握利息的计算方法;是解决这类问题的关键;对于此题;我们可以设小雷父母开始存入x元. 然后分别计算两种方案哪种开始存入的本金较少.⑴2年后;本息和为x1+2. 70%×2=1. 054x;再存3年后;本息和要达到6000元;则1. 054x1+3. 24%×3=6000.解得 x≈5188.⑵按第二种方案;可得方程 x1+3. 60%×5=6000.解得 x≈5085.所以;按他们讨论的第二种方案;开始存入的本金比较少.例11. 扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示. 如果长方体盒子的长比宽多4cm;求这种药品包装盒的体积.分析:从展开图上的数据可以看出;展开图中两高与两宽和为14cm;所以一个宽与一个高的和为7cm;如果设这种药品包装盒的宽为xcm;则高为7-xcm;因为长比宽多4cm;所以长为x+4cm;根据展开图可知一个长与两个高的和为13cm;由此可列出方程.解:设这种药品包装盒的宽为xcm;则高为7-xcm;长为x+4cm.根据题意;得x+4+27-x=13;解得 x=5;所以7-x=2;x+4=9.故长为9cm;宽为5cm;高为2cm.所以这种药品包装盒的体积为:9×5×2=90cm3.例12. 某石油进口国这个月的石油进口量比上个月减少了5%;由于国际油价上涨;这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得1+x1-5%=1+14%解得x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:本题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用;也就是本月的石油进口量乘以本月的价格. 设出未知数;分别表示出每一个数量;列出方程进行求解. 列方程解应用题的关键是找对等量关系;然用代数式表示出其中的量;列方程解答.例13. 某市参加省初中数学竞赛的选手平均分数为78分;其中参赛的男选手比女选手多50%;而女选手的平均分比男选手的平均分数高10%;那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此;必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分;女选手的人数为a人;那么女选手的平均分数为1. 1x 分;男选手的人数为1. 5a 人;从而可列出方程1.5 1.1781.5a x x a a a⋅+⋅=+;解得x=75;所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.第四章 几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形..2、立体图形:这些几何图形的各部分不都在同一个平面内..3、平面图形:这些几何图形的各部分都在同一个平面内..4、虽然立体图形与平面图形是两类不同的几何图形;但它们是互相联系的..立体图形中某些部分是平面图形..5、三视图:从左面看;从正面看;从上面看6、展开图:有些立体图形是由一些平面图形围成的;将它们的表面适当剪开;可以展开成平面图形..这样的平面图形称为相应立体图形的展开图..7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小;线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线;线动成面;面动成体;⑸点:是组成几何图形的基本元素..4.2 直线、射线、线段1、直线公理:经过两点有一条直线;并且只有一条直线..即:两点确定一条直线..2、当两条不同的直线有一个公共点时;我们就称这两条直线相交;这个公共点叫做它们的交点..3、把一条线段分成相等的两条线段的点;叫做这条线段的中点.. ma 4、线段公理:两点的所有连线中;线段做短两点之间;线段最短..5、连接两点间的线段的长度;叫做这两点的距离..6、直线的表示方法:如图的直线可记作直线AB或记作直线m.1用几何语言描述右面的图形;我们可以说:点P 在直线AB 外;点A 、B 都在直线AB 上.2如图;点O 既在直线m 上;又在直线n 上;我们称直线m 、n 相交;交点为O .7、在直线上取点O;把直线分成两个部分;去掉一边的一个部分;保留点0和另一部分就得到一条射线;如图就是一条射线;记作射线OM 或记作射线a .注意:射线有一个端点;向一方无限延伸.8、在直线上取两个点A 、B;把直线分成三个部分;去掉两边的部分;保留点A 、B 和中间的一部分就得到一条线段.如图就是一条线段;记作线段AB 或记作线段a . 注意:线段有两个端点.4.3 角1. 角的定义:有公共端点的两条射线组成的图形叫角..这个公共端点是角的顶点;两条射线为角的两边..如图;角的顶点是O;两边分别是射线OA 、OB .2、角有以下的表示方法:① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点;顶点的字母必须写在中间.如上图的角;可以记作∠AOB 或∠BOA . ② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作 1O B Am a∠O.当有两个或两个以上的角是同一个顶点时;不能用一个大写字母表示.③用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线;写上希腊字母或数字.如图的两个角;分别记作∠ 、∠12、以度、分、秒为单位的角的度量制;叫做角度制..角的度、分、秒是60进制的..1度=60分 1分=60秒 1周角=360度 1平角=180度3、角的平分线:一般地;从一个角的顶点出发;把这个角分成两个相等的角的射线;叫做这个角的平分线..4、如果两个角的和等于90度直角;就说这两个叫互为余角;即其中每一个角是另一个角的余角;如果两个角的和等于180度平角;就说这两个叫互为补角;即其中每一个角是另一个角的补角..5、同角等角的补角相等;同角等角的余角相等..6、方位角:一般以正南正北为基准;描述物体运动的方向..。

