17 整式的加减(1)
整式的加减试卷(含答案)

【七年级数学上册整式的加减(1)一.选择1.与单项式是同类项,则m+n 的值是 ( ) A .2B .3C .4D .52.下列各组整式中,不是同类项的是( )~A .3 m ²n 与3 nm ²B .与C .-5ab 与-5*10³ab与-123.下列说法正确的是 ( )²与ax ²是同类项B .6与x 是同类项C .3x ³y ²与-3x ³y ²是同类项》²y ³与-2x ²y ³是同类项4.计算3x ²-x ²的结果是 ( )A .2² 3x 9y m m y 2x 42xy 3122x 31y²5.下面计算正确的是 ( )+2x²= 5x³&²b-a²b=1C.-ab-ab=0D.-y²x+xy²=06.下列去括号正确的是 ( )( b+c)=a-b-c+(b-c)=a+b+c( b+c)= a-b+c( b+c)= a+b-c)7.下列各式正确的是( )( b-2c)= a-b-2c+(b-2c)= a-b-2c( b-2c)= a+b+2c ( b-2c)= a-b+2c8.下列去括号正确的是( )(x-2y+6)=2x-x+2y-6²-3(x-1)=2x²-3x+1C.-(x-2y)-(-3x+1)=-x+2y-3x-1%D.(x-y)=-X-y9.计算(3a²-2a+1) -(2a²+3a-5)的结果是 ( )²-5a+6²-5a-4² -a-4²-a+610.已知一个多项式与3x ²+9x 的和等于5x ²+4x-1,则这个多项式是 ( )²+13x-1…²+5x+1²-5x+1²-5x-111.下列运算中,去括号错误的是 ( )²-(2a-b+5c)=3a ²-2a+b-5c²+(-2x+y)-(3z-u)= 5x ²-2x+y-3z+u²-3(m-1)=2m ²-3m-1D .-(2x-y )-(-x ²+y ²)= -2x+y+x ²-y ²?12.小黄做一道题“已知两个多项式A ,B ,计算A-B ”,小黄误将A-B 看作A+B ,求得的结果是9x ²- 2x+7.若B=x ²+3x-2,则A-B 的正确结果应为 ( )²-5x+9 ²-8x+11²+x+5 ²+4x+3二.填空1.若2 019a ³b 与-2 020b ²a 是同类项,则___.2.在代数式4a ²6u +5-a ²+3a -2中,4a ²和______是同类项,-6a 和______是同类项,5和_____是同类项.2n 2-5m +nm3.若单项式与的和仍为单项式,则它们的和为____. {4.将4个数a 、b 、c 、d 排成2行2列,两边各加一条竖直线为,叫做2阶行列式,定义:,则_________.三.按要求做题1.合并同类项:(1) 5a-3b-a+2b;(2) -3x ²+7x-6+2x ²-5x+1;(3) a ²b-b ²c+3a ²b+2b ²c;(4). |2.化简:(1)2(x ²-2xy)-3(y ²-3xy);(2)2a-[3b-5a-(3a-5b) ] ;( 3) ( -x ²+2xy-y ² ) -2( xy- 3x ²) +3 ( 2y ²-xy) .3.先化简,再求值.(1) ,其中b=5; (2)已知a-b=5.ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值.4.先化简,再求值:7a ²b+(-4a ²b+5ab ²)-2(2a ²b-3ab ²),其中(a-2) ²+=0. "a y 2x 213x 2yb -22226121a 31ab b a ab b ++--51a =5.若(2x²+ax-y+6)-(2bx²-3x+5y-1)的值与字母x所取的值无关,试求代数式的值.答案:;一.根据“所含字母相同,且相同字母的指数也相同的项是同类项”,得m=2,n=3,故m+n=5.B选项,与中都含有字母x、y,但是x的指数不同,所以与不是同类项.3.C原式=(3-1)x²= 2x².故选B.3x与2x²不是同类项,不能合并,故A错;2a²b-a²b=a²=-2ab,-y²x+xy²=0,故B、C错,D 正确,故选D.选项B的结果应为a+b-c;选项C的结果应为a-b-c;选项D的结果应为a-b-c.( b-2c)= a-b+2e.故此选项错误:}+( b-2c)= a+h-2e,故此选项错误:( b-2c)= a-b+2e,故此选项错误:( b-2c)= a-b+2e,故此选项正确,故选1).(x-2y+6)= 5x-x+2y-6,正确;²-3(x-1)=2x²-3x+3,错误;C.-(x-2y)-(-3x+1)= -x+2y+3x-1,错误;D.-(x-y)=-x+y,错误.故选A.(3a²-2a+1)-(2a²+3a-5)= 3a²-2a+1-2a²-3a+5=(3a²-2a²)+(-2a-3a)+(1+5)=a²-5a+6.故选A.(5x²+4x-1)-(3x²+9x)=5x²+4x-1-3x²-9x= 2x² -5x-1.故选D.?二.1.答案4解析由题意可得m+5= =2.解得m=-2.n=2,∴=(-2)²=4.2.答案 -a²;3a; -2解析根据同类项的定义判断即可,但要注意项的符号.3.答案解析由题意得n= 3,b=2.则两单项式分别为,故.4.答案 - 11x²+5'解析原式=-5(x²-3)-2(3x²+5)= -5x²+15-6x²-10=-11x²+5.三.1.解析(1)原式=(5-1)a+(-3+2)b=4a-b.(2)原式=(-3+2)x²+(7-5) x+( -6+1)=-x²+2x-5.(3)原式=(1+3)a²b+(-1+2)b²c=4a²b+b² c.(4)原式.2.解析(1)2(x²-2xy) -3(y²-3xy)= 2x²-4xy-3y+9xy= 2x²+5xy-3y².>(2) 2a-[ 3b-5a-( 3a-5h)]=2a -(3b-5u -3a+5b)= 2a- 3b+5a+3a-5b= 10a-8b.(3)(-x-+2xy-y ²)-2(xy-3x ²)+3(2y ²-xy)= -x ²+2xy-y ²-2xy+6x ²+6y ²-3xy=5x ²-3xy+5y ².3.解析= 12a ²b-4ab- +5ab ²-5a ² b-2a ²6-12= 5a ²b+ab ²- 12.当,b=5时, 原式=5x x5+1x5-12=1+5-12=-6.(2)( 2a+3b-2ab)-(a+4b+ab)-(3ab+2b-2a)^= 2a+3b-2ab-a-4b-ab-3ab-2b+2a= 3a-3b-6ab=3f (a-b )-6ab.当a-b==-1时,原式=3x5-6x(-1)= 15+6=21.4.解析7a ²b+( -4a ²b+5ab ²)-2( 2a ²b-3ab ²)= 7a ²b-4a ²b+5ab ²-4a ²b+6ab ²=-a ²b+11ab ².因为,所以a=2,, 所以原式=.5.解析(2x ²+ax-y+6)-(2bx ²-3x+5y-1)= 2x ²+ux-y+6-2bx-+3x-5y+1 51a =21b -==(2-2b)x²+(a+3)x-6y+7.因为代数式的值与字母x所取的值无关,所以2-2b=0,a+3=0,即a==1.,把a=-3,b=1代入,得原式.。
初一上数学-整式的加减-培优讲义

初一数学(上册)讲义整式的加减培优能力提高 1 :用字母表示数能力提高 2 :图形关系的代数表示有些数目关系表现为图形中的数目关系,假如能将这些关系表示为代数式,这样就初步地实现了数与形相联合,抽象与直观相联合,对培育数学能力是特别重要的。
