七年级数学期中试卷及答案

合集下载

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、2022的相反数是()A.B.﹣C.2022D.﹣20222、4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1033、一条东西走向的道路上,小明先向西走3米,记作“﹣3米”,他又向西走了4米,此时小明的位置可记作()A.﹣2米B.+7米C.﹣3米D.﹣7米4、下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c5、已知3x m y2与﹣2x4y n为同类项,则m+n=()A.2B.4C.6D.86、若|x﹣1|+x=1,则x一定满足()A.x<1B.x>1C.x≤1D.x≥17、多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2B.﹣2C.2或﹣2D.38、小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5,已知A=4x2﹣3x﹣6,请你帮助小明同学求出A﹣B应为()A.﹣x2+x+11B.3x2﹣4x﹣17C.5x2﹣4x﹣17D.5x2﹣2x+59、若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410、某种产品原价为100元,现因原料提价,因而厂家决定对产品进行提价,有以下两种方案;方案一,第一次提价10%,第二次提价30%;方案二,第一、二次提价均为20%.请问:哪种方案提价多()A.方案一B.方案二C.两种方案一样D.不能确定二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.12、若a与b互为倒数,m与n互为相反数,则(ab)2013+(m+n)2014的值为.13、已知|a+1|+(b﹣3)2=0,则a b=.14、在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.15、若代数式x﹣2y=﹣2,则代数式9+2x﹣4y=.16、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2)×(﹣36).18、先化简,再求值:3(x2﹣xy+y2)﹣2(y2﹣3xy+x2),其中x=﹣2,y=3.19、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.20、某检修小组在东西向的马路上检修线路,从A地出发,需到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)在行驶过程中,最远处离出发点A地有多远?(3)若每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.22、已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.23、(1)如图1所示,阴影部分由两个直角三角形组成,用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=6,h=4时,S的值.(3)在第(2)问的条件下,增加一个半圆的阴影,如图2所示,求整个阴影部分的面积S1的值.(π取3.14,结果精确到0.1)24、已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25、如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请用计算说明,并求出线段MN的长.2023—2024学年人教版七年级上学期数学期中试卷参考答案一、择题(每题只有一个正确选项,每小题3分,满分30分)1—10:DCDAC CBCDB二、填空题(每小题3分,满分18分)11、>12、1 13、-1 14、﹣9或3 15、5 16、(3n+1)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解:(1)0 (2)﹣1118、解:﹣519、解:(1)答案为:>,<,<;(2)﹣2b20、解:(1)B地在A地的东边18千米;(2)最远处离出发点25千米;(3)需补充的油量为9升.21、解:(1)x+y的值为:8或2;(2)|x﹣y|的值为:8;(3)x﹣y=±2或±8.22、解:(1)=7x+7y﹣11xy;当x+y=﹣,xy=1时,2A﹣3B=﹣17;(3).23、解:(1)S=(b﹣a)h=bh﹣;(2)当a=2,b=6,h=4时,S=×6×4﹣×2×4=12﹣4=8;(3)S1=S+×=8+×3.14×1=8+1.57=9.57≈9.6.∴整个阴影部分的面积S1的值为9.6.24、解:故答案为:﹣1;(2)﹣243;(3)﹣120.25、解:(1)答案为:﹣5;7;12;(2)点P所对应的数为﹣1016;(3)﹣17和﹣1别是点P运动了第23次和第8次到达的位置.。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

