七年级数学下期中试卷(正安县附答案和解释)
完整版七年级数学下册期中考试试卷及答案 - 百度文库

完整版七年级数学下册期中考试试卷及答案 - 百度文库 一、选择题 1.4的平方根是()A .2B .2±C .2D .2±2.下列哪些图形是通过平移可以得到的( )A .B .C .D .3.点()5,4A --在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题是真命题的是( )A .两条直线被第三条直线所截,同位角相等B .互补的两个角一定是邻补角C .在同一平面内,垂直于同一条直线的两条直线互相平行D .相等的角是对顶角5.如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( ) ①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠ 8.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2021次,点P 依次落在点P 1、P 2、P 3……P 2021的位置,由图可知P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1),则P 2021的坐标( )A .(2020,0)B .(2020,1)C .(2021,0)D .(2021,1)二、填空题9.324-=________.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.13.将一张长方形纸条折成如图的形状,已知1110∠=︒,则2∠=___________°.14.当1x ≠-时,我们把11x -+称为x 为“和1负倒数”.如:1的“和1负倒数”为11112-=-+;-3的“和1负倒数”为11312-=-+.若134x =-,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”…依次类推,则4x =______;123•••x x x …•2021x = _____.15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.16.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.三、解答题17.计算下列各式的值:(1)23(7)--(2)313(3)83+-18.求下列各式中的x 值:(1)16(x +1)2=25; (2)8(1﹣x )3=12519.完成下面的证明:已知:如图, //AB CD , CD 和BE 相交于点O , DE 平分CDF ∠,DE 和BE 相交于点E ,2E ∠=∠.求证:22B ∠=∠.证明:2E ∠=∠(已知),//BE DF ∴(______________),CDF ∴∠=∠________(两直线平行,同位角相等).又//AB CD (已知),B ∴∠=∠______(________)B CDF ∴∠=∠(等量代换) .DE 平分CDF ∠(已知) ,2CDF ∴∠=∠_______(角平分线的定义).22B ∴∠=∠(_________).20.在图所示的平面直角坐标系中表示下面各点:()0,3A ;()3,5B -;()3,5C --;()3,5D ;()5,7E ;(1)A 点到原点O 的距离是________;(2)将点B 向x 轴的负方向平移6个单位,则它与点________重合;(3)连接BD ,则直线BD 与y 轴是什么关系?(4)点E 分别到x 、y 轴的距离是多少?21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出2的近似值,得出1.4<2<1.5.利用“逐步逼近“法,请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = . (2)x 是17+2的小数部分,y 是17﹣1的整数部分,求x = ,y = . (3)(17﹣x )y 的平方根.22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.【参考答案】一、选择题1.D解析:D【分析】依据平方根的定义、算术平方根的定义进行解答即可.【详解】解:∵2=,∴故选D.【点睛】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键.2.B【分析】根据平移、旋转、轴对称的定义逐项判断即可.【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误解析:B【分析】根据平移、旋转、轴对称的定义逐项判断即可.【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误故选:B.【点睛】本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键.3.C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项.【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点()5,4A --在第三象限; 故选C .【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.4.C【分析】根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可.【详解】解:A 、两条平行的直线被第三条直线所截,同位角相等,原命题错误,是假命题,不符合题意;B 、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;C 、在同一平面内,垂直于同一条直线的两条直线互相平行,原命题正确,是真命题,符合题意;D 、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确.【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜∴//AB CD故①正确∵//AB CD∴∠ABE =∠CDB∵∠CDB +∠CDF =180゜∴180ABE CDF ∠+∠=︒故②正确由已知条件无法推出AC ∥BD故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2∴∠ACP =∠E∴AC ∥BD∴∠CAP =∠F∵∠CAB =2∠1=2∠CAP∴2CAB F ∠=∠故④正确故正确的序号为①②④故选:C .【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A ,B ,C 正确.故选D .【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解析:D【分析】观察规律可知,每4次翻折为一个循环,若4n 的余数为0,则1n x n =-;若4n 的余数为1,则n x n =;若4n 的余数为2,则n x n =;若4n 的余数为3,则1n x n =-;由此进行判断2021P 是在第505次循环完成后再翻折一次,那么横坐标即为20212021x =.【详解】解:由题意得:P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1)P 5(5,1),P 6(6,0),P 7(6,0),P 8(7,1),……由此可以得出规律:每4次翻折为一个循环,若4n 的余数为0,则1n x n =-,n P (n -1,1);若4n 的余数为1,则n x n =,n P (n ,1);若4n 的余数为2,则n x n =,n P (n ,0);若4n 的余数为3,则1n x n =-,n P (n -1,0); ∵2021÷4=505余1,∴横坐标即为20212021x =,2021P (2021,1),故选D.【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.解析:4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.13.55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵ABCD,∴∠1=∠BAD=110°,由折叠可得,∠2=∠BAD=×110°=55°,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵AB//CD,∴∠1=∠BAD=110°,由折叠可得,∠2=12∠BAD=12×110°=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开解析:34-【分析】根据“和1负倒数”的定义分别计算2x 、3x 、4x 、5x …,可得到数字的变化规律:从1x 开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和134x =-可得: 214314x =-=--+, 311413x =-=-+, 4131413x =-=-+,514314x =-=--+ ……由此可得出从1x 开始每3个数为一周期循环,∵2021÷3=673…2,∴20214x =-,202034x =-,又1x ·2x .3x = 31(4)43-⨯-⨯=1, ∴123•••x x x …•2021x =3(4)4-⨯-=3, 故答案为:34-;3. 【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标解析:-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.16.(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.【详解】解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2021÷4=505…1;∴A2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得.等式两边开平方,得.所以,得.所以,解析:(1)14x =或94x =-;(2)3.2x =- 【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得()225116x +=. 等式两边开平方,得514x +=±. 所以,得5511-44x x +=+=或. 所以,19-44x =或 (2)等式两边都除以8,得()31251-8x =. 等式两边开立方,得51-2x =. 所以,3.2x =- 【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根..19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由2E ∠=∠可判定//BE DF ,即得出1CDF ∠=∠,再根据//AB CD 得出1B ∠=∠,等量代换得到B CDF ∠=∠,再根据角平分线的定义等量代换即可得解.【详解】证明:2E ∠=∠(已知),//BE DF ∴(内错角相等,两直线平行),1CDF ∴∠=∠(两直线平行,同位角相等).又//AB CD (已知),1B ∴∠=∠(两直线平行,同位角相等),B CDF ∴∠=∠(等量代换). DE 平分CDF ∠(已知),22CDF ∴∠=∠(角平分线的定义).22∴∠=∠(等量代换).B故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【点睛】本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.20.(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.【详解】解:(1)∵A(0,3),∴A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)∵E(5,7),∴点E到x轴的距离是7,到y轴的距离是5.【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.21.(1)4;5;(2);3;(3)±8.【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(24;3;(3)±8.【分析】(1的取值范围,即可得出结论;(2)根据 (1)的结论45<<,得到627<<,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解:(1)∵16<17<25, ∴45<,∴a =4,b =5.故答案为:4;5(2)∵45<<, ∴627<<,2的整数部分为64, ∴4x =,3y =.4;3(3)当4x ,3y =时,代入,)33)4464y x ⎤===⎦. ∴64的平方根为:8±.【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x 分米、2x 分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.。