初一数学知识点上册

初一数学知识点上册

初一数学知识点上册初一数学知识点上册漫长的学习生涯中,大家都背过各种知识点吧?知识点有时候特指教科书上或考试的知识。

还在为没有系统的知识点而发愁吗?下面是店铺整理的初一数学知识点上册,仅供参考,欢迎大家阅读。

初一数学知识点上册1普查:为了一定的目的而对考察对象进行的全面调查.总体:所要考察对象的全体称为总体个休:组成总体的.每一个考察对象称为个体.抽样调查:从总体中抽取部分个体进行调查.样本:总体中抽取的一部分个体叫做总体的一个样本.样本容量:样本中个体的数目.频数:每个对象出现的次数频率:每个对象出现的次数与总次数的比值初一数学知识点上册2三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)初一数学知识点上册3第一章有理数1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值易错点:绝对值、有理数计算中考必考:科学计数法、相反数(选择题)第二章整式的加减1.整式2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程1.从算式到方程2.解一元一次方程----合并同类项与移项3.解一元一次方程----去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系第四章图形认识实步1.多姿多彩的图形2.直线、射线、线段3.角4.课题实习----设计制作长方形形状的.包装纸盒重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清初一数学知识点上册41、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.2、系数单项式中的数字因数叫做这个单项式的系数.3、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.4、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.5、整式单项式和多项式统称整式。

初一数学第二章整式的加减知识点归纳+练习

初一数学第二章整式的加减知识点归纳+练习

2021-2022学年度 秋季 七年级上学期 人教版数学第二章 整式的加减 知识点归纳2.1.1 单项式由 与 的积组成的式子叫做单项式。

单独一个数字或字母.......也是单项式,如5-,y 等。

(注意:分母中出现字母的,就不再是单项式。

如:x1) 系数:单项式中的 因数叫做这个单项式的系数。

(★:π属于数字,不是字母) 次数:单项式所有字母的 之和叫做这个单项式的次数。

注意:①数字次数是0;②系数和次数是1时,1通常省略不写;③若单项式中出现“-”号,则“-”号是系数的性质符号。

例:指出下列各单项式的系数和次数:(1)xy 5, (2)a 21-, (3)5a , (4)42bc a , (5)732y x π【练习】下列式子中,哪些是单项式?指出这些单项式的系数和次数。

x ,ab 21-,x1,b a +2,y x 25-,20-,2mn -2.1.2 多项式多项式:几个 的和.叫做多项式。

(注意:分母中出现字母的,就不是多项式。

如:a x+1) 多项式的项:多项式中的每个单项式,叫做多项式的 。

如b a +2中,a 2,b 都是项。

多项式的次数:多项式中,次数最高的项的 ,叫做这个多项式的次数。

(★最高次项是指多项式中次数最高的项,如:122+-a a 中最高次项是:2a ) 常数项:多项式中,不含 的项称为常数项。

例1:多项式232+-+-y x xy xπ的项分别是 ,次数是 ;最高次项是 ;常数项是 。

多项式的命名:多项式可以由项数及次数确定为 次 项式。

如:122+-a a ,共 项,次数为 ,故称为 次 项式。

例2:给下列多项式命名。

①6524252--+y y y : 次 项式 ②345567x x x +-: 次 项式多项式的排序:多项式可以按各项次数的高低进行排列,若从低到高为升幂排列;若从高到低,则为降幂排列。

如:122+-a a 为 排列;221a a +-为 排列。

初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案-七上2

初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案-七上2

人教版数学七年级上册第2单元《整式的加减》测试答案一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四二.填空题:本大题有6个小题,每小题4分,共24分。