人教版七年级数学期中考试试卷以及答案

人教版七年级数学期中考试试卷以及答案

期中综合检测试卷(第一章~第二章 满分:120分)一、选择题(每小题3分,共30分) 1.-8的绝对值是( A ) A .8 B .18C .-8D .-182.下列运算结果为正数的是( A ) A .(-3)2 B .-3÷2 C .0×(-2020)D .2-3 3.已知下列各式:abc,2πR ,x +3y,0,x -y2m ,其中单项式有( B )A .2个B .3个C .4个D .5个4.下列计算正确的是( D ) A .3a +2a =5a 2 B .3a -a =3 C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b 5.我们的祖国地域辽阔,其中领水面积约为370 000 km 2.把370 000这个数用科学记数法表示为( B )A .37×104B .3.7×105C .0.37×106D .3.7×1066.有理数a ,b 在数轴上的对应点如图所示,则下列结论正确的是( A )A .|b |>-aB .|a |>-bC .b >aD .|a |>|b |7.下列说法中,正确的有( B )①任何数的倒数都小于1;②a 的倒数是1a ;③同号的两个数,原数大的倒数反而小;④互为倒数的两数符号相同.A .1个B .2个C .3个D .4个 8.下列各式不正确的是( A ) A .-x 2=(-x )2B .(-a )2=a 2C .(a -b )2=(b -a )2D .(a -b )3=-(b -a )39.计算6m 2-5m +3与5m 2+2m -1的差,结果正确的是( D ) A .m 2-3m +4 B .m 2-3m +2 C .m 2-7m +2D .m 2-7m +410.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,应到的超市是( B )A .甲B .乙C .丙D .乙或丙二、填空题(每小题3分,共18分)11.如果向东走6 m 记作+6 m ,那么向西走2 m 记作__-2 m__. 12.若3a n +1b 2与12a 3b m +3的和仍是单项式,则m +n =__1__.13.单项式-35x 2yz 3的系数是__-35__,次数是__6__.14.一种零件的直径尺寸在图纸上是30+0.03-0.02(单位:mm),它表示这种零件的标准尺寸是30 mm ,合格产品的尺寸范围是__29.98~30.03__mm.15.若||a -11+(b +12)2=0,则(a +b )2020=__1__.16.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为__1__.三、解答题(共72分) 17.(12分)计算下列各题: (1)-14-(-6)+2-3×⎝⎛⎭⎫-13; 解:原式=-1+6+2+1=8. (2)⎝⎛⎭⎫29-14+118÷⎝⎛⎭⎫-136;解:原式=⎝⎛⎭⎫29-14+118×(-36)=29×(-36)-14×(-36)+118×(-36)=-1. (3)3(x 2-5xy )-4(x 2+2xy -y 2)-5(y 2-3xy );解:原式=3x 2-15xy -4x 2-8xy +4y 2-5y 2+15xy =-x 2-8xy -y 2. (4)(x -x 2+1)-2(x 2-1+3x ).解:原式=x -x 2+1-2x 2+2-6x =-3x 2-5x +3.18.(6分)下面的运算是否正确,如果正确,说明每一步的依据;如果不正确,说明从哪一步开始出现了错误,错误的原因,并写出正确的解答过程.计算:-18+23+56-14.解:原式=⎝⎛⎭⎫-18+14+⎝⎛⎭⎫56-23(第①步) =18+16(第②步) =724.(第③步) 解:从第①步开始出现了错误:加数交换位置时应和前面的符号一起交换.正确的解答如下:原式=⎝⎛⎭⎫-18-14+⎝⎛⎭⎫23+56=-38+96=98. 19.(6分)先化简,再求值:3x 3-(4x 2+5x )-3(x 3-2x 2-2x ),其中x =-2.解:原式=3x 3-4x 2-5x -3x 3+6x 2+6x =2x 2+x .当x =-2时,原式=2×(-2)2-2=6. 20.(6分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,国庆节期间,他连续记录了7天中每天行驶的路程(如下表),以50 km 为标准,多于50 km 的记为“+”,不足50 km 的记为“-”,刚好50 km 的记为“0”.(2)若每行驶100 km 需用汽油6升,汽油价5.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?解:(1)这七天中平均每天行驶50+(-8-11-14+0-16+41+8)÷7=50(千米). (2)平均每天所需汽油费用为50×6÷100×5.2=15.6(元),即估计小明家一个月的汽油费用是15.6×30=468(元).21.(6分)现定义一种新运算“⊕”:对于任意有理数x ,y ,都有x ⊕y =3x +2y ,例如:5⊕1=3×5+2×1=17.(1)求(-4)⊕(-3)的值; (2)化简:a ⊕(3-2a ).解:(1)(-4)⊕(-3)=3×(-4)+2×(-3)=-12-6=-18.(2)a ⊕(3-2a )=3×a +2×(3-2a )=3a +6-4a =-a +6.22.(6分)已知A =5x 2-mx +n ,B =3y 2-2x -1(A ,B 为关于x ,y 的多项式).如果A -B 的结果中不含一次项和常数项,求:(1)m ,n 的值; (2)m 2+n 2-2mn 的值.解:(1)因为A =5x 2-mx +n ,B =3y 2-2x -1,所以A -B =5x 2-mx +n -3y 2+2x +1=5x 2-3y 2+(2-m )x +n +1.由结果中不含一次项和常数项,得2-m =0,n +1=0,解得m =2,n =-1. (2)当m =2,n =-1时,原式=22+(-1)2-2×2×(-1)=4+1+4=9.23.(8分)有3个有理数x ,y ,z ,若x =2(-1)n -1,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,你能求出x ,y ,z 这三个数吗?当n 为偶数时,你能求出x ,y ,z 这三个数吗?若能,请计算并写出结果;若不能,请说明理由;(2)根据(1)的结果计算xy -y n -(y -z )2020的值.解:(1)当n 为奇数时,x =-1.因为x 与y 互为相反数,所以y =-x =1.因为y 是z 的倒数,所以z =1.所以x =-1,y =1,z =1;当n 为偶数时,因为分母不能为零,所以不能求出x ,y ,z 的值.(2)当x =-1,y =1,z =1时,原式=(-1)×1-1n -02020=-2.24.(10分)如图,一个用铝合金材料加工的长方形窗框,它的宽和高分别为a 厘米、b 厘米,解答下列问题(结果可用含a ,b 的代数式表示).(1)长方形窗框的面积是__ab __平分厘米;(2)铝合金窗分为上、下两栏,四周框架和中间隔栏的材料均为宽度为6厘米的铝合金材料,上栏和下栏的框内高度(不含铝合金部分)的比为1∶2(接口用料忽略不计).①求制作一个该种窗框所需铝合金材料的总长度; ②求该种(2)窗框的透光部分的面积.解:(2)①由题意,得上栏内高度为b -183厘米,下栏内高度为2(b -18)3厘米,所以所需铝合金材料的总长度为3a +b -183×2+2(b -18)3×3=⎝⎛⎭⎫3a +83b -48厘米. ②透光部分的面积为ab -6⎝⎛⎭⎫3a +83b -48=(ab -18a -16b +288)平方厘米. 25.(12分)一张桌子可坐4人,按照如图所示的方式将桌子拼在一起.(1)2张桌子拼在一起可坐几人?3张桌子拼在一起可坐几人?n 张桌子拼在一起可坐几人?(2)一家酒楼有60张这样的正方形桌子,按上图的方式每4张桌子拼成一张大桌子,则60张桌子可拼成15张大桌子,共可坐多少人?(3)若这家酒楼的60张这样的正方形桌子,每4张拼成一张大的正方形桌子,则共可坐多少人?(4)(2)、(3)中,哪种拼桌子的方式坐的人更多?解:(1)2张桌子拼在一起可坐4+2=6(人);3张桌子拼在一起可坐4+2+2=8(人);n 张桌子拼在一起可坐4+2(n -1)=(2n +2)人. (2)按图中方式拼一张大桌子可坐4+2×(4-1)=10(人),则15张大桌子共可坐15×10=150(人). (3)若每4张桌子拼成一张大正方形桌子,则一张大的正方形桌子可坐8人,15张大正方形桌子共可坐15×8=120(人). (4)由(2)、(3)可知,按(2)中拼桌子的方式坐的人更多.。

