复习第七章_机械能守恒定律
人教版高中物理必修二第七章-机械能守恒定律-知识点归纳

第七章《机械能守恒定律》知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5 功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W1+W2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W=Flcos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P=Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
高中物理必修二第七章—7.8机械能守恒定律

⑵W=-3.2 J
例题13:在一个半径为R的半圆形轨道上端固定一个 小定滑轮,一根轻绳跨过定滑轮两端分别系着质量 分别为m1、m2可视为质点的小物块,如图所示。 释放轻绳,m1将从半圆形光滑轨道的顶端沿轨道由 静止下滑。求m1经过轨道最低点时的速度。
⑴试推导出第二宇宙速度的表达式。
⑵若要发射一颗距离地面的高度h=R的卫星,求该卫
星的发射速度。
(1)v2
2gR;(2)v0
3gR 2
强调:卫星在某轨道运行的线速度为v,则在该轨
道处脱离地球的速度为运行速度的√2倍。
资料:第三宇宙速度的推导,地球以30km/s的速度绕
太阳运动,地球上的物体也随着地球以这个速度绕太阳
A、子弹射入木块过程中,A、B系统的机械能守恒
B、子弹射入木块过程中,A、B系统的机械能不守恒
C、木块压缩弹簧的过程中,B、C系统的机械能守恒
D、木块压缩弹簧的过程中, A、B、C组成的系统机 械能守恒。
例题4:如图所示,小球自a点由静止自由下落,到b 点时与弹簧接触,到c点时弹簧被压缩到最短,若 不计弹簧质量和空气阻力,在小球由a→b→c的运 动过程中:( AD )
⑵守恒是针对某个特定的系统而言的。当过程中外界 (即外力)对系统(或系统对外界)做的总功不为零时, 即有能量的进、出系统时,系统的机械能就不守恒。
⑶守恒是机械能守恒,不是能量守恒。当过程中系统的 内力做功,使机械能与其它形式的能量有相互转化时, 系统机械能将不守恒。
⑷下列情况机械能不守恒:系统内有滑动摩擦力、电磁 力做功;系统内有动力装置(人、机械)做功;系统内 物体之间发生有动能损失的非弹性碰撞。
A.物体在A点具有的机械是:12 mv 2 mgH
第7章 机械能守恒定律

第七章 机械能守恒定律【要点归纳】对功的公式W =Flcos α的理解1.F 表示力的大小,l 表示力的作用点相对于地面位移的大小,当力的作用点的位移与物体的位移相同时,也常常说是物体相对地面的位移大小,α表示力与位移方向间的夹角.2.公式仅适用于求恒力的功.3.计算功时首先要分清是求单个力做功还是求合力做功.(1)求单个力做功时,某一个力做的功,不受其它力的影响.例如从斜面上滑下的物体,重力对物体做的功与斜面是光滑的还是粗糙的没有关系.(2)求解合力做功时,有两种方法,一种方法是合力做的总功等于各个力做功的代数和,另一种方法是先求出物体所受各力的合力,再用公式W 总=F 合lcos α计算.4.功是过程量,是力在空间的积累量.功只有大小,没有方向,是标量.5.实际计算时,不必生搬硬套公式W =Flcos α,一般通过分解力或分解位移的方法求解.6.功是标量,但有正功、负功之分,功的正负既不表示大小,也不表示方向,只表示两种相反的做功效果,即为动力功还是阻力功.功率的理解和求法1.功率表示做功的快慢,不表示做功的多少.可以和加速度的概念进行类比,例如速度大的物体加速度不一定大.2.功率是标量,只有大小,没有方向.3.功率有平均功率和瞬时功率之分(1)平均功率:平均功率表示力在一段时间内做功的平均快慢.平均功率与一段时间(或过程)相关,计算时应明确哪个力在哪段时间(或过程)内做功的平均功率.常用P =W t来求平均功率.如果用P =Fv 求平均功率,公式中v 应为平均速度,F 是恒力.(2)瞬时功率:瞬时功率表示力在一段很短时间内做功的快慢程度,计算时应明确哪个力在哪个时刻(或状态)的功率.用公式P =Fv 来计算瞬时功率,公式中v 应为瞬时速度,且F 和v 同方向.若F 和v 方向不同,则应用P =Fvcos α.重力做功与重力势能的变化1.重力做功的特点(1)物体运动时,重力对它做的功,只跟物体的起点和终点的位置有关,而跟物体运动的路径无关.(2)重力做功W =mgh 1-mgh 2=mg(h 1-h 2),其中(h 1-h 2)为物体始末位置的高度差,说明重力做功与路径无关,只由起点和终点位置的高度差决定.(3)重力做功与物体受到几个力的作用以及物体做什么样的运动等因素无关.2.物体的高度变化时,重力要做功,重力势能的改变与重力做功有关.重力势能的改变只由重力做功引起.W G =mgh 1-mgh 2=mgΔh动能定理的理解1.动能定理的推导:由实验发现,物体动能的改变量等于外力做的功.其实,运用牛顿第二定律和匀变速直线运动的规律,也可以推导出恒力对物体做功与动能改变的关系.设物体的质量为m ,初速度为v 1,在与运动方向相同的合外力F 的作用下发生一段位移l ,速度增加到v 2,根据牛顿第二定律有F =ma ①由匀变速运动规律得l =v 22-v 212a② 由①×②可得Fl =12mv 22-12mv 21 即合外力对物体所做的功等于物体动能的改变,这个结论就叫做动能定理.如果用W 表示合外力对物体做的功,E k2表示物体的末动能,E k1表示物体的初动能,上式可写为:W =E k2-E k1.2.物理意义:动能定理指出了外力对物体所做的总功与物体动能变化之间的关系.即外力对物体所做的总功,对应于物体动能的变化,变化的大小由做功的多少来量度.3.实质:动能定理从能量变化的角度反映了力改变运动状态时,在空间上的累积效果(动能的变化情况从侧面体现了物体运动状态的改变情况).4.动能定理的理解要点(1)动能定理研究的对象是单一物体(质点)或者是可以看成是单一物体的物体系.(2)动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功;作用在物体上的力既可以是同性质的力,亦可以是不同性质的力;既可以是同时作用,也可以是分段作用;只要能够求出在作用过程中各力做功的多少和正负即可.(3)动能定理的计算式为标量式,v 为相对同一参考系的速度,一般以地面为参考系.(4)外力对物体所做的功是指物体所受的一切外力对它所做的总功.【典例剖析】例1.质量m =3 kg 的物体,受到与斜面平行向下的拉力F =10 N ,沿固定斜面下滑距离l =2 m ,斜面倾角θ=30°,物体与斜面间的动摩擦因数μ=33.求各力对物体所做的功,以及力对物体所做的总功.(g 取10 m/s 2)例2.如图所示,摆球质量为m ,悬线的长为l ,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力Ff 的大小不变,求摆球从A 运动到竖直位置B 时,重力mg 、绳的拉力FT 、空气阻力Ff 各做了多少功?例3.一台起重机从静止起匀加速地将质量m =1.0×103kg 的货物竖直吊起,在2 s 末货物的速度v =4.0 m/s.求起重机在这2 s 内的平均输出功率及2 s 末的瞬时功率.(g =10 m/s 2)例4.为了响应国家的“节能减排”号召,某同学采用了一个家用汽车的节能方法.在符合安全行驶要求的情况下,通过减少汽车后备箱中放置的不常用物品和控制加油量等措施,使汽车负载减少.假设汽车以72 km/h 的速度匀速行驶时,负载改变前、后汽车受到的阻力分别为2 000 N 和1 950 N .请计算该方法使汽车发动机输出功率减少了多少?例5.质量为10 t 的汽车,额定功率为5.88×104 W ,在水平路面上行驶的最大速度为15 m/s ,则汽车所受的最大阻力是多少?当车速为10 m/s 时,汽车的加速度是多大?例6.在高处的某一点将两个重力相同的小球以相同速率v 0分别竖直上抛和竖直下抛,下列结论正确的是(不计空气阻力)( )A .从抛出到刚着地,重力对两球所做的功相等B .从抛出到刚着地,重力分别对两球做的功都是正功C .