正安镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

正安镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠2度数为()A. 45°B. 60°C. 90°D. 120°【答案】C【考点】垂线,平行线的性质【解析】【解答】解:∵c⊥a,∴∠1=90°,∵a∥b,∴∠2=∠1=90°.故答案为:C.【分析】根据垂直的定义求出∠1度数,再根据平行线的性质,得出∠2=∠1,即可得出答案。
2、(2分)等式组的解集在下列数轴上表示正确的是()。
A. B.C. D.【答案】B【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:不等式可化为:.即-3<x≤2;在数轴上表示为:故答案为:B.【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,这两个解集的公共部分就是不等式的解集.3、(2分)如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是().A.-2B.-3C.πD.-π【答案】D【考点】实数在数轴上的表示【解析】【解答】=π,A在原点左侧,故表示的数为负数,即A点表示的数是-π。
故答案为:D。
【分析】直径为1的圆滚动一周的距离为π,在原点左侧,故可得A点表示的数。
4、(2分)若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-1【答案】C【考点】平方根【解析】【解答】解:当2m-4=3m-1时,则m=-3;当2m-4≠3m-1时,则2m-4+3m-1=0,∴m=1。
故答案为:C.【分析】分2m-4与3m-1相等、不相等两种情况,根据平方根的性质即可解答。
5、(2分)下列计算正确的是()A.=0.5B.C.=1D.-=-【答案】C【考点】立方根及开立方【解析】【解答】A选项表示0.0125的立方根,因为0.53=0.125,所以,A选项错误;B选项表示的立方根,因为,所以,B选项错误;C选项表示的立方根,因为,,所以,C选项正确;D选项表示的立方根的相反数,因为,所以,D选项错误。
2022-2023学年全国初中七年级下数学人教版期中试卷(含答案解析)014717

2022-2023学年全国初中七年级下数学人教版期中试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列各数:,,…….,是无理数的有( )个A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3. 如图,这是李强同学设计的一个计算机程序,规定从“输入一个值”到判断“结果是否”为一次运行过程.如果程序运行两次就停止,那么的取值范围是( )A.B.C.D.4. 若成立,则下列不等式成立的是( )A.B.C. 3.2,,0,−2π4–√ 3.140.1234567891234a +2=a 23a 2÷=a 8a 2a 4⋅a 3=a 2a 6(=a 3)2a 6x ≥15x x ≥33≤x <73<x ≤7x ≤7x <y x−2<y−24x >4y−x+2<−y+2D.5. 如图,、、、是数轴上的四个点,这四个点中最适合表示的点是( )A.点B.点C.点D.点6. 不等式组 的解集是( )A.B.C.D.7. 的计算结果正确的是( )A.B.C.D.8. 要使是完全平方式,那么的值是( )A.B.C.D.9. 计算的结果是 A.−3x <−3yM N P Q −115−−√MNPQ{2x−1>3(x−1),1−x >0x <1x >1x <−1x ≥0(a +b −c)(a −b −c)−2ac +−a 2c 2b 2−+a 2b 2c 2−2ab +−a 2b 2c 2+−a 2b 2c 2+kx+9x 2k ±99±66÷(−a)6a 2()a 3C.D.10. 如图所示,在边长为的正方形中挖去一个边长为的小正方形,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分的面积),验证了一个等式是( )A.B.C.D.二、 填空题 (本题共计 7 小题 ,共计35分 )11. (4分) 某正数的两个平方根是和,则这个正数为________.12. (4分) 目前科学家发现一种新型病毒的直径为米,用科学记数法表示该病毒的直径为________米.13. (4分) 不等式组的解集是________.14. (4分) 计算:________. 15. (4分) ________.16. (4分) 单项式的系数是________。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.14的算术平方根为()A .116 B .12±C .12D .12-2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D3.坐标平面内的下列各点中,在y 轴上的是( )A .()0,3B .()2,3--C .1,2 D .3,04.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②一个三角形被截成两个三角形,每个三角形的内角和是90度; ③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个5.如图,AB ∥CD ,∠1=∠2,∠3=130°,则∠2等于( )A .30°B .25°C .35°D .40° 6.下列计算正确的是( )A 93=±B 311-=-C .||0a a -=D .43a a -=7.在同一平面内,若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠A 的度数为( ) A .20°B .55°C .20°或125°D .20°或55°8.如图所示,平面直角坐标系中,x 轴负半轴有一点()1,0A -,点A 先向上平移1个单位至()11,1A -,接着又向右平移1个单位至点()20,1A ,然后再向上平移1个单位至点()30,2A ,向右平移1个单位至点()41,2A ,照此规律平移下去,点A 平移至点2021A 时,点2021A 的坐标为( )A .()1008,1010B .()1010,1010C .()1009,1011D .()1008,1011二、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.当1x ≠-时,我们把11x -+称为x 为“和1负倒数”.如:1的“和1负倒数”为11112-=-+;-3的“和1负倒数”为11312-=-+.若134x =-,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”…依次类推,则4x =______;123•••x x x …•2021x = _____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2021的坐标为______.三、解答题17.计算下列各式的值: (1)23(7)-- (2)313(3)83+-18.求下列各式中x 的值: (1)23126x -= (2)()3180x --=19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD , ∴2∠=________( ) 又∵12∠=∠, ∴13∠=∠,∴//AB __________( ) ∴______180AGD ∠+=︒( ) ∵110AGD ∠=︒, ∴BAC ∠=______度.20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方, (1)公交车站的坐标是 ,宠物店的坐标是 ; (2)在图中标出公园()300,200-,书店()100,100的位置; (3)将医院的位置怎样平移得到人寿保险公司的位置.21.对于实数a ,我们规定:用符号[]表示不大于的最大整数,称[]为a 的根整数,例如:[]=3,[]=3.(1)仿照以上方法计算:[]= ;[]= .(2)若[]=1,写出满足题意的x 的整数值 .(3)如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1.22.如图,用两个边长为103的小正方形拼成一个大的正方形. (1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm 2?23.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.【参考答案】一、选择题 1.C 解析:C 【分析】根据算术平方根的定义求解. 【详解】解:因为21124⎛⎫= ⎪⎝⎭,所以14的算术平方根为12.故选C. 【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义.2.B 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.A【分析】根据y轴上点的横坐标为0,即可判断.【详解】解:∵y轴上点的横坐标为0,∴点()0,3符合题意.故选:A.【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为0.4.B【分析】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.【详解】解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;④两个无理数的和不一定是无理数,是假命题;⑤坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是①③⑤,个数是3.故选:B.【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.5.B【分析】根据AB∥CD,∠3=130°,求得∠GAB=∠3=130°,利用平行线的性质求得∠BAE=180°﹣∠GAB=180°﹣130°=50°,由∠1=∠2 求出答案即可.【详解】解:∵AB∥CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键.6.B【分析】直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.【详解】A3,故此选项错误;B1-,故此选项正确;C、|a|﹣a=0(a≥0),故此选项错误;D、4a﹣a=3a,故此选项错误;故选:B.【点睛】此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键.7.C【分析】根据∠A与∠B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A得度数.【详解】解:∵两个角的两边分别平行,∴这两个角大小相等或互补,①这两个角大小相等,如下图所示:由题意得,∠A =∠B ,∠A =3∠B -40°, ∴∠A =∠B =20°,②这两个角互补,如下图所示:由题意得,180A B ∠+∠=︒,340A B ∠=∠-︒, ∴55B ∠=︒,125A ∠=︒,综上所述,∠A 的度数为20°或125°, 故选:C . 