七年级数学期中试卷附答案

七年级数学期中试卷附答案

一、选择题(每题3分,共30分)1. 下列数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -32. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. a ≥ bD. a ≤ b3. 下列各数中,是负数的是()A. -1/3B. 0C. √4D. -√94. 下列各数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -35. 下列各数中,是无理数的是()A. √4B. πC. 0.1010010001...D. -36. 如果a = -2,b = 3,那么a + b的值是()A. 1B. -1C. 0D. 57. 下列各数中,是偶数的是()A. 1B. 2C. 3D. 48. 下列各数中,是奇数的是()A. 1B. 2C. 3D. 49. 下列各数中,是质数的是()A. 2B. 3C. 4D. 510. 下列各数中,是合数的是()A. 2B. 3C. 4D. 5二、填空题(每题3分,共30分)11. 1/2 + 2/3 = __________12. (-3) × (-2) × (-1) = __________13. 2 × 3 × 5 × 7 = __________14. 3^2 × 3^3 = __________15. 4^2 ÷ 2^2 = __________16. 0.5 + 0.25 = __________17. 2 - 3/4 = __________18. 5 × 3/4 = __________19. 8 ÷ 2 + 2 = __________20. 3^2 × 2^3 = __________三、解答题(每题10分,共40分)21. 简化下列各式:(1) 3a - 2b + 4a - b(2) 2x + 3y - 5x - 2y22. 解下列方程:(1) 2x - 3 = 7(2) 3y + 5 = 2y + 1023. 判断下列各数是有理数还是无理数:(1) √9(2) 0.1010010001...24. 已知a = 2,b = -3,求a + b的值。