从抛出到刚着地,重力对两球的平均功率相等D .两球刚着地时,重力的瞬时功率相等例7.起重机以g 4的加速度,将质量为m 的物体匀减速地沿竖直方向提升h 高度,则起重机钢索的拉力对物体做的功为多少?物体克服重力做功为多少?物体的重力势能变化了多少?(空气阻力不计)例8.关于动能,下列说法正确的是( )①公式Ek =12mv 2中的速度v 是物体相对于地面的速度 ②动能的大小由物体的质量和速率决定,与物体运动的方向无关 ③物体以相同的速率向东和向西运动,动能的大小相等但方向不同 ④物体以相同的速率做匀速直线运动和曲线运动,其动能不同A .①②B .②③C .③④D .①④例9.一辆汽车质量为m ,从静止开始起动,沿水平面前进了l 后,就达到了最大行驶速度vm ,设汽车的牵引功率保持不变,所受阻力为车重的k 倍.求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间.例10.物体从高出地面H 处由静止自由落下,不考虑空气阻力,落至沙坑表面后又进入沙坑h 停止(如图所示).求物体在沙坑中受到的平均阻力是其重力的多少倍.【课时作业】1.下列关于做功的说法中正确的是()A.凡是受力作用的物体,一定有力对物体做功B.凡是发生了位移的物体,一定有力对物体做功C.只要物体受力的同时又有位移发生,则一定有力对物体做功D.只要物体受力,又在力的方向上发生位移,则力一定对物体做功2.人以20 N的恒力推着小车在粗糙的水平面上前进了5.0 m,人放手后,小车还前进了2.0 m才停下来,则小车在运动过程中,人的推力所做的功为()A.100 J B.140 J C.60 J D.无法确定3.关于摩擦力对物体做功,下列说法中正确的是()A.滑动摩擦力总是做负功B.滑动摩擦力可能做负功,也可能做正功C.静摩擦力对物体一定做负功D.静摩擦力对物体总是做正功4.如图所示,重物P放在一长木板OA上,将长木板绕O端转过一个小角度的过程中,重物P相对于木板始终保持静止,关于木板对重物P的摩擦力和支持力做功的情况是() A.摩擦力对重物做正功B.摩擦力对重物做负功C.支持力对重物不做功D.支持力对重物做正功5.质量为1 500 kg的汽车在平直的公路上运动,v—t图象如图所示.由此可求()A.前25 s内汽车的平均速度B.前10 s内汽车的加速度C.前10 s内汽车所受的阻力D.15~25 s内合外力对汽车所做的功6.如图所示,水平传送带以速度v=6 m/s顺时针运转,两传动轮M、N之间的距离为L=10 m,若在M轮的正上方,将一质量为m=3 kg的物体轻放在传送带上,已知物体与传送带之间的动摩擦因数μ=0.3,在物体由M处传送到N处的过程中,传送带对物体的摩擦力做了多少功?(g取10 m/s2)7.同一恒力按同样的方式施于物体上,使它分别由静止开始沿着粗糙水平地面和光滑水平地面移动相同的一段距离,恒力做的功和平均功率分别为W1、P1和W2、P2,则两者的关系是()A.W1>W2,P1>P2B.W1=W2,P1<P2C.W1=W2,P1>P2D.W1<W2,P1<P28.一辆小汽车在水平路面上由静止启动,在前5 s内做匀加速直线运动,5 s末达到额定功率,之后保持额定功率运动,其v—t图象如图所示.已知汽车的质量为m=2×103 kg,汽车受到地面的阻力为车重的0.1倍,则()A.汽车在前5 s内的牵引力为4×103 NB .汽车在前5 s 内的牵引力为6×103 NC .汽车的额定功率为60 kWD .汽车的最大速度为30 m/s9.如图所示,质量相同的两物体处于同一高度,A 沿固定在地面上的光滑斜面下滑,B 自由下落,最后到达同一水平面,则( )A .重力对两物体做功相同B .重力的平均功率相同C .到达底端时重力的瞬时功率P A <P BD .到达底端时两物体的动能相同,速度相同10.滑板运动是一项非常刺激的水上运动.研究表明,在进行滑板运动时,水对滑板的作用力FN 垂直于板面,大小为kv 2,其中v 为滑板速率(水可视为静止).某次运动中,在水平牵引力作用下,当滑板和水面的夹角θ=37°时(如图所示),滑板做匀速直线运动,相应的k =54 kg/m ,人和滑板的总质量为108 kg ,试求(g 取10 m/s 2,sin 37°=35,忽略空气阻力): (1)水平牵引力的大小.(2)滑板的速率.(3)水平牵引力的功率.11.关于重力势能,下列说法中正确的是( )A .重力势能的大小只由重物本身决定B .重力势能恒大于零C .在地面上的物体,它具有的重力势能一定等于零D .重力势能实际是物体和地球所共有的12.如图所示,在光滑的桌面上有一根均匀柔软的质量为m 、长为l 的绳,其绳长的14悬于桌面下,从绳子开始下滑至绳子刚好全部离开桌面的过程中,重力对绳子做的功为多少?绳子重力势能变化如何?(桌面离地高度大于l)13.关于运动物体所受的合外力、合外力做的功、物体的动能的变化,下列说法正确的是( )A .运动物体所受的合外力不为零,合外力必做功,物体的动能肯定要变化B .运动物体所受的合外力为零,则物体的动能肯定不变C .运动物体的动能保持不变,则该物体所受合外力一定为零D .运动物体所受合外力不为零,则该物体一定做变速运动,其动能要变化14.一个25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,下列结论正确的是( )A .合外力做功50 JB .阻力做功500 JC .重力做功500 JD .支持力做功50 J15.如图所示,质量为m 的物体置于光滑水平面上,绳子的一端固定在物体上,另一端通过定滑轮以恒定的速率v 0拉动绳头.物体由静止开始运动,当绳子与水平方向成θ=60°夹角时,绳中的拉力对物体做了多少功?16.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( )A .mgh -12mv 2-12mv 20B .-12mv 2-12mv 20-mgh C .mgh +12mv 20-12mv 2 D .mgh +12mv 2-12mv 2017.如图所示,质量m =1 kg 的木块静止在高h =1.2 m 的平台上,木块与平台间的动摩擦因数μ=0.2,用水平推力F =20 N ,使木块产生位移l 1=3 m 时撤去,木块又滑行l 2=1 m 后飞出平台,求木块落地时速度的大小?18.一质量为2 kg 的物体(视为质点)从某一高度由静止下落,与地面相碰后(忽略碰撞时间)又上升到最高点,该运动过程的v -t 图象如图所示.如果上升和下落过程中空气阻力大小相等,求:(1)物体上升的最大高度.(2)物体下落过程所受的空气阻力的大小.(3)物体在整个运动过程中空气阻力所做的功.(取g =10 m/s 2)第七章机械能守恒定律【要点归纳】机械能守恒定律1.物体系统内只有重力或弹力做功(其他力不做功),机械能守恒.对于该条件可具体理解如下:(1)系统内部只有重力或弹力做功,而没有内部摩擦力和其他内力(如炸弹爆炸时的化学物质的作用力等)做功,即系统内部除发生重力势能或弹性势能与动能的相互转化之外,不会引起发热、发光或化学反应等非力学现象的产生.(2)没有任何外力对系统做功,包括以下三种情况:①系统不受外力.②系统受外力,但所有外力均不做功.③系统受外力,而且外力做功,但外力做功的代数和为零.2.应用机械能守恒定律列方程的两条基本思路(1)守恒观点始态机械能等于终态机械能,即:E k1+E p1=E k2+E p2.(2)转化或转移观点①动能(或势能)的减少量等于势能(或动能)的增加量,即:E k1-E k2=E p2-E p1.②一个物体机械能的减少(或增加)量等于其他物体机械能的增加(或减少)量,即:E A1-E A2=E B2-E B1.3.应用机械能守恒定律解题的步骤(1)根据题意选取研究对象(物体或系统).(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒.(3)恰当的选取零势面,确定研究对象在过程中的始态和末态的机械能.(4)根据机械能守恒定律的不同表达式列方程.能量和功能关系几个重要的功能关系(1)重力做功:重力势能和其他能相互转化,-ΔEp=WG.(2)弹力做功:弹性势能和其他能相互转化.