能力提高 3 :由代数式睁开的推理能力提高 4 :求代数式的值用详细的数取代代数式里的字母进行计算,求出代数式的值,是一个由一般到特别的过程.详细求解代数式值的问题时,关于较简单的问题,代入直接计算其实不困难,但关于较复杂的代数式,常常是先化简,而后再求值.下边联合例题初步看一看代数式求值的常用技巧.【例 1】求以下代数式的值:(1)5ab 4 1 a3b2 2 1ab1a3b2 23ab a2b 5 ,此中 a 1,b2 ;2 4 2 4(2)3x2y { xyz (2 xyz x2 z) 4x2 z [3 x2 y (4 xyz 5x2 z 3xyz)]} ,此中 x 1, y 2, z 3 .剖析上边两题均可直接代入求值,但会很麻烦,简单犯错.我们能够利用已经学过的相关观点、法例,如归并同类项,添、去括号等,先将代数式化简,而后再求值,这样会大大提高运算的速度和结果的正确性.=0-4a3b2-a2b-5=-4× 13× (- 2)2- 12 × (-2)-5 =-16+2-5=-19 .(2) 原式 =3x 2y-xyz+(2xyz-x 2 z)+4x 2z[3x2y-(xyz-5x 2z)]=3x 2y-xyz+2xyz-x 2 z+4x 2z-3x 2y+(xyz-5x 2z)=(3x 2y-3x 2y)+(-xyz+2xyz+xyz)+(-x 2z+4x 2z-5x2z) =2xyz-2x 2z=2× (-1) × 2× (-3)-2× (-1)2 ×(-3) =12+6=18 .说明 本例中 (1)的化简是添括号,将同类项归并后,再代入求值; (2)是先去括号,而后再添括号,归并化简后,再代入求值.去、添括号时,必定要注意各项符号的变化.【例 2】已知 ab 1 ,求 a 33ab b 3 的值.剖析 由已知条件 a-b=-1,我们没法求出 a , b 确实定值,所以本题不可以像例 1 那样,代入 a , b 的值求代数式的值.下边给出本题的五种解法.解法 1 由 a-b=-1 得 a=b-1,代入所求代数式化简a 3+3ab-b 3=(b-1) 3+3(b-1)b-b 3=b 3-3b 2+3b-1+3b 2-3b-b 3=-1 .说明 这是用代入消元法消去 a 化简求值的.解法 2 由于 a-b=-1,所以原式 =(a 3-b 3)+3ab=(a-b)(a 2+ab+b 2)+3ab=-1× (a 2+ab+b2)+3ab=-a 2-ab-b 2+3ab =-(a 2-2ab+b 2)=-(a-b) 2 =-(-1)2=-1 .说明 这类解法是利用了乘法公式,将原式化简求值的.解法 3 由于 a-b=-1,所以原式 =a 3-3ab(-1)-b 3=a 3-3ab(a-b)-b 3=a 3-3a 2b+3ab 2-b 3=(a-b) 3=(-1) 3=-1 .说明 这类解法奇妙地利用了-1=a-b ,并将 3ab 化为 -3ab(-1)=-3ab(a-b) ,进而凑成了(a-b)3.解法 4 由于 a-b=-1,所以 (a-b) 3=(-1) 3 =1,即 a3+3ab2-3a2b-b3=-1, a3-b3 -3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1 ,即 a3-b3+3ab=-1 .说明这类解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b 3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b) 3+3ab(a-b)+3ab=(-1) 3+3ab(-1)+3ab=-1 .说明这类解法是添项,凑出(a-b)3,而后化简求值.经过这个例题能够看出,求代数式的值的方法是很灵巧的,需要仔细思虑,才能找到简易的算法.在本例的各样解法中,用到了几个常用的乘法公式,现总结以下:(a+b) 2=a2+2ab+b2;(a-b) 2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b 3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a 2+ab+b2).【例 3】已知xy 2 ,求代数式3x5xy3y的值 .x y x 3xy y解由已知, xy=2(x+y) ,代入所求代数式中,消去xy,而后化简.所以【例 4】已知a3b, c 5a ,求a b c的值.a b c解由于 a=3b,所以 c=5a=5× (3b)=15b .将 a, c 代入所求代数式,化简得【例 5】已知m, x, y知足条件:( 1)2 ( x 5)2 5| m | 0;(2)2a2b y 1与 3a2b3是同类项.37 1 3求代数式{ x2 y [ xy2 ( x2 y 3.475xy2 )] 6.2752 } 的值.16 4 16解由于 (x-5)2 ,| m|都是非负数,所以由(1)有由 (2)得 y+1=3 ,所以 y=2 .下边先化简所求代数式,而后再代入求值.=x2y+5m2x+10xy2=52× 2+0+10× 5× 22=250【例 6】假如4a 3b 7 ,而且 3a 2b 19 ,求 14a 2b 的值.剖析本题能够用方程组求出a, b 的值,再分别代入14a-2b 求值.下边介绍一种不用求出a,b 的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52 .【例 7】当x 2 17时,求代数式| x| +|x-1| +| x-2 |+| x-3| +|x-4 | +| x-5|的值.310, 1, 2,剖析所求代数式中六个绝对值的分界点,分别为:据绝对值的意义去掉绝对值的符号,将有 3 个 x 和 3 个 -x,这样将抵消掉x,使求值变得简单.原式 =x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9 .说明实质上,本题只需x 的值在 2 与 3 之间,那么这个代数式的值就是9,即它与x 详细的取值没关.【例 8】若 x:y:z=3:4:7 ,且 2x-y+z=18 ,那么 x+2y-z 的值是多少?剖析x:y:z=3:4:7 能够写成的形式,关于等比,我们往常能够设它们的比值为常数k,这样能够给问题的解决带来便利.x=3k ,y=4k , z=7k .由于 2x-y+z=18 ,所以2×3k-4k+7k=18,所以 k=2,所以 x=6 , y=8, z=14,所以 x+2y-z=6+16-14=8 .【例 9】已知 x=y=11 ,求 (xy-1)2+(x+y-2)(x+y-2xy)的值.剖析本题是可直接代入求值的.下边采纳换元法,先将式子改写得较简短,而后再求值.解设 x+y=m , xy=n .原式 =(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11 × 11+1-22)2=(121+1-22)2=1002=10000 .说明换元法是办理较复杂的代数式的常用手法,经过换元,能够使代数式的特点更为突出,进而简化了题目的表述形式.。
整式的加减练习100题(有答案)

整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
2021年七年级数学上册第二章《整式的加减》知识点复习(提高培优)(1)