七年级数学期中试卷及答案【含答案】

七年级数学期中试卷及答案【含答案】

七年级数学期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 一个数加上6后,再除以3,结果是5,这个数是?A. 11B. 13C. 15D. 174. 一个长方体的长、宽、高分别是10cm、6cm、4cm,那么这个长方体的体积是?A. 240cm³B. 480cm³C. 720cm³D. 960cm³5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆二、判断题1. 任何两个奇数相加的和都是偶数。

()2. 一个数的平方和它的立方一定相等。

()3. 一个等边三角形的三个角都是60度。

()4. 两个负数相乘的结果是正数。

()5. 一个数的倒数乘以它自己等于1。

()三、填空题1. 2的平方根是______。

2. 一个等腰三角形的两个底角相等,如果一个底角是50度,那么另一个底角是______度。

3. 1千克等于______克。

4. 一个圆的半径是5cm,那么这个圆的面积是______cm²。

5. 一个数的因数是它自己,那么这个数是______。

四、简答题1. 请简述勾股定理的内容。

2. 请解释等差数列的定义。

3. 请解释比例的基本性质。

4. 请简述分数的基本性质。

5. 请解释正方形的性质。

五、应用题1. 一个长方体的长、宽、高分别是12cm、8cm、6cm,求它的体积。

2. 一个等腰三角形的底边长是10cm,腰长是13cm,求这个三角形的面积。

3. 一个数加上7后,再乘以3,结果是60,求这个数。

4. 一个数的2倍加上4等于18,求这个数。

5. 一个数的3/4等于15,求这个数。

六、分析题1. 小明有10个苹果,他吃了一半,然后又吃了一个,请问小明还剩下几个苹果?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,如果长、宽、高都增加2cm,那么新长方体的体积是多少?七、实践操作题1. 请画出一个正方形,并标出它的对角线。

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

2023-2024学年河南省郑州七年级(上)期中数学试卷(含解析)

2023-2024学年河南省郑州七年级(上)期中数学试卷一.选择题。

(每小题3分,共30分)1.(3分)下列两个数互为相反数的是( )A.3和B.﹣(﹣3)和|﹣3|C.(﹣3)2和﹣32D.(﹣3)3和﹣332.(3分)图中属于柱体的个数是( )A.3B.4C.5D.63.(3分)今年暑假,全国文旅市场持续火爆,接待人次和旅游收入全面超越2022年同期水平,黄山以奇松、怪石、云海、温泉四绝著称,游客人数达到186.7万人.排“名山景区热度指数排行榜”第二位.将数据186.7万用科学记数法表示为( )A.18.67×105B.1.867×105C.1.867×106D.0.1867×1064.(3分)用一个平面去截一个如图的圆柱体,截面不可能是( )A.B.C.D.5.(3分)在数﹣2,﹣3.14156,,﹣5%,2023,﹣0.1,0,﹣0.01001中,负分数有( )A.4个B.5个C.6个D.7个6.(3分)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线7.(3分)开学第一节课赵老师给每人发了一个正方体,它的六个面分别标注有“一切皆有可能”,表面展开后如图.那么在原正方体中( )A.能B.可C.皆D.切8.(3分)点A,B在数轴上的位置如图所示,其对应的有理数分别是a和b.对于下列四个结论:①b﹣a>0;②|a|<|b|;③a+b>0;④>0;⑤ab<0.其中正确的是( )A.①②③④B.①②③⑤C.①③⑤D.②③④9.(3分)如图,圆的周长为4个单位长度,在圆的4等分点处分别标上0,1,2,3,再让圆沿着数轴按顺时针方向无滑动地滚动,那么数轴上的数﹣2023所对应的点与圆周重合的点所对应的数是( )A.0B.1C.2D.310.(3分)小明在计算有规律的算式1﹣2+3﹣4+5⋯+19﹣20时,不小心把一个运算符号写错了(“+”错写成“﹣”或“﹣”错写成“+”),结果算成了﹣36,写错的运算符号是( )A.第5个B.第8个C.第10个D.第12个二.填空题。