(3)合外力做功:动能与其他形式能相互转化,ΔEk=W合.(4)除重力、系统内弹力外,其他力做的功:机械能与其他形式能相互转化.W其他=ΔE 机,这种关系常称做“功能原理”.(5)滑动摩擦力做功①滑动摩擦力可以对物体做正功,也可以做负功,还可以不做功(如相对运动的两物体之一相对地面静止,则滑动摩擦力对该物体不做功).②在相互摩擦的物体系统中,一对相互作用的滑动摩擦力,对物体系统所做总功的多少与路径有关,其值是负值,等于摩擦力与相对位移的积,即W=F·l相对,表示物体系统损失了机械能,克服了摩擦力做功,ΔE损=Q=F·l相对(摩擦生热).③一对滑动摩擦力做功的过程中能量的转化和转移的情况:一是相互摩擦的物体通过摩擦力做功将部分机械能转移到另一个物体上;二是部分机械能转化为内能,此部分能量就是系统机械能的损失量.【典例剖析】例1.下列物体中,机械能守恒的是( )A .做平抛运动的物体B .被匀速吊起的集装箱C .光滑曲面上自由运动的物体D .物体以45g 的加速度竖直向上做匀减速运动 例2.如图所示,斜面的倾角θ=30°,另一边与地面垂直,高为H ,斜面顶点上有一定滑轮,物块A 和B 的质量分别为m 1和m 2,通过轻而柔软的细绳连结并跨过定滑轮.开始时两物块都位于与地面垂直距离为12H 的位置上,释放两物块后,A 沿斜面无摩擦地上滑,B 沿斜面的竖直边下落.若物块A 恰好能达到斜面的顶点,试求m 1和m 2的比值.滑轮的质量、半径和摩擦均可忽略不计.例3.质量为m 的物体,从静止开始以2g 的加速度竖直向下运动h 高度,下列说法中正确的是( )A .物体的重力势能减少2mghB .物体的机械能保持不变C .物体的动能增加2mghD .物体的机械能增加mgh例4.质量为4 kg 的物体被人由静止开始向上提升0.25 m 后速度达1 m/s ,则下列判断正确的是( )A .人对物体传递的功是12 JB .合外力对物体做功2 JC .物体克服重力做功10 JD .人对物体做的功等于物体增加的动能例5.如图所示,质量为m 的小球被系在轻绳一端,在竖直平面内作半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续作圆周运动,经过半个圆周恰能通过最高点,求在此过程中小球克服空气阻力所做的功为多少?例6.如图所示ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC 是与AB 和CD 都相切的一段圆弧,其长度可以略去不计.一质量为m 的小滑块在A 点从静止滑下,最后停在D 点,现用一沿着轨道方向的拉力拉滑块,使它缓缓地由D 点回到A 点,则拉力对滑块做的功等于多少(设滑块与轨道间的动摩擦因数为μ)( )A .mghB .2mghC .μmg (l +h sin θ) D .μmgl +μmghcot θ【课时作业】1.在某田赛训练基地备战运动员在艰苦地训练,设某运动员臂长为L ,将质量为m 的铅球推出,铅球出手的速度大小为v 0,方向与水平方向成30°角,则该运动员对铅球所做的功是( )A.m (gL +v 20)2 B .mgL +12mv 20C.12mv 20 D .mgL +mv 20 2.如图所示,两光滑斜面的倾角分别为30°和45°、质量分别为2m 和m 的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放,则在上述两种情形中正确的有( )A .质量为2m 的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用B .质量为m 的滑块均沿斜面向上运动C .绳对质量为m 的滑块的拉力均大于该滑块对绳的拉力D .系统在运动中机械能均守恒3.如图所示,某人以拉力F 将物体沿斜面拉下,拉力大小等于摩擦力,则下列说法中正确的是( )A .物体做匀速运动B .合力对物体做功等于零C .物体的机械能守恒D .物体的机械能减小4.一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于( )A .物体势能的增加量B .物体动能的增加量C .物体动能的增加量加上物体势能的增加量D .物体动能的增加量加上克服重力所做的功5.如图所示,质量为m 的物块从A 点由静止开始下落,加速度是12g ,下落H 到B 点后与一轻弹簧接触,又下落h 后到达最低点C ,在由A 运动到C 的过程中,空气阻力恒定,则( )A .物块机械能守恒B .物块和弹簧组成的系统机械能守恒C .物块机械能减少12mg(H +h) D .物块和弹簧组成的系统机械能减少12mg(H +h) 6.一轻弹簧的左端固定在墙壁上,右端自由,一质量为m 的滑块从距弹簧右端L 0的P 点以初速度v 0正对弹簧运动,如图所示,滑块与水平面的动摩擦因数为μ,在与弹簧碰后反弹回来,最终停在距P 点为L 1的Q 点,求:在滑块与弹簧碰撞过程中弹簧最大压缩量为多少?7.如图所示,AB 与CD 为两个对称斜面,其上部足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R 为2.0 m .一个物体在离弧底E 高度为h =3.0 m 处,以初速度4.0 m/s 沿斜面向上运动,若物体与两斜面的动摩擦因数为0.02,则物体在两斜面上(不包括圆弧部分)一共能走多长路程?(g 取10 m/s 2)8.如图所示,翻滚过山车轨道顶端A 点距地面的高度H =72 m ,圆形轨道最高处的B 点距地面的高度h =37 m .不计摩擦阻力,试计算翻滚过山车从A 点由静止开始下滑运动到B 点时的速度.(g 取10 m/s 2)9.如图所示,光滑的水平轨道与光滑半圆轨道相切,圆轨道半径R =0.4 m .一个小球停放在水平轨道上,现给小球一个v 0=5 m/s 的初速度,求:(g 取10 m/s 2)(1)小球从C 点飞出时的速度.(2)小球到达C 点时,对轨道的作用力是小球重力的几倍?(3)小球从C 点抛出后,经多长时间落地?(4)落地时速度有多大?10.如图所示,ABC 和DEF 是在同一竖直平面内的两条光滑轨道,其中ABC 的末端水平,DEF 是半径为r =0.4 m 的半圆形轨道,其直径DF 沿竖直方向,C 、D 可看作重合.现有一可视为质点的小球从轨道ABC 上距C 点高为H 的地方由静止释放.(1)若要使小球经C 处水平进入轨道DEF 且能沿轨道运动,H 至少要有多高?(2)若小球静止释放处离C 点的高度h 小于(1)中H 的最小值,小球可击中与圆心等高的E 点,求h.(取g =10 m/s 2)11.如图所示,其中v =2 m/s ,木块质量m =10 kg ,h =2 m ,μ=32,θ=30°,g =10 m/s 2. 求(1)小木块从A 端由静止运动到B 端,传送带对其做的功是多少?(2)摩擦产生的热为多少?(3)因传送小木块电动机多输出的能量.。
第七章 机械能守恒定律(全)

第七章机械能守恒定律第1节追寻守恒量第2节功一、功的公式W=Flcos α的基本应用例1质量m=3 kg的物体,受到与斜面平行向下的拉力F=10 N,沿固定斜面下滑距离l=2 m,斜面倾角θ=30°,物体与斜面间的动摩擦因数μ=33.求各力对物体所做的功,以及力对物体所做的总功.(g取10 m/s2)二、有关摩擦力的功的计算例2如图所示的水平传送装置,AB间距为l,传送带以速度v匀速运转.把一质量为m的零件无初速地放在传送带的A处,已知零件与传送带之间的动摩擦因数为μ,试求从A到B的过程中,摩擦力对零件所做的功.三、变力做功问题例3如图所示,摆球质量为m,悬线的长为l,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力Ff的大小不变,求摆球从A运动到竖直位置B时,重力mg、绳的拉力FT、空气阻力Ff各做了多少功?1.伽利略的斜面实验反映了一个重要的事实:如果空气阻力和摩擦力小到可以忽略,小球必将准确地到达同它出发时相同高度的点,决不会更高一点,也不会更低一点.这说明,小球在运动过程中有一个“东西”是不变的,这个“东西”应是()A.弹力B.势能C.速度D.能量2.下列关于做功的说法中正确的是()A.凡是受力作用的物体,一定有力对物体做功B.