1.下面用数学语言叙述代数式1a﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.114x2y A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.代数式x2﹣1y的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键. 4.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码. 【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ; o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj . 故选:D . 【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.5.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C 解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义.6.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B 【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B. 考点:列代数式.8.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D 【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可. 【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.9.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( ) A .﹣1 B .﹣2C .﹣3D .﹣4A解析:A 【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案. 【详解】由题意,得3m =6,n =2. 解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1, 故选:A .本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.12.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键. 13.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个C解析:C 【分析】根据单项式的定义逐一判断即可. 【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式, -2是单项式,3b-是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.本题考查单项式的定义,熟练掌握定义是解题关键. 14.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33C .31,62,63D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184 【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答. 【详解】由前面数字关系:1,3,5;3,5,7;5,7,9, 可得最后一个三个数分别为:11,13,15, 3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15, ∴m=13×15-11=184. 故答案为:184. 【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m 的值.2.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+ 解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A, 则A=(3m 2+m-1)-(m 2-2m+3) =3m 2+m-1-m 2+2m-3 =2m 2+3m-4, 故答案为2m 2+3m-4. 【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键. 4.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2 【详解】解:第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; …第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 【点睛】本题考查规律型:图形的变化类.5.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律 【分析】直接利用整式的加减运算法则进而得出答案. 【详解】解:原式=2a 2b+5ab+a 2b-3ab =2a 2b+a 2b+5ab-3ab =(2a 2b+a 2b )+(5ab-3ab ) =3a 2b+2ab .第②步依据是:加法交换律. 故答案为:加法交换律. 【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键. 6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值. 【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-. 故答案为:2-. 【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键 解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.或【分析】由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x 的值而得出结论【详解】解:由题意得当输入的数x 是偶数时则y=x 当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c|解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.11.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.1.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.2.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.3.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.4.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