【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.8.C 【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可. 【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2解析:C 【分析】由题意,A 1(-1,1),A 3(0,2),A 5(1,3),A 7(2,4),得出规律,利用规律解决问题即可. 【详解】由题意,A 1(-1,1),A 3(0,2),A 5(1,3),A 7(2,4),……,A 2n -1(-2+n ,n ), ∵2021101121=⨯- , ∴A 2021(1009,1011), 故选:C . 【点睛】本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:解析:4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:由题意可得a≥3,∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即解析:10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.【详解】解:当高AD在△ABC的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°-40°-60°=80°,∵AE平分∠BAC,∴∠BAE=1∠BAC=40°,2∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B=50°,∴∠EAD=∠BAD-∠BAE=50°-40°=10°.当高AD在△ABC的外部时.同法可得∠EAD=10°+30°=40°故答案为10°或40°.【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE 的度数12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开 解析:34-【分析】根据“和1负倒数”的定义分别计算2x 、3x 、4x 、5x …,可得到数字的变化规律:从1x 开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和134x =-可得:214314x =-=--+, 311413x =-=-+, 4131413x =-=-+,514314x =-=--+ ……由此可得出从1x 开始每3个数为一周期循环,∵2021÷3=673…2,∴20214x =-,202034x =-,又1x ·2x .3x = 31(4)43-⨯-⨯=1, ∴123•••x x x …•2021x =3(4)4-⨯-=3, 故答案为:34-;3. 【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P 的符号为(-,-)∴点P 在第三象限.故答案解析:三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a 2为非负数,∴-a 2-1为负数,∴点P 的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点解析:(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2021÷6=336…5,即点P2021的坐标是(4,3).故答案为:(4,3).【点睛】本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =∴29x =∴3x =±;(2)解:∵()3180x --=∴()318x -= ∴12x -=∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB ∥DG ,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF ∥AD ,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB ∥DG (内错角相等,两直线平行).∴∠AGD +∠BAC =180°(两直线平行,同旁内角互补).∵∠AGD =110°,∴∠BAC =70度.故答案为:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB ∥DG 是解题的关键.20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即解析:(1)()100,0-,()300,200-;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,即可求解;(2)公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.【详解】解:(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位,故公交车站的坐标是()100,0-;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,故宠物店的坐标是()300,200-;(2)∵公园()300,200-,书店()100,100∴公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;位置如图所示:(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.21.(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:[16]=4;[24]=4;(2)若[x]=1,写出满足题意的解析:(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:;(2)若[]=1,写出满足题意的x的整数值1,2,3;(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.故答案为:(1)4;4;(2)1,2,3;(3)3【点睛】考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.22.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是1062)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是106(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:80因为380106>,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm 2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.23.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =α,∠CPE =β,∴CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.。
遵义市正安县2018年七年级下期中数学试卷及答案

2015-2016学年贵州省遵义市正安县七年级(下)期中数学试卷一、选择题(共36分)1.下列语句中,不是命题的是()A.两点确定一条直线 B.垂线段最短C.同位角相等 D.作角A的平分线2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2) C.(﹣1,2) D.(﹣1,﹣2)3.下面四个图形中,∠1与∠2是邻补角的是(). C. DA. B.)4.下列各式正确的是(24﹣. = =±3DA. =3 B.(﹣)C=16.) 5.下列语句中正确的是(的负的立方根3是27.﹣A.的立方根是2B21. D(﹣1).C的立方根是﹣)3)向左平移的坐标是( B3个单位长度得到点B,则点26.将点A(﹣,﹣)(﹣)(﹣)2,0 C.5,﹣3 D.2,﹣6(﹣B),﹣(A.13 .年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,20107.中国)可将图中的吉祥物“海宝”移动到图(.C ..AB.D18.如图,AB∥CD,那么∠A+∠C+∠AEC=().180° D C.200°A.360° B.270°),1.010010001…,,,π,中,无理数的( 9.在实数:3.14159个43个 D.2A.1个 B.个 C.“马”,﹣2),若在中国象棋盘上建立平面直角坐标系,10.如图,使“帅”位于点(﹣1)2),则“兵”位于点(位于点(2,﹣)211) D.(,﹣321.(﹣,1) B.(﹣,﹣1) C.(﹣,A,若∠ECO=30°,∥AB交CD于点C于、11.如图,直线ABCD交于点O,OT⊥ABO,CE)则∠DOT等于(.120° D A.30° B.45°C.60°,则AOF与∠BOD的度数之比为3:2⊥相交于点.如图,直线12AB、CDO,OFCO,∠) AOC∠的度数是(.30°B.18°A .45° C D.36°分)24二、填空题(共..133 的相反数是﹣214.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM,理由是.20132012.= ﹣1|=0,则a +b.已知实数15a,b满足+|b.16.大于而小于的所有整数的和为的x轴的上侧,距离每个坐标轴都是4个单位长度,则点A轴左侧,在17.点A 在y.坐标为度.BCM为 40°,CN是∠BCE的平分线,CM⊥CN,∠AB18.如图,已知∥CD,∠B=分)三、解答题(共90.计算192+)+﹣()(1)﹣1|(2)﹣(+|+12a|+|2016﹣﹣,求a201620的值..已知=a垂直吗?试说明理由.AB,问:CD与FG1=ADE=21.如图,∠∠B,∠∠2,⊥AB.说明理由22各是多少度?如图,∠1+∠2=230°,3、∠、∠41cb∥,则∠、∠2)2 ∠( 1=解:∵∠∠2=230°1+∠(填度数)∠∴∠1=2=c∵∥b3∴∠4=∠2= (填度数)()∠2+∠3=180°()∴∠3=180°﹣∠2= (填度数).完成下面推理过程:23的理由:∠DEB、∠ABC,可推得∠FDE=ADE如图,已知DE∥BC,DF、BE分别平分∠(已知)BC∵DE∥) ADE= (∴∠,ABC分别平分∠ADE、∠∵DF、BE)∴∠ADF= () ABE= (∠ABE∴∠ADF=∠)(∴∥)(∴∠FDE=∠DEB..∠E.求证:BCAD∥CFE=FAECDBADAECDAB24.如图,∥,平分∠,与相交于,∠的面积.25ABC三个顶点的坐标,并求出三角形.如图,写出三角形ABC4.)三个顶点的位置如图(每个小正方形的边长均为126.在平面直角坐标系中,△ABC个单位长度后的轴向上平移y2x轴向平移3个单位长度,再沿(1)请画出△ABC 沿的对应点,不写画法)、CA′、B′、C′分别是A、B△A′B′C′(其中A′、B′、C′三点的坐标:2)直接写出(;), A′(;), B′(.), C′(上.ABB两点,点P在、l∥,且l和ll分别交于A、.如图,已知直线27l23211之间的关系并说出理由;2、∠31(1)试找出∠、∠之间的关系是否发生变化?31两点之间运动时,问∠、∠2、∠A2()如果点P 在、B、和AP321BAP3()如果点在、两点外侧运动时,试探究∠、∠、∠之间的关系(点不重合)B562015-2016学年贵州省遵义市正安县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共36分)1.下列语句中,不是命题的是()A.两点确定一条直线 B.垂线段最短C.同位角相等 D.作角A的平分线【考点】命题与定理.【分析】根据命题的定义对各选项分别进行判断.【解答】解:两点确定一条直线,垂线段最短,同位角相等都是命题,而作角A 的平分线为描述性语言,它不是命题.故选D.2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2) C.(﹣1,2) D.(﹣1,﹣2)【考点】点的坐标.【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有B符合条件,故选B.3.