凡是发生了位移的物体,一定有力对物体做功C.只要物体受力的同时又有位移发生,则一定有力对物体做功D.只要物体受力,又在力的方向上发生位移,则力一定对物体做功3.如图所示,木块A放在木块B的左上端,用恒力F拉至B的右端,第一次将B固定在地面上,F做的功为W1;第二次让B可以在光滑地面上自由滑动,F做的功为W2,比较两次做功,可能是()A.W1<W2B.W1=W2C.W1>W2D.无法比较4.人以20 N的恒力推着小车在粗糙的水平面上前进了5.0 m,人放手后,小车还前进了2.0 m 才停下来,则小车在运动过程中,人的推力所做的功为()A.100 J B.140 JC.60 J D.无法确定5.质量是2 kg的物体置于水平面上,在运动方向上受拉力F作用沿水平面做匀变速运动,物体运动的速度—时间图象如图所示,若物体受摩擦力为10 N,则下列说法正确的是( ) A.拉力做功150 JB.拉力做功100 JC.摩擦力做功250 JD.物体克服摩擦力做功250 J6.如图所示,在光滑水平面上,物体受两个相互垂直的大小分别为F1=3 N和F2=4 N的恒力,其合力在水平方向上,从静止开始运动10 m,求:(1)F1和F2分别对物体做的功是多少?代数和为多大?(2)F1和F2合力为多大?合力做功是多少?7.如图所示,磨杆长为L,在杆端施以与杆垂直且大小不变的力F,求杆绕轴转动一周的过程中力F所做的功.8.如图所示,是一个物体受到的力F与位移l的关系图象,由图象求力F对物体所做的功.题型①功的正负判断及计算如图所示,质量m=2 kg的物体静止在水平地面上,受到与水平面成θ=37°,大小F =10 N的拉力作用,物体移动了l=2 m,物体与地面间的动摩擦因数μ=0.3,g取10 m/s2.求:(1)拉力F所做的功W1.(2)摩擦力Ff所做的功W2.(3)重力G所做的功W3.(4)弹力FN所做的功W4.(5)合力F合所做的功W.题型②摩擦力做功的特点质量为M的长木板放在光滑水平地面上,如图所示.一个质量为m的滑块以某一速度沿木板表面从A端滑到B点,在木板上前进的距离为L,而木板前进的距离为x,若滑块与木板间的动摩擦因数为μ,求:(1)摩擦力对滑块所做的功多大?(2)摩擦力对木板所做的功多大?题型③变力做功的计算如图所示,一质量为m=2.0 kg的物体从半径为R=5.0 m的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB在竖直平面内).拉力F大小不变始终为15 N,方向始终与物体在该点的切线成37°角.圆弧所对应的圆心角为60°,BO边为竖直方向,g取10 m/s2.求这一过程中:(1)拉力F做的功.(2)重力mg做的功.(3)圆弧面对物体的支持力FN做的功.(4)圆弧面对物体的摩擦力Ff做的功.1.如图所示,电动小车沿斜面从A匀速运动到B,则在运动过程中()A.动能减少,势能增加B.动能不变,势能增加C.动能减少,势能不变D.动能不变,势能减少2.下列说法正确的是()A.功是矢量,正、负表示方向B.功是标量,正、负表示外力对物体做功还是物体克服外力做功C.力对物体做正功还是负功,取决于力和位移的方向关系D.力做功总是在某过程中完成的,所以功是一个过程量3.关于摩擦力对物体做功,下列说法中正确的是()A.滑动摩擦力总是做负功B.滑动摩擦力可能做负功,也可能做正功C.静摩擦力对物体一定做负功D.静摩擦力对物体总是做正功4.如图所示,在加速向左运动的车厢中,一个人用力沿车前进的方向推车厢,已知人与车厢始终保持相对静止,那么人对车厢做功的情况是()A.做正功B.做负功C.不做功D.无法确定5.如图所示,重物P放在一长木板OA上,将长木板绕O端转过一个小角度的过程中,重物P相对于木板始终保持静止,关于木板对重物P的摩擦力和支持力做功的情况是() A.摩擦力对重物做正功B.摩擦力对重物做负功C.支持力对重物不做功D.支持力对重物做正功6.如图所示,质量为m的物体,受水平力F的作用,在粗糙的水平面上运动,下列说法中正确的是()A.如果物体做加速直线运动,F一定对物体做正功B.如果物体做减速直线运动,F一定对物体做负功C.如果物体做匀减速直线运动,F也可能对物体做正功D.如果物体做匀速直线运动,F一定对物体做正功7.下列哪些情况中力做的功为零()A.向上抛出一物体,上升过程中,重力对物体做的功B.卫星做匀速圆周运动时,卫星受到的引力对卫星所做的功C.汽车加速前进时,车厢底部对货物的支持力所做的功D.汽车加速前进时,车厢底部对货物的摩擦力所做的功8.质量为1 500 kg的汽车在平直的公路上运动,v—t图象如图9所示.由此可求( )A.前25 s内汽车的平均速度B.前10 s内汽车的加速度C.前10 s内汽车所受的阻力D.15~25 s内合外力对汽车所做的功9.如图所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10 kg的物体,以大小为a=2 m/s2的加速度匀加速上升,求前3 s内力F做的功.(g取10 m/s2)10.如图所示,水平传送带以速度v=6 m/s顺时针运转,两传动轮M、N之间的距离为L=10 m,若在M轮的正上方,将一质量为m=3 kg的物体轻放在传送带上,已知物体与传送带之间的动摩擦因数μ=0.3,在物体由M处传送到N处的过程中,传送带对物体的摩擦力做了多少功?(g取10 m/s2)11.如图所示,质量为m的物体以一定初速度v0滑上斜面,上滑到最高点后又沿原路返回.已知斜面倾角为θ,物体与斜面的动摩擦因数为μ,上滑的最大高度为h.则物体从开始滑上斜面到滑回到原出发点的过程中,重力做功是多少?摩擦力做功是多少?第3节功率一、功率的计算例1一台起重机从静止起匀加速地将质量m=1.0×103kg的货物竖直吊起,在2 s末货物的速度v=4.0 m/s.求起重机在这2 s内的平均输出功率及2 s末的瞬时功率.(g=10 m/s2)二、有关功率和速度的问题例2为了响应国家的“节能减排”号召,某同学采用了一个家用汽车的节能方法.在符合安全行驶要求的情况下,通过减少汽车后备箱中放置的不常用物品和控制加油量等措施,使汽车负载减少.假设汽车以72 km/h的速度匀速行驶时,负载改变前、后汽车受到的阻力分别为2 000 N和1 950 N.请计算该方法使汽车发动机输出功率减少了多少?三、关于机车的启动分析例3质量为10 t的汽车,额定功率为5.88×104 W,在水平路面上行驶的最大速度为15 m/s,则汽车所受的最大阻力是多少?当车速为10 m/s时,汽车的加速度是多大?1.关于功率公式P=Wt和P=Fv的说法正确的是()A.由P=Wt知,只要知道W和t就可求出任意时刻的功率B.由P=Fv只能求某一时刻的瞬时功率C.从P=Fv知汽车的功率与它的速度成正比D.从P=Fv知当汽车发动机功率一定时,牵引力与速度成反比2.质量为m的汽车由静止开始以加速度a做匀加速运动,经过时间t,汽车达到额定功率,则下列说法正确的是()A .at 即为汽车额定功率下的速度最大值B .at 还不是汽车额定功率下速度最大值C .汽车的额定功率是ma 2tD .题中所给条件求不出汽车的额定功率3.一质量为m 的木块静止在光滑的水平面上,从t =0开始,将一个大小为F 的水平恒力作用在该木块上,在t =t 1时刻力F 的功率是 ( )A.F 22m t 1B.F 22m t 21C.F 2m t 1D.F 2mt 21 4.一汽车在水平公路上行驶,设汽车在行驶过程中所受阻力不变.汽车的发动机始终以额定功率输出,关于牵引力和汽车速度的下列说法中正确的是 ( )A .汽车加速行驶时,牵引力不变,速度增大B .汽车加速行驶时,牵引力增大,速度增大C .汽车加速行驶时,牵引力减小,速度增大D .当牵引力等于阻力时,速度达到最大值5.质量为m 的物体沿直线运动,只受到一个力F 的作用.物体的位移l 、速度v 、加速度a 和F 对物体做功功率P 随时间变化的图象如图所示,其中不可能的是 ()6.质量为m ,发动机的额定功率为P 0的汽车沿平直公路行驶,当它的加速度为a 时,速度为v ,测得发动机的实际功率为P 1,假设运动中所受阻力恒定,则它在平直公路上匀速行驶的最大速度是 ( )A .v B.P 1maC.P 0v P 1-mavD.P 1v P 0-mav7.