初一整式的加减所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一整式的加减所有知识点总结和常考题知识点:1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数;3.单项式的次数:单项式中所有字母的指数的和,叫单项式的次数.4.多项式:几个单项式的和叫做多项式。
5.多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项。
多项式里所含单项式的个数就是多项式的项数;6.多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.7.多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列。
多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列。
(注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.8.整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.9.整式分类: . ( 注意:分母上含有字母的不是整式。
)⎩⎨⎧多项式单项式整式10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变。
12.去括号的法则:(原理:乘法分配侓)(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。
13.添括号的法则:(1)若括号前边是“+”号,括号里的各项都不变号;(2)若括号前边是“-”号,括号里的各项都要变号.14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。
第03讲 整式的加减(9类热点题型讲练)(解析版)--初中数学北师大版7年级上册

第03讲整式的加减1.理解同类项的概念.2.了解合并同类项的法则,能进行同类项的合并,解决一些实际问题.3.在具体情境中体会去括号的必要性,能运用运算律去括号.4.总结去括号的法则,并能利用法则解决简单的问题.5.会进行整式的加减运算,并能说明其中的道理.知识点01同类项1.同类项概念:所含_______相同,并且相同字母的_______也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.【答案】字母;指数知识点02去(添)括号法则去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.【注意】:(1)要注意括号前面的符号,它是去括号后括号内各项是否变号的依据;(2)去括号时应将括号前的符号连同括号一起去掉;(3)括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号;(4)括号前是数字因数时,要将数与括号内的各项分别相乘,不能只乘括号里的第一项;(5)遇到多层括号一般由里到外,逐层去括号.知识点3整式的加减1.整式的加减(1)几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.(2)几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.(3)运算结果,常将多项式的某个字母的降幂(升幂)排列.2.整式加减的一般步骤(1)如果有括号,那么先去括号;(2)观察有无同类项;(3)利用加法的交换律和结合律,分组同类项;(4)合并同类项.题型01同类型的判断【典例1】(2023秋·全国·七年级专题练习)下列各组单项式中,是同类项的是()A .423x y 与244x y -B .258m n -与528n mC .325a b c 与329a b -D .27m n 与62mn -【答案】B【分析】根据同类项的定义即可求解,所含字母相同,且相同字母的指数也相同的两个单项式是同类项.【详解】解:A 、423x y 与244x y -,字母相同,但对应字母的次数不同,不是同类项,故该选项不符合题意;B 、258m n -与528n m 是同类项,故该选项符合题意;C 、325a b c 与329a b -,所含字母不尽相同,不是同类项,故该选项不符合题意;D 、27m n 与62mn -,字母相同,但对应字母的次数不同,不是同类项,故该选项不符合题意.故选:B .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.【变式1】(2023秋·甘肃白银·七年级统考期末)下列单项式中,与3a b 是同类项的是()题型02已知同类型求指数中字母或代数式的值题型03合并同类型题型04去括号题型05添括号【典例5】(2023春·浙江绍兴·七年级统考期末)下列多项式的变形中,正确的是()A .()y x x y -=--B .()x y x y --=--C .()x y x y -+=-+D .()y x x y +=-+【答案】A【分析】提取负号添括号时,每一项都需要变号.【详解】解:A :()()y x y x x y -=--+=--,A 选项正确;B :()x y x y --=-+,B 选项错误;C :()x y x y -+=--,C 选项错误;D :()y x x y +=--+-,D 选项错误.故选D【点睛】本题考查添括号.括号前面是负号,则括号里面每一项都需要变号.这是解决本题的关键.【变式1】(2023秋·湖北武汉·八年级统考期末)等式() a b c a -+=-,括号内应填上的项为()A .b c +B .b c-C .b c-+D .b c--【答案】B【分析】根据填括号的法则解答即可.【详解】根据填括号的法则可知,原式()a b c =--题型06整式的加减运算题型07整式的加减中化简求值【典例7】(2023春·甘肃定西·七年级统考期末)先化简,再求值:222342565x x x x x +---+-,其中2x =-.题型08整式的加减的应用【典例8】(2023秋·河南漯河·七年级校考期末)某公园里一块草坪的形状如图中的阴影部分(长度单位:m ).(1)用整式表示草坪的面积;(2)若4a =,求草坪的面积.【答案】(1)110a 平方米(2)440平方米【分析】(1)根据题意和图形中的数据可以用代数式表示出草坪的面积;(2)将4a =代入(1)中的代数式,即可解答本题.【详解】(1)解:由题意可得,草坪的面积是:(7.512.5)(222)12.5212.5216050110a a a a a a a a a a +++++-⨯-⨯=-=(平方米),答:草坪的面积是110a 平方米;(2)当4a =时,1101104440a =⨯=(平方米),∴草坪的面积是440平方米.【点睛】本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式、求出相应的代数式的值,利用数形结合的思想解答.【变式1】(2023秋·广东韶关·七年级统考期末)今年暑假小明家买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米).(1)求出用含x 、y 的代数式表示这套房的总面积是多少平方米?(2)当3x =, 1.5y =时,若铺1平方米地砖平均费用120元,求这套住宅铺地砖总费用.【答案】(1)()6218x y ++平方米(2)4680元【分析】(1)根据图形和题意可以求出这套房子的总面积;(2)根据面积,从而可以求出这套住宅铺地砖的总费用.