下面四个图形中,∠1与∠2是邻补角的是().D. C A.B.【考点】对顶角、邻补角.【分析】根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断.没有公共顶点且不相邻,不是邻补角;B选项,∠12与∠、【解答】解:A不互补,不是邻补角;1C选项∠与∠27D选项互补且相邻,是邻补角.故选D.4.下列各式正确的是()2 4 =﹣. =±3 D)A. =3 B.(﹣.=16 C【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.,故本选项正确;【解答】解:A、=32,故本选项错误;)B、(﹣=4,故本选项错误;=3C、没有算术平方根,故本选项错误.D、.故选:A) 5.下列语句中正确的是(的负的立方根A.是27.﹣的立方根是2B321的立方根是﹣1). D(﹣C.【考点】立方根.23,进行解答,一个数的立方根)则x=≥【分析】根据x,则=ax=,x=b(b0只有一个,一个数的平方根有两个,据此可以得到答案.,故本选项正确,【解答】解:A、=8,8的立方根为2的立方根,一个数的立方根只有一个,故本选项错误,是﹣27B、﹣3,故本选项错误,C、2,故本选项错误,、D(﹣1)1的立方根是.故选A)的坐标是(个单位长度得到点,﹣.将点6A(﹣23)向左平移3B,则点B D. 35. 02. 31.A(,﹣)B(﹣,)C(﹣,﹣)(﹣2,﹣6)【考点】坐标与图形变化﹣平移.的坐标.,纵坐标不变即可求得点3【分析】让横坐标减B8【解答】解:∵点A(﹣2,﹣3)向左平移3个单位长度得到点B,∴点B的横坐标为﹣2﹣3=﹣5,纵坐标不变,即点B的坐标是(﹣5,﹣3),故选C.7.中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”移动到图().D. B. C. A【考点】生活中的平移现象.【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化.吉祥物“海宝”是原图形通过旋转得到的,因此不是平移,只有【解答】解:A、B、C符合要求,是平移.D.故选D)(,那么∠8.如图,AB∥CDA+∠C+∠AEC=.180°.270° B C.200° DA.360°【考点】平行线的性质.就可以转化为两对同C+∠AEC,根据平行线的性质,∠作【分析】过点EEF∥ABA+∠旁内角的和.,EF【解答】解:过点E作∥AB∠AEF=180°;∴∠A+,∥CDAB∵,∴CD∥EF9∴∠C+∠FEC=180°,∴(∠A+∠AEF)+(∠C+∠FEC)=360°,即:∠A+∠C+∠AEC=360°.故选A.)中,无理数的(,1.010010001…,9.在实数:3.14159,,π,个.4 C.3个 D2A.1个 B.个【考点】无理数..可化为【分析】4,根据无理数的定义即可得到无理数为1.010010001…,π【解答】解:∵=4,.π∴无理数有:1.010010001…,.B故选“马”),若在中国象棋盘上建立平面直角坐标系,10.如图,使“帅”位于点(﹣1,﹣2)位于点(2,﹣2),则“兵”位于点()1(,﹣2. 13.C 12. 11.A(﹣,)B(﹣,﹣)(﹣,)D【考点】坐标确定位置.)画出直角坐标系,然后写出“兵”位于点1【分析】先利用“帅”位于点(﹣,﹣2的坐标.【解答】解:如图,10.),1“兵”位于点(﹣3.C故选,若∠ECO=30°,于点C∥AB交CDOO,OT⊥AB于,CECD11.如图,直线AB、交于点)则∠DOT等于(.120°DC.60° A.30° B.45°【考点】平行线的性质.OT,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由【分析】由CE ∥AB,即可求得答案.BOT﹣∠DOB,求得∠BOT的度数,然后由∠DOT=∠⊥AB ,∥AB【解答】解:∵CE∠ECO=30°,∴∠DOB=,AB⊥∵OT∴∠BOT=90°,﹣∠DOB=90°﹣30°=60°.BOT∴∠DOT=∠.C故选,则2BOD与∠的度数之比为3:COOAB12.如图,直线、CD相交于点,OF⊥,∠AOF)的度数是(AOC ∠.30°.36° 45B A.18°.°C D11【考点】垂线;对顶角、邻补角.可23:【分析】根据垂直定义可得∠FOC=90°,再根据∠AOF与∠BOD的度数之比为,然后可得答案.2AOC=3:得∠AOF:∠,COOF⊥【解答】解:∵∴∠FOC=90°,,:2与∠BOD的度数之比为3∵∠AOF,:2∴∠AOF:∠AOC=3=36°,∴∠AOC=90°×.故选:C分)二、填空题(共24.﹣3 ﹣的相反数是 13.3【考点】实数的性质.【分析】根据只有符号不同的两个数的相反数,可得答案.【解答】解:3﹣的相反数是﹣3,﹣3.故答案为:垂线段最.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是14PM,理由是.短【考点】垂线段最短.【分析】根据垂线段最短的性质填写即可.【解答】解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:垂线段最短.20122013= 2 +b.,则﹣满足,.已知实数15ab+|b1|=0a【考点】非负数的性质:算术平方根;非负数的性质:绝对值.12【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣1=0,b﹣1=0,解得a=1,b=1,2012201320122013=1+1=2=1所以,a.+b+1故答案为:2..﹣4 16.大于而小于的所有整数的和为【考点】估算无理数的大小.的范围,求出范围内的整数解,最后相加即可.【分析】求出﹣和>﹣,【解答】解:∵﹣4>﹣5,3<<4,4,±3,±2,±1,0∴大于而小于的所有整数为﹣,﹣4﹣3﹣21+0+1+2+3=∴﹣4﹣.故答案为:﹣4的A轴的上侧,距离每个坐标轴都是4个单位长度,则点y17.点A在轴左侧,在x.4)坐标为(﹣4,【考点】点的坐标.【分析】根据题中所给的点的位置,可以确定点的纵横坐标的符号,结合其到坐标轴的距离得到它的坐标.轴的上侧,y【解答】解:根据题意,点A在y轴左侧,在横坐标为负,纵坐标为正;则点A个单位长度,又由距离每个坐标轴都是4.4),则点A的坐标为(﹣4.)故答案为(﹣4,4度.20 ∠,BCM为 CNCMBCECN,∥已知.18如图,ABCD∠B=40°,是∠的平分线,⊥【考点】平行线的性质;角平分线的定义.的度数,的度数,BCE求得∠【分析】先根据平行线的性质,再根据角平分线求得∠BCN 13最后根据CM⊥CN,计算∠BCM的度数即可.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=140°,∵CN是∠BCE的平分线,∴∠BCN=70°.∵CM⊥CN,∴∠BCM=20°.故答案为:20三、解答题(共90分)19.计算2+))+﹣((1)+1+|﹣1|﹣((2)【考点】实数的运算.)原式利用平方根、立方根定义计算即可得到结果;(【分析】1)原式利用二次根式性质,绝对值的代数意义化简,去括号合并即可得到结果.(2;1)原式=5﹣2﹣3+2=2【解答】解:(.1=0﹣﹣1(2)原式=2+﹣2的值.a|+=a,求﹣2016a﹣20.已知|2016【考点】二次根式有意义的条件;绝对值.的取值范围,然后去掉绝对值号,再整理即【分析】根据被开方数大于等于a0求出可得解.,≥0﹣【解答】解:由题意得,a2017,2017≥所以,a,=a﹣2016+去掉绝对值号得,a,=2016∴2,2017=2016a两边平方得,﹣2.=2017﹣所以,a2016垂直吗?试说明理由.1=BADE=21.如图,∠∠,∠∠CD,问:ABFG,2⊥与AB 14【考点】平行线的判定与性质;垂线.ED垂直,理由为:由同位角相等两直线平行,根据题中角相等得到与AB【分析】CD,等量代换得到一对同位角相BCD1=∠与BC平行,再由两直线平行内错角相等得到∠平行,由垂直于平行线中的一条,与另DCGF与等,利用同位角相等两直线平行得到一条也垂直即可得证.垂直,理由为:ABCD与【解答】解:,BADE=∠∵∠,∥BC∴DE,∠BCD∴∠1=,∠2∵∠1=,∠BCD∴∠2=,∥FG∴CD∠FGB=90°,CDB=∴∠.AB∴CD⊥.说明理由22各是多少度?43、∠,则∠1、∠2、∠如图,∠1+∠2=230°,b∥c) 2 (对顶角相等解:∵∠1=∠∠2=230°∠1+(填度数)∠2= 115°∴∠1=c∥∵b(填度数),115°∠∴∠4=2=)(两直线平行,内错角相等)两直线平行,同旁内角互补∠3=180°(∠2+(填度数)65° 2= ∴∠3=180°﹣∠15【考点】平行线的性质.∠3=180°,2+2,4=和∠2,根据平行线的性质求出∠∠【分析】根据对顶角相等求出∠1代入求出即可.∠2=230°,1+(对顶角相等),∠【解答】解:∵∠1=∠2∠2=115°,1=∴∠,cb∥∵,(两直线平行,内错角相等)4=∠2=115°,∴∠,∠3=180°,(两直线平行,同旁内角互补)∠2+∴∠3=180°﹣∠2=65°,故答案为:对顶角相等,115°,115°,两直线平行,内错角相等,两直线平行,同旁内角互补,65°..完成下面推理过程:23的理由:∠DEBABC,可推得∠FDE=,DF、BE分别平分∠ADE、∠如图,已知DE ∥BC(已知)BC∵DE∥)(两直线平行,同位角相等∴∠ADE= ∠ABC,ABCADE、∠∵DF、BE分别平分∠) ADE (角平分线定义ADF=∴∠∠)角平分线定义 ABC ∠ABE= ∠(ABE∠∴∠ADF=)同位角相等,两直线平行 BE DF ∴∥()两直线平行,内错角相等(DEBFDE=∴∠∠.16【考点】平行线的判定与性质.,ADE,根据角平分线定义得出∠ADF=∠【分析】根据平行线的性质得出∠ADE=∠ABC即可.DF∥BE,推出∠ADF=∠ABE,根据平行线的判定得出∠ABE=∠ABC ,BC(已知)∥【解答】解:理由是:∵DE,ABC(两直线平行,同位角相等)∴∠ADE=∠,、∠ABCDF、BE分别平分ADE∵,(角平分线定义)∴∠ADF=∠ADE,ABE=∠(角平分线定义)ABC∠,ABEADF=∠∴∠,(同位角相等,两直线平行)∥BE∴DF,DEB(两直线平行,内错角相等)∴∠FDE=∠,角平分,角平分线定义;∠ABC故答案为:∠ABC,两直线平行,同位角相等;∠ADE,同位角相等,两直线平行;两直线平行,内错角相等.BEDF线定义;,..求证:AD∥BC∠,平分∠BADCD与AE相交于F,∠CFE=E,.如图,24AB∥CDAE【考点】平行线的判定.的条件,内∥BC【分析】首先利用平行线的性质以及角平分线的性质得到满足关于AD相等,得出结论.E错角∠2和∠,平分∠【解答】证明:∵AEBAD,∴∠1=∠2,∠CFE=E∥∵ABCD,∠,∠∴∠1=∠CFE=E,E∴∠2=∠.∥∴ADBC1725.如图,写出三角形ABC三个顶点的坐标,并求出三角形ABC的面积.【考点】坐标与图形性质;三角形的面积.,然后﹣SSS﹣S﹣【分析】用“割、补”法把三角形ABC的面积转化为ADC矩形DEBF△BCF △AEB△根据矩形和三角形的面积公式计算.【解答】解:如图,SS﹣=S﹣S﹣S ADC△AEBDEBFBCF△△ABC△矩形6×12×5﹣×2×=12×7﹣6×7﹣×.=27.)三个顶点的位置如图(每个小正方形的边长均为1ABC26.在平面直角坐标系中,△个单位长度后的轴向上平移2ABC1)请画出△沿x轴向平移3个单位长度,再沿y(的对应点,不写画法)C△A′B′C′(其中A′、B′、C′分别是A、B、A′、B′、C′三点的坐标:(2)直接写出;) 5 ,A′( 0;, B′(﹣1 3 ). 4 C′(,)018【考点】作图﹣平移变换.A′、B′、C′的位置,然C、平移后的对应点)根据网格结构找出点A、B【分析】(1后顺次连接即可;)根据平面直角坐标系写出各点的坐标即可.(2)△A′B′C′如图所示;(1【解答】解:.0),C′(4,5),B′(﹣1,3)2()由图可知,A′(0,.0;4,,5;﹣1,3故答案为:0上.ABB两点,点P在、l∥,且l和ll分别交于A、.如图,已知直线27l23211之间的关系并说出理由;2、∠31(1)试找出∠、∠之间的关系是否发生变化?31两点之间运动时,问∠、∠2、∠A2()如果点P 在、B、和AP321BAP3()如果点在、两点外侧运动时,试探究∠、∠、∠之间的关系(点不重合)B19【考点】平行线的性质.)都是同样32)(P作l的平行线,根据平行线的性质进行解题.(【分析】(1)过点1的道理.;32=∠(1)∠1+∠【解答】解:的平行线,lP作理由:过点1,ll∥∵21,∥PQ∥∴ll21(两直线平行,内错角相等)5,4,∠2=∠∴∠1=∠,∠34+∠5=∵∠;∠31+∠2=∴∠;3∠2=∠(2)同(1)可证:∠1+3∠﹣∠1=2=∠3或∠2(3)∠1﹣∠,的平行线PQ在下侧时,过点P作l理由:当点P1,∥l∵l21,PQ∥l∥∴l21(两直线平行,内错角相等)4,1=∠3+∠4∴∠2=∠,∠;32=∠﹣∠∴∠1.∠1=3﹣∠在上侧时,同理可得:∠当点P220212017年5月4日22。