11. 4 12. -1 13. -30 14 ab-ac-bc-c 215. (3n+12)cm 16. 94--3三.解答题:本大题有7个小题,共66分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分6分) 解:-3x 2y+2x 2y+3xy 2-2xy 2=(-3+2)x 2y+(3-2)xy 2 …………………………………(3分,答案错0分) = -x 2y+xy 2 …………………………………………(3分,只写答案2分) 18.(本小题满分8分) 解析:3(3a 2b-2ab 2)-(ab 2+3a 2b)=9a 2b-6ab 2-ab 2-3a 2b ………………………………(2分,答案错0分) =9a 2b-3a 2b-6ab 2-ab 2=6a 2b-7ab 2 …………………………………………(2分)当a=21,b=31时,原式=312162⨯⎪⎭⎫ ⎝⎛⨯231217⎪⎭⎫ ⎝⎛⨯⨯- ………………………………(2分,答案错0分)=9121731416⨯⨯-⨯⨯=18721-=91……………………………………………………………………(2分)19. (本小题满分8分)解:(1)2h 两船相距(单位:km ):2(60+a )+2(60-a )=120+2a+120-2a=240 ………………………(4分) (2)2h 后甲船比乙船多航行(单位:km ):2(60+a )-2(60-a )=120+2a-120+2a=4a …………………………(4分) 20. (本小题满分10分)(1)七年级总人数=a+3+a+2+a-2+a+2+a+a-1=6a+4;………………(2分) (2)七年级总人数=6×40+4=244(人), ……………………………(1分) 买跳绳的费用=244×5=1220(元), ……………………………………(1分) 八年级总人数=244×2-240=248(人),…………………………………(1分) 买羽毛球拍的费用=248÷2×18=2232(元), …………………………(1分) 九年级总人数=(244+248)÷2=246(人), …………………………(1分) 买毽球的费用=246×3=738(元), ……………………………………(1分) 购买体育器材的费用=1220+2232+738=4188(元).…………………(2分) 21.(本小题满分10分)(1)a=3 …………………………………………………………………(2分)b= -2 …………………………………………………………………(2分) (2)∵(a+b )2=a 2+2ab+b 2, ……………………………………………(4分) ∴a 2+2ab+b 2和(a+b )2相等; ……………………………………………(2分) 22. (本小题满分12分) 解:(1)阴影部分面积之和S=S △AEF +S △DCG ……………………………………………(1分)= 21(a-b )b+ 21(a-b )a ……………………………………(3分)=21(a 2-b 2); …………………………………………………(2分) (2)当a=5cm ,b=2cm 时,S=21×(52-22) …………………………………………………(2分) = 221. ………………………………………………………(2分)23. (本小题满分12分)解:(1)如图:即为原点的位置.………………………(2分)(2)点A ,B ,C ,D 所表示的数为:-7、-5、-3、3.……(2分,0.5分一个) A 点表示的数的平方最大, ……………………………………………(1分) 最大是49. …………………………………………………………(1分) (3)①-3+4.5=1.5 …………………………………………………(1分)或-3-4.5=-7.5, …………………………………………………(1分) 答:点F 表示的数为0.5或-6.5.②当点P 在点C 的左侧或C 点时,CP=BC-PB=2-3t .……………(1分) 当点P 在点C 的右侧直至到达点D 时,CP=PB-BC=3t-2.………(1分) 当点P 在点C 右侧到达点D 不动时,CP=CD=6.…………………(1分) 答:点P 、C 之间的距离CP 为:2-3t 或3t-2或6 …………(1少一个不给分)浙教版数学七上第2单元《整式的加减》测试解析一.选择题 1.【考点】单项式系数的概念【分析】单项式中的数字因数叫做这个单项式的系数 【解答】a 的系数为3 故选:A 2.【考点】单项式次数概念【分析】利用单项式次数概念求解即可【解答】解:∵代数式94a mb 3c 是七次单项式,∴m+3+1=7, 解得:m=3. 故选:C 3.【考点】合并同类项 【分析】合并同类项即可【解答】解析:3a 2+3b 2+5ab-3a 2-4b 2 =(3a 2-3a 2)+(3b 2-4b 2)+5ab =(3a 2-3a 2)+(3-4)b 2+5ab = -b 2+5ab 故选:B 4.【考点】代数式运算去括号法则 【分析】运用代数式运算去括号法则即可 【解答】略 5.【考点】代数式运算去括号法则;合并同类项【分析】运用代数式运算去括号法则即可 【解答】解析:(6a-3b )- 3(a 2-2b) =6a-3b-(3a 2-6b) =6a-3b-3a 2+6b =-3a 2+6a+3b 故选:C 6.【考点】多项式概念【分析】长方形的周长等于四边之和,由此可得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

______________________ 系数化为 1,4 得
_______________________
三、研读课文
知 识
(2)去分母,得: _1_8___(3___-_1)__1_8_-_(2_2__-_1_) 去括号,得

___1_8___3___- _3__1_8_-_4____2______
___________32_χ____12χ ____71_χ___χ___3_3________
(4)解方程:这个方程的所有分母的最小公倍数 是__4_2__,所以方程两边同乘__4_2__,
去分母,得____2_8_x__2_1_x __6_x__4_2_x __1_38_6_____
合并同类项,得_____9_7_x__1_3_8_6____________
过的这__些__步__骤__可_形以式使转以化x为,未这知个数过的程方主程要逐依步据向等着式
的基_本__性__质____和运算律等. 3、学习反思: ___________________________
五、强化训练
1 解方程 3 - 1- 2 1,去(_1____2____)___8___
三、研读课文
解一元一次方程