【详解】(1)解:这套房的总面积是()()()322226366218y x x y ⨯+++⨯-+=++平方米;(2)当3x =, 1.5y =时,铺1平方米地砖平均费用120元,这套住宅铺地砖总费用()120632 1.5184680=⨯⨯+⨯+=(元).【点睛】此题考查了整式加减的应用,列代数式,已知字母的值求代数式的值,解题的关键是明确题意,求出住宅的总面积和总费用,利用数形结合的思想解答.【变式2】(2023秋·广西南宁·七年级校考期末)如图,用三种大小不同的5个正方形和1个长方形(阴影部分)拼成长方形ABCD ,其中3EF =,最小的正方形的边长为x .(1)FG =________,DG =__________;(用含x 的代数式表示)(2)用含x 的代数式表示长方形ABCD 的周长;(3)当4x =时,求长方形ABCD 的周长.【答案】(1)3x +,33x -(2)166x +(3)54【分析】(1)根据图形可得结合线段的和差、正方形的性质即可解答;(2)分别表示出AB 和BC ,然后再表示出周长即可;(3)把4x =代入(2)所求结果中进行求解即可.【详解】(1)解:由图可知:3FG x =+,()4333DG AB GC x x x =-=-+=-;故答案为:3x +,33x -;(2)解:长方形ABCD 的宽为:3334DG CG DG FG x x x +=+=-++=;长为:33343x FG x x x +=++=+,∴长方形ABCD 的周长为:()4432166x x x ++⨯=+;(3)当3x =时,166163654x +=⨯+=.【点睛】本题主要考查了列代数式和代数式求值,理解各个图形的边长之间的数量关系是解答本题的关键.题型09整式的加减中的无关型问题一、单选题1.(2023秋·广西南宁·七年级统考期中)下列各组属于同类项的是()A .23x y -与2xyB .2x y 与2x zC .2mn 与3nm -D .0.5ab -与0.5abc-【答案】C【分析】根据同类项的定义(所含字母相同,并且相同字母的指数也分别相等的项,叫同类项)判断即可.【详解】解:A 、23x y -与2xy 不是同类项,故本选项错误;B 、2x y 与2x z 不是同类项,故本选项错误;C 、2mn 与3nm -是同类项,故本选项正确;D 、0.5ab -与0.5abc -不是同类项,故本选项错误.故选:C .【点睛】本题考查了对同类项的定义的应用,注意:同类项是指:所含字母相同,并且相同字母的指数也分别相等的项.2.(2023秋·四川眉山·七年级统考期末)下列计算正确的是()A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y-=【答案】D【分析】根据合并同类项的运算法则:字母和字母指数不变,只把系数相加减,逐个进行判断即可.【详解】解:A 、32a b +,不是同类项,不能合并,故A 不正确,不符合题意;B 、532y y y -=,故B 不正确,不符合题意;C 、78a a a +=,故C 不正确,不符合题意;D 、22232x y yx x y -=,故D 正确,符合题意;故选:D .【点睛】本题主要考查了合并同类项,解题的关键是掌握:合并同类项的运算法则:字母和字母指数不变,只把系数相加减.3.(2023春·河南周口·七年级统考期中)若3a b x y +-与2a b x y +是同类项,则a b -的值为()A .1B .2C .3D .4【答案】C【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】解:由题意得:231a b a b +=⎧⎨+=⎩解得21a b =⎧⎨=-⎩所以3a b -=故选:C【点睛】本题考查了同类项的定义.熟记相关结论是解题关键.4.(2023秋·全国·七年级专题练习)下列变形中错误的是()A .()2222m m n p m m n p---+-=+B .()m n p q m n p q -+-=-+-C .()()35123521m n p m n p --+=-----⎡⎤⎣⎦D .()()11m n p n m p +--+=----+【答案】B【分析】根据去括号和添括号法则,进行计算后,判断即可.【详解】解:A 、()2222m m n p m m n p ---+-=+,故正确;B 、()m n p q m n p q -+-=--+,故错误;C 、()()35123521m n p m n p --+=-----⎡⎤⎣⎦,故正确;D 、()()111m n p m n p n m p +--+=++-=----+,故正确.故选:B .【点睛】本题考查去括号和添括号,熟练掌握去括号法则和添括号法则,是解题的关键.5.(2023春·浙江杭州·七年级校考期中)在矩形ABCD 内,将一张边长为a 和两张边长为()b a b >的正方形纸片按图1,图2两种方式放留,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,若要知道图2中阴影部分的周长与图1中阴影部分的周长的差,只要测量图中哪条线段的长()A .AB B .ADC .aD .b【答案】A【分析】根据平移的知识和周长的定义,列出算式周长差244(224)AD b AB AD AB b =-+-+-,再去括号,合并同类项即可求解.【详解】解:图1中阴影部分的周长224AD AB b =+-,图2中阴影部分的周长2242AD b AB b =-+-,周长差244(224)2442242AD b AB AD AB b AD b AB AD AB b AB =-+-+-=-+--+=.故若要知道周长差,只要测量图中线段AB 的长.故选:A .【点睛】本题考查了整式的加减,周长的定义,关键是得到图2中阴影部分的周长与图1中阴影部分的周长.二、填空题(1)设AP x =,求阴影部分的面积(2)当13AP a =时,阴影部分面积为【答案】(1)222x ax-+(2)12S S <【分析】(1)依据题意,由AP。
部编数学七年级上册专题17整式加减的应用(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题17 整式加减的应用1.一列火车上原有()62a b -人,中途下车一半人,又上车若干人,现在车上共有乘客()106a b -人.问上车的乘客是多少人?当a =200,b =100时,上车的乘客是多少人?2.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a =5,b =3时,求S 的值;②当a =7,b =3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.3.如图,已知长方形ABCD的长为a(即AD=BC=a),宽为b(即AB=DC=b),点E和点F分别是长AD和宽DC的中点,.(1)用含,a b的式子表示阴影部分(即△BEF)的面积;(写出解答过程)(2)若△EDF的面积是10,计算△BEF的面积.(写出解答过程)4.已知数轴上A ,B 两点对应的有理数分别是30-,15,两只电子蚂蚁甲,乙分别从A ,B 两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A 处时,求甲所在位置对应的数;(2)当电子蚂蚁运行t 秒后,甲,乙所在位置对应的数分别是多少?(用含t 的式子表示)(3)当电子蚂蚁运行t (10t >)秒后,甲,乙相距多少个单位?