完整版七年级数学下册期中考试试卷及答案 - 百度文库

完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.实数2的平方根为()A .2B .2±C .2D .2±2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D3.点()P m n ,在第二象限内,则点(),Q m m n --在第______象限. A .一 B .二 C .三D .四 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )A .②③B .②④C .③④D .②③④ 5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若//CD BE ,若1∠=α,则2∠的度数是( )A .3αB .1803α︒-C .4αD .1804︒-α 6.下列说法错误的是( ) A .-8的立方根是-2 B .1212-=-C .5-的相反数是5D .3的平方根是3± 7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60° 8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2021,0二、填空题9.若102.0110.1=,则± 1.0201=_________.10.已知点()3,21A a --与点(),3B b -关于x 轴对称,那么点(),P a b 关于y 轴的对称点P '的坐标为__________.11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .13.如图1是长方形纸带,19DEF ∠=︒,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的CFE ∠的度数是_________度.14.阅读下列解题过程:计算:232425122222++++++ 解:设232425122222S =++++++① 则232526222222S =+++++②由②-①得,2621S =- 运用所学到的方法计算:233015555++++⋯⋯+=______________.15.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足()22222a b b c c -+++=--BC 与y 轴的交点坐标为__________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.三、解答题17.(1)计算:238127(2)|32|+-+-+-(2)解方程:()31125x -=-18.求下列各式中的x :(1)30.0270-=x ;(2)24925=x ;(3)2(2)9x -=.19.如图,C 、E 分别在AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF ,再找出CF 的中点O ,然后连接EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补.请将小华的想法补充完整:∵CF 和BE 交于点O .∴COB EOF ∠=∠;( )而O 是CF 的中点,那么CO FO =,又已知EO BO =,∴COB FOE △≌△( ),∴BC EF =,(全等三角形对应边相等)∴BCO F ∠=∠,( )∴//AB DF ,( )∴ACE ∠和DEC ∠互补.( )20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.22.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?23.如图,已知直线//∠=︒.P是射线EB上一动点,过点P作AB射线CD,100CEB∠=∠,交直线AB于点F,CG平分PQ//EC交射线CD于点Q,连接CP.作PCF PCQ∠.ECF∠的度数;(1)若点P,F,G都在点E的右侧,求PCG∠的度数;(2)若点P,F,G都在点E的右侧,30∠-∠=︒,求CPQEGC ECG(3)在点P的运动过程中,是否存在这样的情形,使:4:3∠∠=?若存在,求出EGC EFC∠的度数;若不存在,请说明理由.CPQ【参考答案】一、选择题1.D解析:D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是2±故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.D【分析】先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解.【详解】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴-m>0,m-n<0,∴点Q(-m,m-n)在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.【详解】对顶角相等,所以①正确,不符合题意;过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;相等的角不一定为对顶角,所以③不正确,符合题意;两直线平行,同位角相等,所以④不正确,符合题意,故选:D.【点睛】本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题5.D【分析】由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.【详解】解:由题意得:AG∥BE∥CD,CF∥BD,∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°∴∠CFB=∠CDB∴∠CAG=∠CDB由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°∴∠CAG=∠CDB=∠1+∠BAG=2α∴∠2=180°-2∠BDC=180°-4α故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6.B【分析】根据平方根以及立方根的概念进行判断即可.【详解】A、-8的立方根为-2,这个说法正确;B、22,这个说法错误;C.55D、3的平方根是3故选B.【点睛】本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.7.B【分析】根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果.解:如图,∵EF∥BC,∴∠FDC=∠F=30°,∴∠1=∠FDC+∠C=30°+45°=75°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.8.B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运解析:B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.【点睛】本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=, ∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键. 10.【分析】先将a,b 求出来,再根据对称性求出坐标即可.【详解】根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.P(2,﹣3)关于y 轴对称的点(﹣2,﹣3)故答案为: (﹣2,﹣解析:()2,3--【分析】先将a ,b 求出来,再根据对称性求出P '坐标即可.【详解】根据题意可得:﹣3=b ,2a -1=3.解得a =2,b =﹣3.P(2,﹣3)关于y 轴对称的点P '(﹣2,﹣3)故答案为: (﹣2,﹣3).【点睛】本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键.11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12. 故答案是:﹣12. 12.48°【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.【详解】解:若AB//CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48°【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数.【详解】解:若AB //CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF ⊥MN ,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.13.123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//解析:123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//BC,∴∠DEF=∠EFB=19°,在图2中,∠GFC=180°-∠FGD=180°-2∠EFG=142°,在图3中,∠CFE=∠GFC-∠EFG=123°.故答案为:123.【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14..【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=31514-. 故答案是:31514-. 【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决. 15.【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】∵、都有意义,∴,∴,∴,∴,∵第四象限的点到轴的距离为3,∴C 点的坐标为,设直 解析:30,2⎛⎫- ⎪⎝⎭ 【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】 ∵都有意义,∴2c =, ∴()2220a b b -+++=,∴2020a b b -+=⎧⎨+=⎩, ∴42a b =-⎧⎨=-⎩, ∵第四象限的点(),C c m 到x 轴的距离为3,∴C 点的坐标为()2,3-,设直线BC 的解析式为y kx d =+,把()2,0-,()2,3-代入得:2320k d k d +=-⎧⎨-+=⎩, 解得:3432k d ⎧=-⎪⎪⎨⎪=-⎪⎩, 故BC 的解析式为3342y x =--, 当0x =时,32y =-, 故BC 与y 轴的交点坐标为302⎛⎫ ⎪⎝⎭,-; 故答案是302⎛⎫ ⎪⎝⎭,-. 【点睛】本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.16.(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n 列有n 个数.则n 列共有()12n n +个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数. 因而第2021个点的坐标是(64,4).故答案为:(64,4).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目. 三、解答题17.(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可.