将一质量为m 的物体从离地面h 处,以速度v 0水平抛出,求物体从抛出到落地过程中重力的功率和在物体刚要落地时重力的功率(不计空气阻力).8.医生用20 N 的力将5 mL 药液在30 s 的时间内注入病人的体内,若活塞的横截面积是1 cm 2,试计算医生对活塞做功的平均功率是多大?题型 ① 瞬时功率和平均功率的计算如图1所示,质量为m =2 kg 的木块在倾角θ=37°的斜面上由静止开始下滑,木块与斜面间的动摩擦因数为μ=0.5,已知:sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2,求:(1)前2 s 内重力做的功. (2)前2 s 内重力的平均功率. (3)2 s 末重力的瞬时功率.题型 ② 功率和速度的关系铁路提速,要解决许多技术问题.通常,列车阻力与速度平方成正比,即Ff =kv 2.列车要跑得快,必须用大功率的机车来牵引.试计算列车分别以120 km/h 和40 km/h 的速度匀速行驶时,机车功率大小的比值.拓展探究 一质量为m 的汽车,它的发动机的额定功率为P ,沿一倾角为α的坡路向上行进,设坡路足够长,摩擦阻力是汽车重力的k 倍,汽车在上坡过程中最大速度为 ( )A.P mgsin αB.Pcos αmgC.P mg (k +sin α)D.P mgk题型 ③ 机车的启动问题一汽车额定功率为100 kW ,质量为1.0×104 kg ,设阻力恒为车重的k =0.1倍.(1)若汽车保持恒定功率运动,求运动的最大速度.(2)若汽车以0.5 m/s 2匀加速运动,求其匀加速运动的最长时间.拓展探究 (1)在上例中保持额定功率运动,当汽车速度为5 m/s 时,运动的加速度是多大? (2)汽车从静止开始能保持加速度a 做匀加速运动的最长时间为tm ,此后汽车的运动情况是( ) A .加速度为零,速度恒定B .加速度逐渐减小直到为零,速度逐渐增大直到最大值后保持匀速C .加速度逐渐减小,直到为零,速度也逐渐减小直到为零D .加速度增大到某一值后不变,速度逐渐增大直到最后匀速1.关于功和功率,下列说法正确的是 ( )A .不同物体做相同的功,它们的功率一定相同B .物体做功越多,它的功率就越大C .物体做功越快,它的功率就越大D .发动机的额定功率与实际功率可能相等,也可能不相等2.同一恒力按同样的方式施于物体上,使它分别由静止开始沿着粗糙水平地面和光滑水平地面移动相同的一段距离,恒力做的功和平均功率分别为W 1、P 1和W 2、P 2,则两者的关系是( )A .W 1>W 2,P 1>P 2B .W 1=W 2,P 1<P 2C .W 1=W 2,P 1>P 2D .W 1<W 2,P 1<P 23.提高物体(如汽车)运动速率的有效途径是增大发动机的功率和减小阻力因数(设介质阻力与物体运动速率的平方成正比,即F 阻=kv 2,k 是阻力因数).当发动机的额定功率为P 0时,物体运动的最大速率为vm ,如果要使物体运动速率增大到2vm ,则下列方法可行的是( )A .阻力因数不变,使发动机额定功率增大到2P 0B .发动机额定功率不变,使阻力因数减小到k4C .阻力因数不变,使发动机额定功率增大到8P 0D .发动机额定功率不变,使阻力因数减小到k84.一辆小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持额定功率运动,其v —t 图象如图2所示.已知汽车的质量为m =2×103 kg ,汽车受到地面的阻力为车重的0.1倍,则( )A .汽车在前5 s 内的牵引力为4×103 NB .汽车在前5 s 内的牵引力为6×103 NC .汽车的额定功率为60 kWD .汽车的最大速度为30 m/s5.雨滴在空中运动时所受阻力与其速度的平方成正比,若有两个雨滴从高空中落下,其质量分别为m 1、m 2,至落到地面前均已做匀速直线运动,此时重力的功率之比为( )A .m 1∶m 2 B.m 1∶m 2C.m 2∶m 1D.m 31∶m 326.如图3所示,质量相同的两物体处于同一高度,A 沿固定在地面上的光滑斜面下滑,B 自由下落,最后到达同一水平面,则( )A .重力对两物体做功相同B .重力的平均功率相同C .到达底端时重力的瞬时功率P A <P BD .到达底端时两物体的动能相同,速度相同7.大地震,破坏性巨大,山崩地裂,房屋倒塌,道路中断,给抗灾抢险工作带来很大难度,大型机械一旦进入现场,其作用非常巨大.一起重机由静止开始匀加速竖直提起质量为m 的重物,当重物的速度为v 1时,起重机的有用功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度匀速上升为止,重力加速度为g ,空气阻力不计.(1)试对重物上升的整个过程进行运动性质分析. (2)求钢绳的最大拉力为多大? (3)求重物的最大速度为多大?8.滑板运动是一项非常刺激的水上运动.研究表明,在进行滑板运动时,水对滑板的作用力FN 垂直于板面,大小为kv 2,其中v 为滑板速率(水可视为静止).某次运动中,在水平牵引力作用下,当滑板和水面的夹角θ=37°时(如图所示),滑板做匀速直线运动,相应的k =54 kg/m ,人和滑板的总质量为108 kg ,试求(g 取10 m/s 2,sin 37°=35,忽略空气阻力):(1)水平牵引力的大小. (2)滑板的速率.(3)水平牵引力的功率.9.随着我国汽车行业的不断发展壮大,汽车逐步走入城市和少数农村家庭,但是拖拉机以其独有的特点在广大的农村乡镇,田间地头还是经常见到.假如某台拖拉机的输出功率是2.72×104 W ,已知拖拉机三个挡的速度分别为36 km/h 、46 km/h 和54 km/h ,则(1)拖拉机在采用这三个挡的速度时的牵引力各为多大? (2)由上面的计算分析,拖拉机与普通汽车相比有何特点?(3)由上面的计算,给驾驶拖拉机的农民朋友提一条合理的建议.第4节 重力势能一、重力做功问题例1 在高处的某一点将两个重力相同的小球以相同速率v 0分别竖直上抛和竖直下抛,下列结论正确的是(不计空气阻力) ( )A .从抛出到刚着地,重力对两球所做的功相等B .从抛出到刚着地,重力分别对两球做的功都是正功C .从抛出到刚着地,重力对两球的平均功率相等D .两球刚着地时,重力的瞬时功率相等 二、重力势能及其变化的理解 例2 如图所示,桌面距地面的高度为0.8 m ,一物体质量为2 kg ,放在距桌面0.4 m 的支架上,则(g 取10 m/s 2)(1)以桌面为零势能参考面,计算物体具有的重力势能,并计算撤去桌面及支架后物体由支架下落到地面过程中重力势能减少多少?(2)以地面为零势能参考面,计算物体具有的重力势能,并计算撤去桌面及支架后物体由支架下落到地面过程中重力势能减少多少?(3)比较以上计算结果,说明什么问题?三、重力做功与重力势能的变化关系例3 起重机以g4的加速度,将质量为m 的物体匀减速地沿竖直方向提升h 高度,则起重机钢索的拉力对物体做的功为多少?物体克服重力做功为多少?物体的重力势能变化了多少?(空气阻力不计)1.如图所示, A 点距地面高为h ,B 点在地面上,一物体沿两条不同的路径ACB 和ADB 由A 点运动到B 点,则( )A .沿路径ACB 重力做的功多一些 B .沿路径ADB 重力做的功多一些C .沿路径ACB 和路径ADB 重力做的功一样多D .无法判断沿哪条路径重力做的功多一些 2.关于重力势能,下列说法中正确的是( )A .物体的位置一旦确定,它的重力势能的大小也随之确定B .物体与零势能面的距离越大,它的重力势能也越大C .一个物体的重力势能从-5 J 变化到-3 J ,重力势能减少了D .重力势能的减少量等于重力对物体做的功3.下列关于重力做功及重力势能的说法中,正确的是( )A .两物体A 、B ,A 的高度是B 的2倍,那么A 的重力势能也是B 的2倍B .如果考虑空气阻力,从某一高度下落一物体到达地面,物体重力势能的减少要比无阻力自由下落时重力势能减少得少C .重力做功的多少,与参考平面的选取无关D .相对不同的参考平面,物体具有不同数值的重力势能,但这并不影响研究有关重力势能的问题4.利用超导材料和科学技术可以实现磁悬浮.若磁悬浮列车的质量为20 t ,因磁场间的相互作用而浮起的高度为 100 mm ,则该过程中磁悬浮列车增加的重力势能为( )A .20 JB .200 JC .2.0×104 JD .2.0×107 J5.