(用含t 的式子表示)【答案】(1)7.5-;(2)330t -,156t -;(3)945t -.【分析】(1)先求出乙到达A 处时所用的时间,再求甲所在位置对应的数即可;(2)根据甲,乙的速度和所在起点的位置列式即可;(3)根据(2)中所求得的甲,乙所在位置对应的数,利用数轴上两点间距离公式列式化简即可.【详解】解:(1)乙到达A 处时所用的时间是(3015)67.5+¸=(秒),此时甲移动了37.522.5´=个单位,所以甲所在位置对应的数是30(22.5)7.5-+=-;(2)∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动t 秒后,甲所在位置对应的数是:30(3)330t t -+=-,乙所在位置对应的数是15(6)156t t +-=-;(3)由(2)知,运行t 秒后,甲,乙所在位置对应的数分别是330t -,156t -,当10t >时,3300t ->,1560t -<,所以,运行t (10t >)秒后,甲,乙间的距离是:|330||156|(330)(156)(945)t t t t t -+-=---=-个单位.【点睛】本题考查了数轴上的动点问题以及绝对值的性质,根据时间、速度、路程之间的关系结合数轴的特点表示出甲,乙所在位置对应的数是解题的关键.5.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,3m 表示立方米).每月用水量单价不超过36m 的部分2元/3m 超出36m 不超出310m4元/3m 超出310m 的部分8元/3m 请根据上表的内容解答下列问题:(1)若某户居民2月份用水34m ,则应收水费_________.元(2)若该户居民3月份用水3m a (其中336m 10m a <<),则应收水费多少元(用含a 的代数式表示,并简化).(3)若该户居民4,5两个月共用水315m (5月份用水量超过了4月份),设4月份,用水3m x ,则该户居民4,5两个月共交水费多少元(用含x 的代数式表示,并简化).【答案】(1)8;(2)应收水费(412)a -元;(3)该户居民4,5两个月共交水费(668)x -+元或(248)x -+元或36元.【分析】(1)根据表格可以求得该户居民2月份应缴纳的水费;(2)根据表格可以求得该户居民3月份用水a 3m (其中63m <a <103m )应缴纳的水费;(3)根据题意分三种情况,可以求得该户居民4,5两个月共交的水费.【详解】(1)由表格可得,该户居民2月份用水43m ,则应收水费为:2×4=8(元),故答案为8;(2)由题意可得,该户居民3月份用水a 3m (其中63m <a <103m ),则应收水费为:2×6+(a −6)×4=12+4a −24=(4a −12)元,即该户居民3月份应收水费为(4a −12)元;(3)由题意可得,分为下列三种情况:当0<x ⩽5时,该户居民4,5两个月共交水费为:2x +8(15-x -10)+4×4+2×6=-6x +68元;当5<x ⩽6时,该户居民4,5两个月共交水费为:2x +[2×6+(15−x −6)×4]=(48−2x )元;当6<x <7.5时,该户居民4,5两个月共交水费为:[2×6+(x −6)×4]+[2×6+(15−x −6)×4]=36元;综上所述,该户居民4,5两个月共交水费()668x -+元或()248x -+元或36元.【点睛】本题主要考查了代数式在实际问题中的应用,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种重要方法,找到“等量关系”列方程解实际问题是解题的关键.6.小颖为妈妈准备了一份生日礼物,礼物外包装盒为长方体形状,长、宽、高分别为 a 、b 、c (a >b >c ),为了美观,小颖决定在包装盒外用丝带打包装饰,她发现,可以用如图所示的三种打包方式,所需丝带的长度分别为l 1, l 2, l 3(不计打结处丝带长度).(1)用含a 、b 、c 的代数式分别表示l 1, l 2, l 3;(2)请帮小颖选出最节省丝带的打包方式,并说明理由.【答案】(1)1426l a b c =++,2246l a b c =++,3444l a b c =++(2)最节省丝带的打包方式为图②所示,理由详见解析.【分析】(1)观察分析可得,可把该题看作与长,宽,高平行的丝带分别有几条,再求和即可.(2)通过比较(1)中计算出来的三种方式所用的丝带总长来判断.【详解】(1)第一种:与长平行的丝带有4根,与宽平行的丝带有2条,与高平行的丝带有6条,则总丝带长为:1426l a b c=++第二种:与长平行的丝带有2根,与宽平行的丝带有4条,与高平行的丝带有6条,则总丝带长为:2246l a b c=++第三种:与长平行的丝带有4根,与宽平行的丝带有4条,与高平行的丝带有4条,则总丝带长为:3444l a b c=++(2)由题意可知:a >b >c ,则令3,2,1a b c ===则142643226122l a b c =++=´+´+´=224623426120l a b c =++=´+´+´=()344444624l a b c a b c =++=++=´=则最节省丝带的打包方式为图②所示.【点睛】本题考查了用代数式表示长度,解题关键在于把求总丝带长可化为求与长宽高平行的丝带总数,把整体问题分为部分问题较为简便.7.某服装厂生产一种夹克和T 恤,夹克每件定价180元,T 恤每件定价60元,厂家在开展促销活动期间,向顾客提供了两种优惠方案:①买一件夹克送一件T 恤;②夹克和T 恤都按定价的80%付款;现在某客户要到该厂购买夹克30件,T 恤x 件(x >30).(1)若该客户按方案①购买付款元(用含x 的式子表示);若该客户按方案②购买付款元(用含x 的式子表示).(2)当50x =时,通过计算说明方案①、方案②哪种方案购买较为合算?(3)当50x =时,你能给出更为省钱的购买方案吗?试写出你的购买方法.【答案】(1)()401800x +,()322400x +;(2)按方案1购买较为合算;(3)先利用方案1购买30件夹克会送30件T 恤,再利用方案2购买T 恤20件.【分析】(1)按照两种优惠方案分别表示两种方案的付款数;列代数式即可解决问题;(2)把50x =代入(1)求出的式子,再进行比较即可;(3)分两次购买比较省钱:先利用方案1购买30件夹克,再利用方案2购买T 恤10件.【详解】解:(1)该客户按方案1购买,夹克需付款301805400´=(元),T 恤需付款()6030x -,夹克和T 恤共需付款:()301806030603600x x ´+-=+(元);若该客户按方案2购买,夹克和T 恤共需付款:3018080%6080%484320x x ´´+´=+(元),故答案为()401800x +,()322400x +;(2)当50x =时,按方案1购买所需费用605036006600=´+=(元);按方案2购买所需费用485043206720=´+=(元),所以按方案1购买较为合算.(3)当50x =时,30180206080%6360´+´´=;\最为省钱的购买方案是:先利用方案1购买30件夹克会送30件T 恤,再利用方案2购买T 恤20件.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量之间关系.8.