【详解】(1)原式=(2)解:【点睛】本题考查的是实数的运算,求一个数的立方根解析:(1)102)4x=-【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解1,x-再求解x即可.【详解】(1)原式= 9(3)22+-++10=(2)解:15x-=-4x=-【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键.18.(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.【详解】解:(1解析:(1)0.3;(2)57x=±;(3)5x=或1x=-【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.【详解】解:(1)∵30.0270-=x,∴30.027x=,∴0.3x=;∴22549x =, ∴57x =±; (3)∵2(2)9x -=,∴23x -=或23x -=-,解得:5x =或1x =-.【点睛】本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键.19.对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS”可证△COB ≌△FOE ,可得∠BCO=∠F ,可证AB ∥DF ,可得结论.【详解】解析:对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS ”可证△COB ≌△FOE ,可得∠BCO =∠F ,可证AB ∥DF ,可得结论.【详解】解:∵CF 和BE 相交于点O ,∴∠COB =∠EOF ;(对顶角相等),而O 是CF 的中点,那么CO =FO ,又已知EO =BO ,∴△COB ≌△FOE (SAS ),∴BC =EF ,(全等三角形对应边相等),∴∠BCO =∠F ,(全等三角形的对应角相等),∴AB ∥DF ,(内错角相等,两直线平行),∴∠ACE 和∠DEC 互补.(两直线平行,同旁内角互补),故答案为:对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可解决问题;解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a ;(2)估算出a 的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a =,∵a >0, ∴a =(2)∵, ∴23<<,∴m =2,n 2,∴2m a an -+=)222=))222 =45+-=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围. 22.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根为()A .9B .9±C .3D .3±2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )A .B .C .D . 3.若点(),P a b 在第四象限,则点(),Q b a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段AB 的延长线与射线BA 是同一条射线.其中说法正确的有( )A .1个B .2个C .3个D .4个5.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a ,b 中的直线b 上,已知155∠=︒,则2∠的度数为( )A .45︒B .35︒C .55︒D .25︒ 6.下列结论正确的是( )A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0D .327-=﹣37.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( )A .15°B .60°C .30°D .75°8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.4的算术平方根为_______;10.在平面直角坐标系中,若点()27,2M a -和点()3,N b a b --+关于y 轴对称,则b a =____.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为______.13.如图,将一张长方形纸片沿EF 折叠后,点C ,D 分别落在C ',D 的位置,若65EFB ∠=︒,则AED '∠的度数为______.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.点()2,1P -关于y 轴的对称点Q 的坐标是_______.16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.计算:333|3-(2) 1333⎛⎫+ ⎪⎝⎭ 18.求下列各式中x 的值(1)81x 2 =16(2)3(1)64x -=19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,差就是小数部分为(2-1).解答下列问题:(1)10的整数部分是 ,小数部分是 ;(2)如果6的小数部分为a ,13的整数部分为b ,求a +b −6的值;(3)已知12+3=x +y ,其中x 是整数,且0<y <1,求x -y 的相反数.22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积)(2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.23.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的定义即可得.【详解】解:239=,∴的算术平方根为3,9故选:C.【点睛】本题考查了算术平方根,熟记定义是解题关键.2.C【分析】根据平移变换的定义可得结论.【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.故选:C.【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C【分析】根据平移变换的定义可得结论.【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.故选:C.【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题.3.A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置.【详解】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴点Q(-b,a)在第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.4.B【分析】利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案.【详解】解:①连接两点的线段长度叫做两点间的距离,故此选项错误.②经过两点有一条直线,并且只有一条直线,故此选项正确.③两点之间,线段最短,故此选项正确.④线段AB的延长线是以B为端点延长出去的延长线部分,与射线BA不是同一条射线故此选项错误.综上,②③正确.故选:B.【点睛】本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义.5.B【分析】先根据平行线的性质求出∠1的同位角,再由两角互余的性质求出∠2的度数即可;【详解】∵直线a∥b,∠1=55°,∴∠1=∠3=55°,∵三角板的直角顶点放在b上,∴∠3+∠2=90°,∴∠2=90°-55°=35°,故选:B.【点睛】本题考查了平行线的性质,即两直线平行,同位角相等以及互余的两角,正确掌握知识点是解题的关键;6.D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D3273,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.7.C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.【分析】先求出的值,然后再化简求值即可.【详解】解:∵,∴2的算术平方根是,∴的算术平方根是.故答案为.【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答【分析】【详解】解:∵2=, ∴2,∴..【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关10.【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a-7,2)和N (-3﹣b ,a+b )关于y 轴对称,∴,解得:,则=.故 解析:116【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a -7,2)和N (-3﹣b ,a +b )关于y 轴对称,∴2732a b a b -=+⎧⎨+=⎩,解得:42a b =⎧⎨=-⎩, 则b a =()21416-=. 故答案为:116. 【点睛】本题考查关于y 轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键. 11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P 作MN ⊥AD ,∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P 作MN ⊥AD ,∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,PE ⊥AB 于点E ,∴AP ⊥BP ,PN ⊥BC ,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.50°【分析】由角平分线的定义,结合平行线的性质,易求∠2的度数.【详解】解:∵EF 平分∠CEG ,∴∠CEG =2∠CEF ,又∵AB ∥CD ,∴∠2=∠CEF=(180°−∠1)=50°,解析:50°【分析】由角平分线的定义,结合平行线的性质,易求∠2的度数.【详解】解:∵EF平分∠CEG,∴∠CEG=2∠CEF,又∵AB∥CD,∴∠2=∠CEF=1(180°−∠1)=50°,2故答案为:50°.【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系.13.50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,解析:50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF,∴∠D′EF=65°,∴∠AED′=50°.故答案是:50°.【点睛】本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a <﹣,0<b <,故|﹣b|+|a+|+=﹣b ﹣(a+)﹣a=﹣b ﹣a ﹣﹣a=﹣2a ﹣b解析:﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a 0<b故b |+|ab ﹣(a ab ﹣a a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.【分析】根据点关于轴的对称点的坐标的特征,即可写出答案.【详解】解:∵点关于轴的对称点为,∴点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:.解析:()2,1--【分析】根据点关于y 轴的对称点的坐标的特征,即可写出答案.【详解】解:∵点()2,1P -关于y 轴的对称点为Q ,∴点Q 的纵坐标与点P 的纵坐标相同,点Q 的横坐标是点P 的横坐标的相反数,故点Q 的坐标为:()2,1--,故答案为:()2,1--.【点睛】本题考查了与直角坐标系相关的知识,理解点关于y轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键.16.