甲、乙两个物体的位置如图7-4-6所示, 质量关系m 甲<m 乙,甲在桌面上,乙在地面上,若取桌面为零势能面,甲、乙的重力势能分别为E p1、E p2,则有( )A .E p1>E p2B .E p1<E p2C .E p1=E p2D .无法判断6.一只100 g 的球从1.8 m 的高处落到一个水平板上又弹回到1.25 m 的高度,则整个过程中重力对球所做的功及球的重力势能的变化是(g =10 m/s 2)( )A .重力做功为1.8 JB .重力做了0.55 J 的负功C .物体的重力势能一定减少0.55 JD .物体的重力势能一定增加1.25 J7.面积很大的水池,水深为H ,水面上浮着一正方体木块,木块边长为a ,密度为水的12,质量为m ,开始时,木块静止,有一半没入水中.如图7-4-7所示,现用力F 将木块缓慢地压到池底,不计摩擦.求从木块刚好完全没入水中到停在池底的过程中,池水势能的改变量.题型 ① 重力做功的特点问题如图所示,质量为m 的小球从高为h 的斜面上的A 点滚下经水平面BC 后,再滚上另一斜面,当它到达h3处的D 点时,速度为零,此过程中重力做的功是多少?拓展探究 将一个物体由A 移至B ,重力做功( ) A .与运动过程中是否存在阻力有关 B .与物体沿直线或曲线运动有关C .与物体做加速、减速或匀速运动有关D .与物体初末位置的高度差有关题型 ② 重力势能以及重力势能的变化问题如图所示,质量为m 的小球,从离桌面H 高处由静止下落,桌面离地高度为h.若以桌面为参考平面,那么小球落地时的重力势能及整个过程中重力势能的变化分别是( )A .mgh 减少mg(H -h)B .mgh 增加mg(H +h)C .-mgh 增加mg(H -h)D .-mgh 减少mg(H +h)拓展探究 上题中,若以地面为参考面结果如何呢?题型 ③ 重力做功与重力势能的改变之间的关系如图所示,总长为2 m 的光滑匀质铁链,质量为10 kg ,跨过一光滑的轻质定滑轮.开始时铁链的两端相齐,当略有扰动时某一端开始下落,求:从铁链刚开始下落到铁链刚脱离滑轮这一过程中,重力对铁链做了多少功?重力势能如何变化?(g 取10 m/s 2)拓展探究 一根均匀的直棒水平放在地面上,将它垂直立起时O 端不滑动,如图所示,若棒的质量为m ,棒长为l ,则棒被垂直立起时外力做功至少为多少?重力做功为多少?重力势能如何变化?1.如图所示,某游客领着孩子游泰山时,孩子不小心将手中的皮球滑落,球从A 点滚到了山脚下的B 点,高度标记如图所示,则下列说法正确的是( )A .从A 到B 的曲线轨迹长度不知道,无法求出此过程中重力做的功 B .从A 到B 过程中阻力大小不知道,无法求出此过程中重力做的功C .从A 到B 重力做功mg(H +h)D .从A 到B 重力做功mgH2.关于重力势能,下列说法中正确的是( ) A .重力势能的大小只由重物本身决定 B .重力势能恒大于零C .在地面上的物体,它具有的重力势能一定等于零D .重力势能实际是物体和地球所共有的3.要将一个质量为m 、边长为a 的匀质正立方体翻倒,推力对它做功至少为 ( )A.2mgaB.2mga2C .(2+1)mga 2D .(2-1)mga24.有关重力势能的变化,下列说法中正确的是( )A .物体受拉力和重力作用向上运动,拉力做功是1 J ,但物体重力势能的增加量有可能不是1 JB .从同一高度将某一物体以相同的速率平抛或斜抛,落到地面上时,物体重力势能的变化是相同的C .从同一高度落下的物体到达地面,考虑空气阻力和不考虑空气阻力的情况下重力势能的减少量是相同的D .物体运动中重力做功是-1 J ,但物体重力势能的增加量不是1 J5.运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是( )A.阻力对系统始终做负功B.系统受到的合外力始终向下C .重力做功使系统的重力势能增加D .任意相等的时间内重力做的功相等6.一条长为l 、质量为m 的匀质轻绳平放在水平地面上,在缓慢提起全绳的过程中,设提起前半段绳人做的功为W 1,提起后半段绳人做的功为W 2,则W 1∶W 2等于( )A .1∶1B .1∶2C .1∶3D .1∶47.如图所示, 在光滑的桌面上有一根均匀柔软的质量为m 、长为l 的绳,其绳长的14悬于桌面下,从绳子开始下滑至绳子刚好全部离开桌面的过程中,重力对绳子做的功为多少?绳子重力势能变化如何?(桌面离地高度大于l.)8.如图所示,杆中点有一转轴O ,两端分别固定质量为2m 、m 的小球a 和b ,当杆从水平位置转到竖直位置时,小球a 和b 构成的系统的重力势能如何变化,变化了多少?9.如图所示, 有一连通器,左右两管的横截面积均为S ,内盛密度为ρ的液体,开始时两管内的液面高度差为h.若打开底部中央的阀门K ,液体开始流动,最终两液面相平.在这一过程中,液体的重力势能变化了多少?答案 重力势能减少了14ρgSh 2第5节 探究弹性势能的表达式一、弹性势能的理解例1 关于弹性势能,下列说法中正确的是 ( ) A .任何发生弹性形变的物体,都具有弹性势能 B .任何具有弹性势能的物体,一定发生了弹性形变 C .物体只要发生形变,就一定具有弹性势能D .弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关 二、弹力做功的计算例2 弹簧原长L 0=15 cm ,受拉力作用后弹簧逐渐伸长,当弹簧伸长到L 1=20 cm 时,作用在弹簧上的力为400 N ,问:(1)弹簧的劲度系数k 为多少? (2)在该过程中弹力做了多少功? (3)弹簧的弹性势能变化了多少?三、重力势能和弹性势能例3 在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为m 的木块相连,若在木块上再作用一个竖直向下的力F ,使木块缓慢向下移动h ,力F 做功W 1,此时木块再次处于平衡状态,如图7-5-5所示.求:(1)在木块下移h 的过程中重力势能的减少量. (2)在木块下移h 的过程中弹性势能的增加量.1.关于弹簧的弹性势能,下列说法正确的是 ( ) A .弹簧的弹性势能跟拉伸(或压缩)的长度有关 B .弹簧的弹性势能跟弹簧的劲度系数有关C .同一弹簧,在弹性限度内,形变量越大,弹性势能越大D .弹性势能的大小跟使弹簧发生形变的物体有关2.关于弹性势能和重力势能,下列说法不正确的是( )A .重力势能属于物体和地球这个系统,弹性势能属于发生弹性形变的物体B .重力势能是相对的,弹性势能是绝对的C .重力势能和弹性势能都是相对的D .重力势能和弹性势能都是状态量3.如图7-5-6所示,弹簧的一端固定在墙上,另一端在水平力F 作用下缓慢拉伸了l.关于拉力F 随伸长量l 的变化图线,下图中正确的是( )4.在一次演示实验中,一压紧的弹簧沿一粗糙水平面射出一小球,测得弹簧压缩的距离d 和小球在粗糙水平面滚动的距离l 的数据如下表所示.由此表可以归纳出小球滚动的距离l跟弹簧压。
高一物理机械能守恒定律

即
2
mv1 mgh 1
Ek 2 E p 2 Ek1 E p1
结 论 在只有重力做功的物体系内, 动能和重力势能可以相互转化,而 机械能的总量保持不变。 同样可以证明: 在只有弹簧弹力做功的物体系 内,动能与势能可以相互转化,而 物体机械能的总量也保持不变。
第七章 机械能及其守恒定律
第8节 机械能守恒定 律
机 械 能
1、定义:物体的动能和势能之 和称为物体的机械能。 机械能包括动能、重力势能、 弹性势能。 2、表达式:E=EK+EP
实验1
v
G 钢球
小球在摆动过程中 重力势能和动能在不断 转化。在摆动过程中, 小球总能回到原来的高 度。 这个实验说明了什 么?
机械能守恒定律成立的条件:
只有重力或弹力做功.
A、从做功角度分析
只有重力或系统内弹簧弹力做功,其 它力不做功(或其它力合力所做功为零) B、从能量转化角度分析 只有系统内动能和势能相互转化, 无其它形式能量之间(如内能)转化。
例 把一个小球用
细绳悬挂起来,就成 为一个摆(如图), 摆长为l ,最大偏角为 θ .小球运动到最低 位置时的速度是多大?