如图是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题:(1)用含a、b的代数式表示小江家的住房总面积S;(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含a、b的代数式表示铺设地砖的总费用W;(3)在(2)的条件下,当a=6,b=4时,求W的值.【答案】(1) S=8a-3b;(2)W=320a-150b+240;(3)1560【分析】(1)根据图形及长方形面积公式求面积;(2)分别表示出卧室及卫生间、厨房和客厅的面积,再乘以对应价格,列式化简即可;(3)把a=6,b=4代入(2)中所得式子进行计算即可得出结果.【详解】解:(1)S=8a-3b;(2)由题可得,卧室面积为3(8-b)平方米,卫生间、厨房和客厅的总面积为8(a-3)平方米,∴W=3(8-b)×50+8(a-3)×40=1200-150b+320a-960=320a-150b+240,(3)当a=6,b=4时,W=320×6-150×4+240=1920-600+240=1560(元).【点睛】本题考查列代数式及代数式求值,弄清题意是解题的关键.9.如图,长为50 cm,宽为x cm的大长方形被分割为8小块,除阴影A,B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm.(1)从图可知,每个小长方形较长一边长是cm(用含a的代数式表示).(2)求图中两块阴影A,B的周长和(可以用含x的代数式表示).【答案】(1)503a -;(2)4.x 【分析】(1)观察图形可知,每个小长方形较长一边长是大长方形的长-小长方形宽的3倍;(2)观察图形可知,图形A 的较长边为50-3a ,较短边为x -3a ;图形B 的较长边为3a ,较短边为x -(50-3a ),根据矩形的周长公式列出代数式,化简即可.【详解】(1)503a -.(2)()()][()2350323503x a a a x a éù-+-++--ëû][25062506a x a x éù=+-+-+ëû2100122100x a x =+-+-+12a4x =.【点睛】本题考查了列代数式及整式的加减运算,读懂题目的意思,根据题目给出的条件,正确列出代数式是解题关键.10.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,其中种茄子每亩可获利2400元,种西红柿每亩可获利2600元,王大伯一共获纯利多少元.(1)若设种茄子x 亩,用含有x 的式子填下表:亩数每亩可获利总获利茄子西红柿(2)王大伯种两种蔬菜一共获纯利多少元.(用含x 的代数式表示)【答案】(1)表格见解析;(2)王大伯种两种疏菜一共获纯利(20065000)x -+元.【分析】找到合适的等量关系:①种茄子和西红柿的亩数=25亩;②总利润=茄子获利+西红柿获利.【详解】(1)若设种茄子x 亩,用含有x 的式子填下表:(2)设种茄子x 亩,根据题意列式得:王大伯种两种蔬菜共获利:2400x +2600(25-x )=-200x +65000(元);∴王大伯种两种蔬菜共获利:(-200x +65000)元.【点睛】本题主要考查了代数式在实际问题中的应用,利用其中的相等关系列出代数式,其中找到“等量关系”列式是解题的关键.11.某市电话拨号上网有两种收费方式,用户可以任选其一:A :计时制:0. 03元/分.B :38元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0. 01元/分. 某用户某月上网时间为t 小时,(1)若按照A 方式收费为_____元(用含t 的代数式表示),若按照B 方式收费为_____元(用含t 的代数式表示);(2)若30t =小时,通过计算采用哪种方式较为合算?【答案】(1)2.4t ,()380.6t +;(2)采用B 种方式.【分析】(1)第一种是费用=每分钟的费用×时间+通信费,第二种的费用=月费+通信费;(2)分别计算x =20时对应的费用,再进行比较即可.【详解】(1)(1)采用计时制应付的费用为:0.03×60t +0.01×60t =2.4t (元).采用包月制应付的费用为:38+0.01×60t =()380.6t +元;(2)若选用A 种方式收费应为:2.43072´=(元),若选用B 种方式收费应为380.63056+´=(元),因为7256>,所以采用B 种方式.【点睛】本题考查列代数式和求代数式的值,表示费用的时候注意单位的统一.解决问题的关键是读懂题意,找到所求的量的等量关系.12.如图:(1)用含字母的式子表示阴影部分的面积;(2)当5a =,3b =时,阴影部分的面积是多少?13.如图是小明家的住房结构平面图(单位:米),他打算把卧室以外的部分都铺上地砖.(1)若铺地砖的价格为80元/平方米,那么购买地砖需要花多少钱(用代数式表示)?(2)已知房屋的高为3米,现需要在客厅和卧室的墙壁上贴壁纸,那么需要多少平方米的壁纸(计算时不扣除门、窗所占的面积)(用代数式表示)?【答案】(1)880xy ;(2)2436x y +.【分析】(1)求出客厅、厨房、卫生间这3个矩形的面积和即可;再用单价乘以面积即可得出购买地砖所需;(3)客厅、卧室底面周长之和乘以高即可得到墙壁面积.【详解】解:(1)铺上地砖的面积=42(42)(42)y x y y x x x x y+-+--g g g 8211xy xy xy xy =++=(平方米);买地砖所需=8011880xy xy =g(元);答:需要花880xy 元钱;(3)客厅、卧室墙面面积=3(4422)3(2222)y y x x x x y y +++++++24121212y x x y=+++2436x y =+(平方米);答:需要()2436x y +平方米的壁纸.【点睛】本题考查了整式的混合运算;正确求出各个矩形的面积是解题的关键.14.某商场销售一种西装和领带,西装每套定价400元,领带每条定价50元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案, 两种优惠方案可以任意选择:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x (20)x >.(1)若该客户按方案一购买,需付款元(用含x 的式子表示), 若该客户按方案二购买,需付款 元(用含x 的式子表示)(2)若30x =,通过计算说明此时按哪种方案购买较为合算;(3)当30x =时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和所需费用.【答案】(1)(7000+50x ),(7200+45x ); (2)选方案一;(3)先用方案一买20套西装,赠送20条领带,再用方案二买10条领带,用钱8450.【分析】(1)分别用两种不同的付款方式列出代数式即可;(2)将x =30分别代入(1)中求得的代数式中即可,然后再比较即可得到选择哪种方案更合算;(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带更合算.【详解】(1)方案一购买,需付款:20×400+50(x -20)=7000+50x (元),按方案二购买,需付款:0.9(20×400+50x )=7200+45x (元);(2)把x =30分别代入:7000+50x =7000+1500=8500(元),7200+45x =7200+1350=8550(元).