【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环解析:1009 2【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是12×1×1009=10092,故答案为:10092.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.三、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键. 18.(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:.解析:(1)94x =±;(2)5x =【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【详解】解:(1)方程变形得:21681x =, 解得:94x =±;(2)开立方得:14x -=,解得:5x =.【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法. 19.答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),∴∠ABC=∠ADE=90°(垂直定义),∴BC∥DE(同位角相等,两直线平行),∴∠1=∠EBC(两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;O B C的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.(2)根据111【详解】O B C即为所求;解:(1)如图所示,111(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)3,-3;(2)1;(3)−14【分析】(1)根据的大小,即可求解;(2)分别求得a 、b ,即可求得代数式的值;(3)求得12+的整数部分x ,小数部分y ,即可求解.【详解】解:(1)解析:(1)310-3;(2)1;(3314【分析】(110(2)分别求得a 、b ,即可求得代数式的值;(3)求得3x ,小数部分y ,即可求解.【详解】解:(1)∵3104 ∴10310-3;(2)∵26<3,3134∴a 62,b =3∴a +b 666=1;(3)∵132,∴13<314,∴x =13,y 31∴x -y =13−31)3∴x -y 314.【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键.22.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×121 2⨯⨯=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5∴x(3)∵∴23<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.23.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.化简4的结果为()A .16B .4C .2D .2±2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒ 6.下列运算正确的是( ) A .32-=﹣6 B .31182-=- C .4=±2 D .25×32=5107.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.若102.0110.1=,则± 1.0201=_________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,点D 是△ABC 三边垂直平分线的交点,若∠A =64°,则∠D =_____°.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___. 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A20的坐标为__________.三、解答题17.计算:(1)31 81624-+-;(2)1333⎛⎫+⎪⎝⎭.18.已知a+b=5,ab=2,求下列各式的值.(1)a2+b2;(2)(a﹣b)2.19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴AB∥CD∥EF(,)∴∠A= ,∠C= ,(,)∵∠AFE =∠EFC+∠AFC,∴ = .20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.21.已知55-的整数部分为a,小数部分为b.(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由.22.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12-,此选项计算正确;C 2=,此选项计算错误;D 、故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.D【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数.【详解】解:∵AB //CD ,∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°.又∵AD ⊥AC ,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键. 8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A 2021的坐标即可.【详解】解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A2021的坐标与A的坐标相同,1即A2021的坐标为(3)1,,故选:C.【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=,∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的解析:128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的外心,∴∠D=2∠A∵∠A=64°∴∠D=128°故∠D的度数为128°【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M36a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x372-∴N=2,∴M+N的平方根为:4±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,3==2)33a b--【分析】(15(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)23<,∴253<,∴2,3==a b(2)3b=-∴c=33c=-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,∴,(2)∵22=,rππ∴r=∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E 作EF ∥AB ,则有∠BEF =∠B ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下期中试卷(正安县附答案和解释)201-2016学年贵州省遵义市正安县七年级(下)期中数学试卷一、选择题(共36分)1.下列语句中,不是命题的是()A.两点确定一条直线B.垂线段最短.同位角相等D.作角A的平分线2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2)B.(1,﹣2).(﹣1,2)D.(﹣1,﹣2)3.下面四个图形中,∠1与∠2是邻补角的是()A.B..D.4.下列各式正确的是()A.=3B.(﹣)2=16.=±3D.=﹣4.下列语句中正确的是()A.的立方根是2B.﹣3是27的负的立方根.D.(﹣1)2的立方根是﹣16.将点A(﹣2,﹣3)向左平移3个单位长度得到点B,则点B的坐标是()A.(1,﹣3)B.(﹣2,0).(﹣,﹣3)D.(﹣2,﹣6)7.中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”移动到图()A.B..D.8.如图,AB∥D,那么∠A+∠+∠AE=()A.360°B.270°.200°D.180°9.在实数:31419,,1010010001…,,π,中,无理数的()A.1个B.2个.3个D.4个10.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1).(﹣3,1)D.(1,﹣2)11.如图,直线AB、D交于点,T⊥AB于,E∥AB交D于点,若∠E=30°,则∠DT等于()A.30°B.4°.60°D.120°12.如图,直线AB、D相交于点,F⊥,∠AF与∠BD的度数之比为3:2,则∠A的度数是()A.18°B.4°.36°D.30°二、填空题(共24分)13.3﹣的相反数是.14.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是P,理由是.1.已知实数a,b满足+|b﹣1|=0,则a2012+b2013=.16.大于而小于的所有整数的和为.17.点A在轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为.18.如图,已知AB∥D,∠B=40°,N是∠BE的平分线,⊥N,∠B 为度.三、解答题(共90分)19.计算(1)+ ﹣()2+(2)+| ﹣1|﹣(+1)20.已知|2016﹣a|+ =a,求a﹣20162的值.21.如图,∠ADE=∠B,∠1=∠2,FG⊥AB,问:D与AB垂直吗?试说明理由.22.说明理由如图,∠1+∠2=230°,b∥,则∠1、∠2、∠3、∠4各是多少度?解:∵∠1=∠2 ()∠1+∠2=230°∴∠1=∠2=(填度数)∵b∥∴∠4=∠2=(填度数)()∠2+∠3=180°()∴∠3=180°﹣∠2=(填度数)23.完成下面推理过程:如图,已知DE∥B,DF、BE分别平分∠ADE、∠AB,可推得∠FDE=∠DEB的理由:∵DE∥B(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠AB,∴∠ADF= ()∠ABE= ()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()24.如图,AB∥D,AE平分∠BAD,D 与AE相交于F,∠FE=∠E.求证:AD∥B.2.如图,写出三角形AB三个顶点的坐标,并求出三角形AB的面积.26.在平面直角坐标系中,△AB三个顶点的位置如图(每个小正方形的边长均为1).(1)请画出△AB沿x轴向平移3个单位长度,再沿轴向上平移2个单位长度后的△A′B′′(其中A′、B′、′分别是A、B、的对应点,不写画法)(2)直接写出A′、B′、′三点的坐标:A′(,);B′(,);′(,).27.如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)201-2016学年贵州省遵义市正安县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共36分)1.下列语句中,不是命题的是()A.两点确定一条直线B.垂线段最短.同位角相等D.作角A的平分线【考点】命题与定理.【分析】根据命题的定义对各选项分别进行判断.【解答】解:两点确定一条直线,垂线段最短,同位角相等都是命题,而作角A的平分线为描述性语言,它不是命题.故选D.2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2)B.(1,﹣2).(﹣1,2)D.(﹣1,﹣2)【考点】点的坐标.【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有B符合条,故选B.3.