一、动能与势能的相互转化 1、动能和重力势能可以相互转化 2、动能和弹性势能可以相互转化 通过重力或弹簧弹力做功,机 械能可以从一种形式转化成另 一种形式。
情境:质量为m的物体自由下落过 程中,经过高度h1的A点时速度为v1, 下落至高度h2的B点处速度为v2,不计 空气阻力,取地面为参考平面,试写出 物体在A点时的机械能和B点时的机械 能,并找到这两个机械能之间的数量关 系。 1 1 2 2
l
θ
F
A
v O G
第七章 机械能守恒定律

第七章机械能守恒定律1.追寻守恒定律——能量知识点一追寻守恒定律——能量1.实验探究守恒量实验操作:两光滑斜面的高度相同,坡度不同。
让一光滑小球从斜面A滚下,继续滚上另一坡度不同的斜面B,如图所示。
实验结果:小球在斜面B上的某点速度变为零,该点距斜面底部的竖直市高度与它出发时的高度相同。
实验结论:物理学家把这一事实说成是“某个量是守恒的”,并把这个量叫做能量或能。
2.一个物体如果具备了对外做功的本领,我们就说这个物体具有能量。
3.能量是状态量,是标量,与物体自我的某一状态相对应。
知识点二势能1.定义:相互作用的物体凭借其位置而具有的能量叫做势能,如重力势能、弹性势能等。
2.势能是能量的一种具体形式,是标量,是由相互作用力和相对位置共同决定的。
知识点三动能1.定义:物体由于运动而具有的能量叫做运动。
如流动的水、吹来的风、运转的天体、绕原子核旋转的电子等都具有动能。
2.动能与物体的质量和速度有密切的联系。
3.运动与物体运动过程中某一状态相对应,是标量,并且总为正值。
4.一切运动物体都具有动能,大到天体,小到微观粒子。
拓展点对“守恒量”的理解1.所谓“守恒”是指数值保持恒定。
对伽利略实验,我们可以这样理解,如果空气阻力和摩擦力小到可以忽略,小球必将滚到它原来的高度,小球好象记得“自己的起始高度”,我们把小球“记得”的这个“东西”叫做守恒量。
2.守恒量是自然界在变化过程中隐藏于现象中的一个反映其本质的物理量,所以寻找守恒量必须讲究科学的方法,在分析一个具体的事例或运动时,要注意把握其受力特点及过程特点。
2.功知识点一功的概念1.定义:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2.做功的两个因素:有作用力和且物体在力的方向上发生的位移。
3.功的大小:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积,即αcosW=。
Fl说明(1)式中的F一般指恒力,l是在力的作用下物体的位移,a是力F的方向与位移l的方向的夹角。
第七章----机械能守恒定律—--期末复习

〈教学设计〉第七章----机械能守恒定律—--期末复习铜梁中学物理组吴昌水A 知识点一、功、功率和机车启动1、功:(1)恒力..(力的大小和方向都不变)做功:W=F s cos ,(θ是指力矢量与位移矢量平移同一起点方向夹角)。
功的本质是力在空间的积累,所谓积累,既可以是力在位移方向的分量Fcos θ与位移s 的乘积,也可以是位移在力的方向上的分量 s cos θ与力F 的乘积。
理解功的概念时,要从本质上进行理解,而不能乱套公式.(上述功的定义式对恒力才适用.);(2)功的正负的含义:力对物体做正功,导致物体能量增加;力对物体做负功,导致物体能量减少;(3)功与参照物有关,一般以地面为参照物;(4)总功是指合力做的功或各力做功的代数和。
2、功率:指力做功的快慢,单位:瓦特(w )。
(1)平均功率:平均功率公式:P平均=W/t ;(2)瞬时功率:P=Fvcos θ==F (vcos θ)=(Fcos θ)v ,(θ是指力矢量与速度矢量平移同一起点方向夹角) )当例F 与速度V 同向时,P=FV (V=P/F 或F=P/V );当力F 与速度V 垂直时,力F 不做功。
3、机车起动:(1)、以恒定功率起动汽车从静止开始以额定功率起动:开始时由于汽车的速度很小,由公式F=P/V 知:牵引力F 较大,因而由牛顿第二定律F-f=ma 知,汽车的加速度较大.随着时间的推移,汽车的速度将不断增大,牵引力F 将减小,加速度减小,但是由于速度方向和加速度方向相同,汽车的速度仍在不断增大,牵引力将继续减小,直至汽车的牵引力F 和阻力f 相平衡为止. 汽车的牵引力F 和阻力f 平衡时,F-f=0,加速度a =0,汽车的速度达到最大值v m .汽车的运动形式是做加速度越来越小的变加速直线运动,最终做匀速直线运动.其速度-时间图像如图4-1-3所示.(v m =P/f ;a=((p/v)-f)/m ;结合动能定理计算位移和速度。
第七章 机械能守恒定律 单元知识总结

结论
几个力对一个物体做功的代数和,等于这几个力 的合力对物体所做的功。
总功的求法
方法一:先求每一个力所做的功,再求它们的代数和;
W=W1+w2+…
方法二:先求合力,再求合力所做的功。
W合=F合lcosα
功
率 若 v表示平均 与 速度,则P 表 速 示平均功率 度
若v表示瞬时速度, 则P 表示瞬时功率
第七章 机械能守恒定律单元知识总结
3、功的计算公式: W = F l cosα
力对物体所做的功,等于力的大小、位移的大小、 力与位移夹角的余弦这三者的乘积。
说明: F是作用在物体上的恒力 l是力F的作用点相对地面发生的位移
α是矢量F和l的夹角,0 ≤α≤180° 4、功的单位:
在国际单位制中:焦耳(焦) 符号:J
问
题
v↑
F↓=→vP↑
a↓ =
F↓-F→阻 →m
ห้องสมุดไป่ตู้
当F=F阻时,
a=0 ,v达到
最大
vm=
P F阻
保持
vm
匀速
加速度逐渐减小的 变加速直线运动
匀速直 线运动
附
: 机 机车以恒定功率启动的v- t 图
车
启
先做加速度逐渐减小的变加速直线运
动
动,最终以速度
vm=
P F阻
做匀速直线运动。
问 题
v
vm
0
t
附
(1)汽车的最大速度vm; (2)汽车在72 s内经过的路程s.
【精讲精析】 (1)达到最大速度时,P =Ffvm, vm=FPf=26.5××110043m/s=24 m/s; (2)Pt-Ffs=12mv2m-12mv20 s=2Pt-m2vF2mf +mv20=1252 m. 【答案】 (1)24 m/s (2)1252 m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章机械能守恒定律知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θ——某力功,单位为焦耳()——某力(要为恒力),单位为牛顿()S——物体运动的位移,一般为对地位移,单位为米(m)——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当时,即力与位移成锐角,功为正;动力做功;当时,即力与位移垂直功为零,力不做功;当时,即力与位移成钝角,功为负,阻力做功;5功是一个过程所对应的量,因此功是过程量。
6功仅与F、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W合=W1+W2+…+Wn 或W合= F合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W=Fl cosα求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:(平均功率)(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P实≤P额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P=Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由(为机车输出功率,为机车牵引力,为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力时,速度不再增大达到最大值,则。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力恒定为,速度不断增加汽车输出功率随之增加,当时,开始减小但仍大于因此机车速度继续增大,直至时,汽车便达到最大速度,则。
三、重力势能1定义:物体由于被举高而具有的能,叫做重力势能。
2公式:h——物体具参考面的竖直高度3参考面a重力势能为零的平面称为参考面;b选取:原则是任意选取,但通常以地面为参考面若参考面未定,重力势能无意义,不能说重力势能大小如何选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。
4标量,但有正负。
重力势能为正,表示物体在参考面的上方;重力势能为负,表示物体在参考面的下方;重力势能为零,表示物体在参考面上。
5单位:焦耳(J)6重力做功特点:物体运动时,重力对它做的功只跟它的初、末位置有关,而跟物体运动的路径无关。
7、重力做功与重力势能变化的关系(1)物体的高度下降时,重力做正功,重力势能减少,重力势能减少的量等于重力所做的功;(2)物体的高度增加时,重力做负功,重力势能增加,重力势能增加的量等于物体克服重力所做的功。
(3)重力势能变化只与重力做功有关,与其他力做功无关。
四、弹性势能1概念:发生弹性形变的物体的各部分之间,由于弹力的相互作用具有势能,称之为弹性势能。
2 弹力做功与弹性势能的关系当弹簧弹力做正功时,弹簧的弹性势能减小,弹性势能变成其它形式的能;、当弹簧的弹力做负功时,弹簧的弹性势能增大,其它形式的能转化为弹簧的弹性势能。
这一点与重力做功跟重力势能变化的关系相似。
3势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。
五、动能1概念:物体由于运动而具有的能量,称为动能。
2动能表达式:3动能定理(即合外力做功与动能关系):4理解:①在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
②做正功时,物体动能增加;做负功时,物体动能减少。
③动能定理揭示了合外力的功与动能变化的关系。
4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。