七年级期中考试数学试卷及答案

ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年七年级(上)期中考试试题
班级 姓名 学号
一、选择题(每题3分,共30分)
1. 以下关于有理数的分类正确的是 ( )
(A )正数和负数 (B )整数和分数 (C )正数和分数 (D )整数和负数
2. 下列各题中的数是准确数的是 ( )
(A )七年级有440名学生 (B )月球离地球的距离约为38万千米
(C )小明同学身高大约143cm (D )今天气温估计26℃
3. 两个有理数的商是正数,那么这两个有理数 ( )
(A )和为正 (B )差为正 (C )积为正 (D )不能确定
4. 计算:12)13
121(⨯-+-结果是 ( ) (A )-12 (B )-2 (C )-14 (D )-6
5. 一个数的绝对值等于4
3,那么这个数是 ( ) A. 43 B.43- C. 43或4
3- D.不能确定 6. 把-1-(-2)+(-3)写成去掉括号的形式,正确的是 ( )
+2-3 +2+3 C.-1-2-3 D. 1+2-3
7. 一个有理数的平方等于它自身,那么这个有理数是 ( )
A. 0
B.1
C. ±1
D. 1或0
8. 式子①x 23x =+; ② 2332<;③ 1y 34-;④3x 2
1=,其中属于方程 的是 ( )
(A )①和② (B )②和③ (C )③和④ (D )①和④
9. 方程x x -=-22的解是 ( )
(A )1=x (B )1-=x (C ) 0=x (D )2x =
10. 若关于x 的方程04n nx 1n =-+-是一元一次方程,则n 数值为 ( )
B. 1
C.3
二、填空题(每题3分,共30分)
11. 如果收入200元记作+200元,那么支出500元记作 ;
12. -2的相反数是 ,绝对值是 ,倒数是 ;
13. 在3)2(-中底数是 ,指数是 ;32-中底数是 ,指数是 。

14. 计算:(-12)×(-48)×27×0 = ;
15. 含有 的等式,叫做方程。

16. 判断积的符号(填“>”、“<”、或“=”):)40()6
11()76(-⨯-⨯- 0;
17. 近似数万精确到 位,有效数字是 ;
18. 用科学记数法表示下列各数:563000= ,-35000= ;
19. 数轴上点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是 ;
20. 列式:比x 的2倍小3的数是 。

三、解答题
21. (6分)在数轴上表示下列各数,并将这些数用“<”号连接起来。

5.2,2.3,5,43
,0),4(,2-----
22. 计算:(每题3分,共18分)
(1)(-21)+(-39);

2)()+()+ + ;
(3)()⎪⎭⎫
⎝⎛-⨯+⨯--⨯4125212543
25;
(4)2125.0)2(222÷⨯---;
(5)());34(52y y ++--
(6)74x 51x 2-++;
23. 利用等式性质解下列方程,并检验:(每题5分,共10分)
(1)51x 2=- (2)1x 2
52x 3+=-
24. (10分)某公路养护小组乘车沿南北方向公路巡视维护。

某天早晨从A 地出发,晚上
最后到达B 地,如果规定向北为正,向南为负,当天里程记录如下(单位:千米): .8,6,13,6,14,7,9,18--+--+-+
(1) 最后B 地在A 地何方,相距多少千米(相对这天的出发地A )
(2) 若汽车行驶每千米耗油a 升,这该天共耗油多少升
25. (10分)王老师带领学生乘汽车到农村某地去搞社会实践活动,每张汽车票50元,甲
车主说:乘我的车,八折优惠;乙车主说:乘我的车,学生九折,老师不买票.
(1)若设王老师带x 名学生去实践活动,请你分别写出两种乘坐方式的收费金额,并列出方程
(2)如果王老师带了10名学生去,你认为乘哪辆车更合算
29.(6分)某人计划骑车以每小时12千米的速度由A 地去B 地,这样便可在规定的时间到达B 地。

但他因事将计划的出发时间推迟了20分钟,便只好以每小时15千米的速度前进。

结果比规定的时间早4分钟到达B 地,求A 、 B 两地的距离(要求:列方程并求解)
2006年七年级(上)期中考试试题答案
一、选择题
1、B
2、A
3、C
4、C
5、C
6、A
7、D
8、D
9、D 10、A
二、填空题
11、-500米 12、2, 2, 2
1-
13、-2, 3, 2, 3; 14、0 15、未知数 16、 17、百, 4,0,8 18、51063.5⨯, 4
105.3⨯- 19、-1和5 20、32-χ
三、解答题
21、数轴(略) 5)4(5.24
3022.3<--<-<<<-<- 22、(1)-60 (2)
(3)25 (4)-6
(5)9y + (6)35
11-χ 23、(1)3=χ (2)6=χ
24(1)-5km ,即B 地在A 地正南方向5千处。

(2)(38+43)a=81a (升)
25、(1)x %9050)1x %(8050⨯=+⨯
(2)甲车更合算
26、解:设从A 地到B 地按照原来的速度需要x 分钟,根据题意得
()
80
x 16x 6015x 6012=-⨯=⨯解得。

相关文档
最新文档