解:解(下1列)去方分程母,得:
识 点 二
_去_((2括_1_)号__1),_-_4得_1_8_-(_1_2_- _2)_ 2 -
__2___2_-_42__8__2_- _ _______4______
移_合_(项并__2,同_)_33得类__项__21,_2_2得_-_1__8_3__-2_-2_2_3_-4_1___
( 21去 (395括号-121)( ) , 1-得 ( 68-32)1)- ( 4 2 - )
去去 3去0括 括 括号号号2,0,,-得得2得 0 10 - 5 - 8 - 4
21移 195项 -,322-得 1818-426 - 8 4
移 1移 3合 1移905项 项 并 项---,同 , 11, 2801得类 得 得-项48-, 42得6--58-43- 20 20

移项,得
____18____3___4___1_8__2__3_________
合并同类项,得
____2_5____2_3____________
系数化为1,得 _________2_3____________
25
三、研读课文
解一元一次方程
练一练,解下列方程
知 识
(1)19 21( - 2)
系数化为1,得______x___1_398_76______________
三、研读课文
解:3x 1 2 3x 2 2x 3
解方程: 3x 21 2 3x 2 ↓2去x1分03母,(方程两5边乘
2
10 各5分母的最小公倍数)

5(3x+1)-10×2=(__3___-_2_)_-_( 2__2_____3_)_
2合 2合8并并- 同同-类9类项 8项-,,2得得
合系 --27数 并 化同1-4为类 21,项得,得
系系数数-6化化298为为1,得
2-11
7
四、归纳小结
1、去分母,就是方程两边乘各分母的 最__小__公__倍__数____. 2、解一元一次方程的一般步骤包括:去分母、 _去__括__号___、移项、合__并__同__类__项_ 、系数化为1等.通

__系__数__化__为_1____.通过这些步骤可以使以x为 未知数的方程逐步向着x=a的形式转化,这

个过程主要依据等式的基本性质和运算律等.


2、去分母要注意: (1)方程的每一项都要乘各分母的_最__小__公__倍__数_____ , 不要漏乘没有分母的项. (2)如果分子是一个多项式,去分母时要将分子作为 一个整体加上_括__号______.
“引导学生读懂数学书”课题 研究成果配套课件
新课引入 展示目标 研读课文 归纳小结 强化训练
第三章 一元一次方程
3.3解一元一次方程 --去括号与去分母
第六课时 解一元一次方程(4) (去分母)
一、新课引入
1、等式的性质2 等式两边乘同一个数, 或除以同一个不为0的数,结果____ 。 仍2相、等有些方程的系数是分数,要使方程 中各项系数都化成整数,方程两边必 须乘各分母的__________。
五、强化训练
2.解方程3y 1 1 5y 7
4
6
解:去分母,得 ( 3 3 y -1)-12 ( 2 5 y - 7) 去括号,得 9y 3 12 10 y 14 移项,得 9 y 10 y 14 3 12 合并同类项,得 - y 1 系数化为1,得 y 1
Thank you!
识 点 一
分这两析个边:方乘1程01各,155x分于x+-5母是3-x2的方+04=最程x_=小左___-_3公边_2__-倍变_↓↓_-6_移去_2数为-__项括-5__是4号___1_120_0-_0_,6_3__x2方__1_程2
=_____(5_3____1)_-_2_0____1_6_x_=_↓_合7_并__同类项
100 100
点 二
(2) 1 - 2
2
4
(3) 5 1 3 1 2
4
2
3
(4) 3 2 1 2 1 2 1
2
4
5
三、研读课文
(((1解24( 03) ) ):3去 去去 (1分 分)分2) 母 母 去-母, 2, 分0,得得 母 ( 5得 ,2得 -1)- ( 4 2 1)
知 识 点 二
右边变为10×(____3_1_0_-_2_-_↓_2系__数5_化_3_为_1_)
7
= ___(__3___- _2_)_-_( 2__2____x_3=_) ____1__6__
三、研读课文
归纳:解一元一次方程的一般步骤包括:
_去__分__母___、_去__括__号__、__移_项____、合__并__同_类__项__、
最小公倍数
二、学习目标
1 了解去分母的依据
2 会运用等式性质2正确去分 母解一元一次方程
三、研读课文
认真阅读课本第95页至第98页 的内容,完成下面练习,并体 验知识点的形成过程。
三、研读课文
解一元一次方程的一般步骤
分析:
知 识 点 一
( ( 分问 一12之))一半题设等+2,这量它它个关一的数系全的个为:部七数它x=分,_的3_之3它_三_一的分,三之二它分+的之它全二的部一,半,它+加的它的七 (起3)来列总方共程:是33,求这个数是多少
相关文档
最新文档