下面四个图形中,∠1与∠2是邻补角的是()A.B..D.【考点】对顶角、邻补角.【分析】根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断.【解答】解:A、B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;选项∠1与∠2不互补,不是邻补角;D选项互补且相邻,是邻补角.故选D.4.下列各式正确的是()A.=3B.(﹣)2=16.=±3D.=﹣4【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:A、=3,故本选项正确;B、(﹣)2=4,故本选项错误;、=3,故本选项错误;D、没有算术平方根,故本选项错误.故选:A..下列语句中正确的是()A.的立方根是2B.﹣3是27的负的立方根.D.(﹣1)2的立方根是﹣1【考点】立方根.【分析】根据x3=a,则x= ,x2=b(b≥0)则x= ,进行解答,一个数的立方根只有一个,一个数的平方根有两个,据此可以得到答案.【解答】解:A、=8,8的立方根为2,故本选项正确,B、﹣3是﹣27的立方根,一个数的立方根只有一个,故本选项错误,、,故本选项错误,D、(﹣1)2的立方根是1,故本选项错误,故选A.6.将点A(﹣2,﹣3)向左平移3个单位长度得到点B,则点B的坐标是()A.(1,﹣3)B.(﹣2,0).(﹣,﹣3)D.(﹣2,﹣6)【考点】坐标与图形变化﹣平移.【分析】让横坐标减3,纵坐标不变即可求得点B的坐标.【解答】解:∵点A(﹣2,﹣3)向左平移3个单位长度得到点B,∴点B的横坐标为﹣2﹣3=﹣,纵坐标不变,即点B的坐标是(﹣,﹣3),故选.7.中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”移动到图()A.B..D.【考点】生活中的平移现象.【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化.【解答】解:A、B、吉祥物“海宝”是原图形通过旋转得到的,因此不是平移,只有D符合要求,是平移.故选D.8.如图,AB∥D,那么∠A+∠+∠AE=()A.360°B.270°.200°D.180°【考点】平行线的性质.【分析】过点E作EF∥AB,根据平行线的性质,∠A+∠+∠AE就可以转化为两对同旁内角的和.【解答】解:过点E作EF∥AB,∴∠A+∠AEF=180°;∵AB∥D,∴EF∥D,∴∠+∠FE=180°,∴(∠A+∠AEF)+(∠+∠FE)=360°,即:∠A+∠+∠AE=360°.故选A.9.在实数:31419,,1010010001…,,π,中,无理数的()A.1个B.2个.3个D.4个【考点】无理数.【分析】可化为4,根据无理数的定义即可得到无理数为1010010001…,π.【解答】解:∵=4,∴无理数有:1010010001…,π.故选B.10.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1).(﹣3,1)D.(1,﹣2)【考点】坐标确定位置.【分析】先利用“帅”位于点(﹣1,﹣2)画出直角坐标系,然后写出“兵”位于点的坐标.【解答】解:如图,“兵”位于点(﹣3,1).故选.11.如图,直线AB、D交于点,T⊥AB于,E∥AB交D于点,若∠E=30°,则∠DT等于()A.30°B.4°.60°D.120°【考点】平行线的性质.【分析】由E∥AB,根据两直线平行,同位角相等,即可求得∠BD 的度数,又由T⊥AB,求得∠BT的度数,然后由∠DT=∠BT﹣∠DB,即可求得答案.【解答】解:∵E∥AB,∴∠DB=∠E=30°,∵T⊥AB,∴∠BT=90°,∴∠DT=∠BT﹣∠DB=90°﹣30°=60°.故选.12.如图,直线AB、D相交于点,F⊥,∠AF与∠BD的度数之比为3:2,则∠A的度数是()A.18°B.4°.36°D.30°【考点】垂线;对顶角、邻补角.【分析】根据垂直定义可得∠F=90°,再根据∠AF与∠BD的度数之比为3:2可得∠AF:∠A=3:2,然后可得答案.【解答】解:∵F⊥,∴∠F=90°,∵∠AF与∠BD的度数之比为3:2,∴∠AF:∠A=3:2,∴∠A=90°× =36°,故选:.二、填空题(共24分)13.3﹣的相反数是﹣3.【考点】实数的性质.【分析】根据只有符号不同的两个数的相反数,可得答案.【解答】解:3﹣的相反数是﹣3,故答案为:﹣3.14.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是P,理由是垂线段最短.【考点】垂线段最短.【分析】根据垂线段最短的性质填写即可.【解答】解:∵P⊥N,∴由垂线段最短可知P是最短的,故答案为:垂线段最短.1.已知实数a,b满足+|b﹣1|=0,则a2012+b2013=2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣1=0,b﹣1=0,解得a=1,b=1,所以,a2012+b2013=12012+12013=1+1=2.故答案为:2.16.大于而小于的所有整数的和为﹣4.【考点】估算无理数的大小.【分析】求出﹣和的范围,求出范围内的整数解,最后相加即可.【解答】解:∵﹣4>﹣>﹣,3<<4,∴大于而小于的所有整数为﹣4,±3,±2,±1,0,∴﹣4﹣3﹣2﹣1+0+1+2+3=﹣4,故答案为:﹣4.17.点A在轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为(﹣4,4).【考点】点的坐标.【分析】根据题中所给的点的位置,可以确定点的纵横坐标的符号,结合其到坐标轴的距离得到它的坐标.【解答】解:根据题意,点A在轴左侧,在轴的上侧,则点A横坐标为负,纵坐标为正;又由距离每个坐标轴都是4个单位长度,则点A的坐标为(﹣4,4).故答案为(﹣4,4).18.如图,已知AB∥D,∠B=40°,N是∠BE的平分线,⊥N,∠B 为20度.【考点】平行线的性质;角平分线的定义.【分析】先根据平行线的性质,求得∠BE的度数,再根据角平分线求得∠BN的度数,最后根据⊥N,计算∠B的度数即可.【解答】解:∵AB∥D,∠B=40°,∴∠BE=140°,∵N是∠BE的平分线,∴∠BN=70°.∵⊥N,∴∠B=20°.故答案为:20三、解答题(共90分)19.计算(1)+ ﹣()2+(2)+| ﹣1|﹣(+1)【考点】实数的运算.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用二次根式性质,绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:(1)原式=﹣2﹣3+2=2;(2)原式=2+ ﹣1﹣﹣1=0.20.已知|2016﹣a|+ =a,求a﹣20162的值.【考点】二次根式有意义的条;绝对值.【分析】根据被开方数大于等于0求出a的取值范围,然后去掉绝对值号,再整理即可得解.【解答】解:由题意得,a﹣2017≥0,所以,a≥2017,去掉绝对值号得,a﹣2016+ =a,∴=2016,两边平方得,a﹣2017=20162,所以,a﹣20162=2017.21.如图,∠ADE=∠B,∠1=∠2,FG⊥AB,问:D与AB垂直吗?试说明理由.【考点】平行线的判定与性质;垂线.【分析】D与AB垂直,理由为:由同位角相等两直线平行,根据题中角相等得到ED与B平行,再由两直线平行内错角相等得到∠1=∠BD,等量代换得到一对同位角相等,利用同位角相等两直线平行得到GF与D平行,由垂直于平行线中的一条,与另一条也垂直即可得证.【解答】解:D与AB垂直,理由为:∵∠ADE=∠B,∴DE∥B,∴∠1=∠BD,∵∠1=∠2,∴∠2=∠BD,∴D∥FG,∴∠DB=∠FGB=90°,∴D⊥AB.22.说明理由如图,∠1+∠2=230°,b∥,则∠1、∠2、∠3、∠4各是多少度?解:∵∠1=∠2 (对顶角相等)∠1+∠2=230°∴∠1=∠2=11°(填度数)∵b∥∴∠4=∠2=,11°(填度数)(两直线平行,内错角相等)∠2+∠3=180°(两直线平行,同旁内角互补)∴∠3=180°﹣∠2=6°(填度数)【考点】平行线的性质.【分析】根据对顶角相等求出∠1和∠2,根据平行线的性质求出∠4=∠2,2+∠3=180°,代入求出即可.【解答】解:∵∠1=∠2(对顶角相等),∠1+∠2=230°,∴∠1=∠2=11°,∵b∥,∴∠4=∠2=11°,(两直线平行,内错角相等),∠2+∠3=180°,(两直线平行,同旁内角互补),∴∠3=180°﹣∠2=6°,故答案为:对顶角相等,11°,11°,两直线平行,内错角相等,两直线平行,同旁内角互补,6°.23.完成下面推理过程:如图,已知DE∥B,DF、BE分别平分∠ADE、∠AB,可推得∠FDE=∠DEB的理由:∵DE∥B(已知)∴∠ADE=∠AB(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠AB,∴∠ADF= ∠ADE(角平分线定义)∠ABE= ∠AB(角平分线定义)∴∠ADF=∠ABE∴DF∥BE(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)【考点】平行线的判定与性质.【分析】根据平行线的性质得出∠ADE=∠AB,根据角平分线定义得出∠ADF= ∠ADE,∠ABE= ∠AB,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.【解答】解:理由是:∵DE∥B(已知),∴∠ADE=∠AB(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠AB,∴∠ADF= ∠ADE(角平分线定义),∠ABE= ∠AB(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠AB,两直线平行,同位角相等;∠ADE,角平分线定义;∠AB,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.24.如图,AB∥D,AE平分∠BAD,D与AE相交于F,∠FE=∠E.求证:AD∥B.【考点】平行线的判定.【分析】首先利用平行线的性质以及角平分线的性质得到满足关于AD∥B的条,内错角∠2和∠E相等,得出结论.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥D,∠FE=∠E,∴∠1=∠FE=∠E,∴∠2=∠E,∴AD∥B.2.如图,写出三角形AB三个顶点的坐标,并求出三角形AB的面积.【考点】坐标与图形性质;三角形的面积.【分析】用“割、补”法把三角形AB的面积转化为S矩形DEBF﹣S△AEB﹣S△BF﹣S△AD,然后根据矩形和三角形的面积公式计算.【解答】解:如图,S△AB=S矩形DEBF﹣S△AEB﹣S△BF﹣S△AD=12×7﹣×6×7﹣×12×﹣×2×6=27.26.在平面直角坐标系中,△AB三个顶点的位置如图(每个小正方形的边长均为1).(1)请画出△AB沿x轴向平移3个单位长度,再沿轴向上平移2个单位长度后的△A′B′′(其中A′、B′、′分别是A、B、的对应点,不写画法)(2)直接写出A′、B′、′三点的坐标:A′(0,);B′(﹣1,3);′(4,0).【考点】作图﹣平移变换.【分析】(1)根据网格结构找出点A、B、平移后的对应点A′、B′、′的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可.【解答】解:(1)△A′B′′如图所示;(2)由图可知,A′(0,),B′(﹣1,3),′(4,0).故答案为:0,;﹣1,3;4,0.27.如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)【考点】平行线的性质.【分析】(1)过点P作l1的平行线,根据平行线的性质进行解题.(2)(3)都是同样的道理.【解答】解:(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠,(两直线平行,内错角相等)∵∠4+∠=∠3,∴∠1+∠2=∠3;(2)同(1)可证:∠1+∠2=∠3;(3)∠1﹣∠2=∠3或∠2﹣∠1=∠3理由:当点P在下侧时,过点P作l1的平行线PQ,∵l1∥l2,∴l1∥l2∥PQ,∴∠2=∠4,∠1=∠3+∠4,(两直线平行,内错角相等)∴∠1﹣∠2=∠3;当点P在上侧时,同理可得:∠2﹣∠1=∠3.2017年月4日。