因为8500<8550,所以按方案一购买更合算;(3)先按方案一购买20套西装(送20条领带),再按方案二购买(x -20)条领带,共需费用:20×400+0.9×50(x -20)=45x +7100,当x =30时,45×30+7100=8450(元).【点睛】考查了列代数式和求代数式的值,解题的关键是认真分析题目并正确的列出代数式.15.已知三角形第一边长为2m n +,第二边比第一边长m n -,第三边比第一边短m ,(1)第二边长为 ,第三边长为 (化简结果)(2)列式并计算这个三角形的周长【答案】(1)3m ,m +n ;(2)6m +2n .【分析】(1)根据题意用m 、n 表示出第二、第三边的长即可;(2)求出三边长的和即可.【详解】(1)∵三角形第一边长为2m +n ,第二边比第一边长m −n ,∴第二边的长=2m +n +m −n =3m ;∵第三边比第一边短m ,∴第三边的长为2m +n −m =m +n .故答案为3m ,m +n ;(2)∵三角形三边的长分别为:2m +n ,3m ,m +n ,∴这个三角形的周长=(2m +n )+3m +(m +n )=2m +n +3m +m +n =6m +2n .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.【阅读理解】小海喜欢研究数学问题,在计算整式加减(﹣4x 2﹣7+5x )+(2x +3x 2)的时候,想到了小学的列竖式加减法,令A =﹣4x 2﹣7+5x ,B =2x +3x 2,然后将两个整式关于x 进行降幂排列,A =﹣4x 2+5x ﹣7,B =3x 2+2x ,最后只要写出其各项系数对齐同类项进行竖式计算如下:320457)177-+--+++-+所以,(﹣4x 2﹣7+5x )+(2x +3x 2)=﹣x 2+7x ﹣7.【模仿解题】若A =﹣4x 2y 2+2x 3y ﹣5xy 3+2x 4,B =3x 3y +2x 2y 2﹣y 4﹣4xy 3,请你按照小海的方法,先对整式A ,B 关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A ﹣B ,并写出A ﹣B 的值.【答案】2x 4﹣x 3y ﹣6x 2y 2﹣xy 3+y 4【分析】首先将两个整式关于x 进行降幂排列,然后各项系数进行竖式计算即可.【详解】首先将两个整式关于x进行降幂排列,A=2x4+2x3y﹣4x2y2﹣5xy3,B=3x3y+2x2y2﹣4xy3﹣y4,然后各项系数进行竖式计算:∴A﹣B=2x4﹣x3y﹣6x2y2﹣xy3+y4;【点睛】此题主要考查整式的加减,理解题意,熟练运用,即可解题.17.如图1,将一个边长为a厘米的正方形纸片剪去两个小矩形,得到图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示:(1)列式表示新矩形的周长为______厘米(化到最简形式)(2)如果正方形纸片的边长为8厘米,剪去的小矩形的宽为1厘米,那么所得图形的周长为______厘米.【答案】(1)4a﹣8b;(2)56.【分析】(1)根据题意列出代数式,去括号合并即可得结果;(2)根据所得图形的边长列出代数式,代入a、b的值即可求解.【详解】解:(1)根据题意,得2(a﹣3b+a﹣b)=4a﹣8b.故答案为(4a﹣8b).(2)根据题意,可知a=8,a﹣3b=2,得b=2.所得图形的周长为:4a+4(a﹣b)=8a﹣4b=64﹣8=56.故答案为56.【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.18.某市居民使用自来水按如下标准收费(水费按月缴纳)户月用水量单价不超过12 m3的部分2元/m3超过12 m3但不超过20 m3的部分3元/m3超过20 m3的部分4元/m3(1) 某用户一个月用了14 m3水,求该用户这个月应缴纳的水费(2) 某户月用水量为n立方米(12<n≤20),该用户缴纳的水费是39元,列方程求n的值(3) 甲、乙两用户一个月共用水40 m3,设甲用户用水量为x m3,且12<x≤28①当12<x≤20时,甲、乙两用户一个月共缴纳的水费为__________元(用含x的整式表示)②当20<x≤28时,甲、乙两用户一个月共缴纳的水费为__________元(用含x的整式表示)【答案】(1)30元;(2)n等于17;(3)①(116-x);②(x+76)【分析】(1)根据用户用水情况,根据不同单价计算其应缴纳的水费,然后相加即为该月的水费;(2)根据水费,代入不同的单价,计算出实际的用水量;(3)①根据用水量12<x≤20,然后分别计算甲、乙的水费,然后相加即可;②根据用水量20<x≤28,然后分别计算甲、乙的水费,然后相加即可.【详解】解:(1)2×12+3×(14-12)=30元,答:该用户这个月应缴纳30元水费.(2) 2×12+3(n-12) =39 ,n =17 ,答:n等于17(3) ①当12<x≤20时甲:2×12+3×(x-12)=3x-12乙:20≤40-x<2812×2+8×3+4×(40-x-20)=128-4x共计:3x-12+128-4x=116-x②当20≤x≤28时甲:2×12+3×8+4(x-20)=4x-32乙:12≤40-x≤202×12+3×(40-x-12)=108-3x共计:4x-32+108-3x=x+76【点睛】本题考查了有理数的混合运算、列代数式等知识点.题目难度中等,针对不同情况分类讨论是解决(3)的关键.。
整式的加减辅导资料(含答案)

整式的加减(1)学习本节是在前一节单项式的系数和次数、多项式的项等概念的基础上,学习了同类项的概念,以及合并同类项的相关知识。
同类项是合并同类项的基础,一定要理解同类项概念的含义,抓住概念中的两个“相同”来判断同类项.准确识别同类项是合并同类项的基础,一定要理解同类项概念的含义,抓住概念中的两个“相同”来判断同类项.掌握同类项的概念这是本节的重点【典例引路】中例1,【当堂检测】中第1题,【课时作业】中第3题。
能根据同类项的概念进行合并同类项这是本节的难点【典例引路】中例2,【当堂检测】中第5题,【课时作业】中第12题。
易错题目同类项与系数无关,与字母的排列顺序也无关;几个常数也是同类项。
都是学生不易掌握,常出错的题目。
如【典例引路】中例2,【课时作业】中第9题.知识点一:同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项,所有的常数项也看作同类项。
知识点二:同类项的方法合并同类项的方法:把同类项的系数相加,作为结果的系数,字母和字母的指数不变。
温馨提示:1、判断同类项时应注意:同类项与系数无关,与字母的排列顺序也无关;几个常数也是同类项。
2、合并同类项时需注意:只要不再有同类项,就是最后结果;合并时字母及其指数不变;同类项的系数互为相反数时,两项的和为零,即互相抵消。
【针对性练习】已知 2 x y 与-x y 是同类项,则4m -6mn+7的值等于( )A. 6B.7C. 8D. 5【解答】D类型之一:求值型例1. 若3a m+2b 3n+1与101b 3a 5是同类项,求m 、n 的值.【解读】根据同类项的定义,如果两个式子是同类项,相同字母的指数必须相同.【解答】根据题意,得m+2=5,3n+1=3,解之,得m=3,n=32.类型之二:计算型例2.合并同类项。
(1)3x -2xy -8-2x+6xy -x 2+6;(2)-x 2+2xy -y 2-3x 2-2xy+2y 2;(3)5a 2b -7ab 2-8a 2b -ab 2。