5应用动能定理解题步骤:a确定研究对象及其运动过程b分析研究对象在研究过程中受力情况,弄清各力做功c确定研究对象在运动过程中初末状态,找出初、末动能d列方程、求解。
六、机械能1机械能包含动能和势能(重力势能和弹性势能)两部分,即。
2机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,即ΔΕK = —ΔΕPΔΕ1 = —ΔΕ2。
3机械能守恒条件:做功角度:只有重力或弹力做功,无其它力做功;其它力不做功或其它力做功的代数和为零;系统内如摩擦阻力对系统不做功。
能量角度:首先只有动能和势能之间能量转化,无其它形式能量转化;只有系统内能量的交换,没有与外界的能量交换。
4运用机械能守恒定律解题步骤:a确定研究对象及其运动过程b分析研究对象在研究过程中受力情况,弄清各力做功,判断机械能是否守恒c恰当选取参考面,确定研究对象在运动过程中初末状态的机械能d列方程、求解。
七、能量守恒定律1内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变,即。
2能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。
机械能守恒定律复习测试题一、选择题(每小题5分)1.关于功率公式和P=Fv的说法正确的是 ( )A.由知,只要知道W和t就可求出任意时刻的功率B.由P=Fv只能求某一时刻的瞬时功率C.从P=Fv知汽车的功率与它的速度成正比D.从P=Fv知当汽车发动机功率一定时,牵引力与速度成反比2.下列物体中,机械能守恒的是 ( )A.做竖直上抛运动的物体B.被匀速吊起的集装箱C.光滑曲面上自由运动的物体D.在粗糙水平面上运动的物体3.下列几种情况下力F都对物体做了功( )①水平推力F推着质量为m的物体在光滑水平面上前进了s②水平推力F推着质量为2m的物体在粗糙水平面上前进了s③沿倾角为θ的光滑斜面的推力F将质量为m的物体向上推了s。
下列说法中正确的是( ).A.③做功最多B.②做功最多C.做功都相等D.不能确定4.两个物体质量比为1∶4,速度大小之比为4∶1,则这两个物体的动能之比为( )A.1∶1B.1∶4C.4∶1D.2∶15.下列关于运动物体所受合外力做功和动能变化的关系正确的是()A.如果物体所受合外力为零,则合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下做变速运动,动能一定发生变化D.物体的动能不变,所受合外力一定为零6.一辆汽车从静止出发在平直公路上加速前进,如果汽车发动机功率一定,在达到最大速度之前( )A.汽车的加速度大小不变 B.汽车的加速度不断增加C.汽车的加速度不断减小 D.汽车的加速度大小跟速度成反比7.某人用手将1kg物体由静止向上提起1m, 这时物体的速度为2m/s, 则下列说法正确的是( )A.手对物体做功12JB.合外力做功2JC.合外力做功12JD.物体克服重力做功10J8.关于机械能是否守恒的叙述,正确的是( )A.做匀速直线运动的物体机械能一定守恒B.做变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.若只有重力对物体做功,物体的机械能一定守恒9.质量为m的物体,在距地面h高处以 的加速度由静止竖直下落到地面,下列说法中正确的是( )A.物体重力势能减少B.物体的机械能减少C.物体的动能增加D.重力做功mgh10.质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是( )A.子弹克服阻力做的功与木块获得的动能相等B.阻力对子弹做的功与子弹动能的减少相等C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功大于子弹对木块做的功二、填空题(16分)11.如图:用F =40N的水平推力推一个质量m=3.0 kg的木块,使其沿着光滑斜面向上移动2m,则在这一过程中,F做的功为_______J,重力做的功为_______J.12. 质量10t的汽车,额定功率是60kw,在水平路面上行驶的最大速度为15m/s,设它所受运动阻力保持不变,则汽车受到的运动阻力是________;在额定功率下,当汽车速度为10m/s时的加速度_________。
13. 甲、乙、丙三辆汽车的质量之比是1:2:3,如果它们的动能相等,且轮胎与水平地面之间的动摩擦因数都相等, 则它们关闭发动机后滑行距离之比是_______。
14.从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为____________三、实验题(12分)15. 在“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50Hz。
查得当地的重力加速度为g=9.80m/s2,某同学选择了一条理想的纸带,用刻度尺测量时各计数点对应刻度尺的读数如图所示。
图中O点是打点计时器打出的第一个点,A、B、C、D分别是每打两个点取出的计数点,则重物由O点运动到B点时,求;(重物质量为m)(1).下列关于“验证机械能守恒定律”实验的实验误差的说法,正确的是A.重物质量的称量不准会造成较大误差B.重物质量选用得大些,有利于减小误差C.重物质量选用得较小些,有利于减小误差D.打点计时器选用电磁打点计时器比电火花计时器误差要小(2)重力势能减小量为多少?动能的增加量是什么?(3)根据计算的数据可得出什么结论?产生误差的主要原因是什么?四、计算题(共32分)16.以10m/s的初速度从10m高的塔上抛出一颗石子,不计空气阻力,求石子落地时速度的大小.17.如图5-5-2长l=80cm的细绳上端固定,下端系一个质量m=100g的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2.18. 半径R=1m的1/4圆弧轨道下端与一水平轨道连接,水平轨道离地面高度h=1m,如图所示,有一质量m=1.0kg的小滑块自圆轨道最高点A由静止开始滑下,经过水平轨迹末端B时速度为4m/s,滑块最终落在地面上,试求:(1)不计空气阻力,滑块落在地面上时速度多大?落地点距B点的水平距离。
(2)滑块在轨道上滑行时克服摩擦力做功多少?第七章 单元测试题(1)一、选择题1、一质量为m的木块静止在光滑水平面上.从t=0开始,将一个大小为F的水平恒力作用在该木块上.在t=t1时刻,力F的功率是 ( )A. B. C. D.2、起重机吊钩下挂着一个质量为m的木箱,如木箱以加速度a匀减速下降高度h,则木箱克服钢索拉力做的功为()A.mgh B.m(g-a)h C.m(g+a)h D.m(a-g)h3、汽车由静止开始运动,设汽车所受的阻力一定,若要使汽车在开始运动的一小段时间内保持匀加速直线运动,则( )A.不断增大牵引力功率 B.不断减小牵引力功率C.保持牵引力功率不变 D.不能判断牵引力功率如何变化4、小明同学因上课迟到,一口气便从一楼跑到三楼,用时10秒,则他上楼过程中克服自己重力做功的功率最接近下列的哪个值?( )A、3WB、30WC、300WD、3000W5、当重力做负功时 ( )A.重力势能一定增加 B.重力势能一定减少C.物体速度可能增大 D.物体速度可能减小6关于弹簧的弹性势能,下列说法中正确的是 ( )A.当弹簧变长时,它的弹性势能一定增大B.当弹簧变短时,它的弹性势能一定变小C.若选弹簧自然长度时的势能为零,则其他长度的势能均为正值D.若选弹簧自然长度时势能为零,则伸长的弹性势能为正值,压缩的弹性势能为负值7、在光滑的水平面上,用水平拉力分别使两物体由静止获得相同的动能,那么可以肯定的是( )A.两次水平拉力一定相等 B.两物体质量肯定相等C.两物体速度变化一定相等 D.水平拉力对两物体做的功一定相等8、一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行,从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内水平力做功为( )A.0 B.8J C.16J D.32J9、一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则( )A.过程Ⅰ中钢珠动能的改变量等于重力做的功B.过程Ⅱ中阻力做的功等于过程Ⅰ中重力做的功C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与Ⅱ中钢珠减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能10、自由摆动的秋千摆动幅度越来越小,下列说法正确的是( )A.机械能守恒B.能量正在消失C.只有动能和重力势能的相互转化D.减少的机械能转化为内能,但总能量守恒11、下列设想中,符合能量转化和守恒定律的是( )A.利用永磁铁和软铁的相互作用,做成一架机器,永远地转动下去B.制造一架飞机,不携带燃料,只需利用太阳能就能飞行C.做成一只船,利用流水的能量,逆水行驶,不用其他动力D.利用核动力使地球离开太阳系12、能量耗散是指 ( )A.在能源的利用过程中,能量在数量上减少了B.在能源的利用过程中,能量完全不能利用了C.在能源的利用过程中,能量可利用的品质降低了D.在能源的利用过程中,能量在数量上增多了13、 在光滑水平面上停放一木块,一子弹水平射穿木块,对此过程,下列说法中正确的是( )A.摩擦力(子弹与木块间)对木块做的功等于木块动能的增加B.摩擦力对木块做的功完全转化为木块的内能C.子弹损失的机械能等于子弹与木块增加的内能D.子弹损失的机械能等于木块动能与系统内能的增加量14、如图1所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中( )A.重力先做正功,后做负功图1B.弹力没有做正功C.金属块的动能最大时,弹力与重力相平衡D.金属块的动能为零时,弹簧的弹性势能最大15、如图2所示,一物体分别沿轨道和由静止滑下,物体与轨道间的动摩擦因数相同,若斜面保持静止,物体克服滑动摩擦力做的功分别为和,则两个功的大小的正确关系是( )图2A. B.C. D.无法比较二、填空题16、甲、乙两个物体的质量之比,它们与水平桌面之间的动摩擦因素相同。