实验二 单相桥式有源逆变
单相桥式pwm逆变电路实验报告

单相桥式PWM逆变电路实验报告1. 引言在现代电力系统中,逆变器是一种重要的电力电子设备。
逆变器可以将直流电能转换为交流电能,广泛应用于太阳能发电、风力发电、电动车等领域。
本实验旨在通过搭建单相桥式PWM逆变电路,深入了解逆变器的工作原理和性能。
2. 实验原理2.1 单相桥式PWM逆变电路单相桥式PWM逆变电路是一种常见的逆变器拓扑结构。
它由四个开关管和一个负载组成,如图1所示。
其中,开关管可以通过PWM信号控制开关状态,从而实现对输出电压的控制。
2.2 工作原理在单相桥式PWM逆变电路中,通过控制开关管的导通和截止,可以实现对输出电压的控制。
具体工作原理如下:1.当开关管S1和S4导通,S2和S3截止时,电流流经D1和D4,负载得到正半周电压。
2.当开关管S2和S3导通,S1和S4截止时,电流流经D2和D3,负载得到负半周电压。
3.通过调节开关管的导通时间比例,可以实现对输出电压的调节。
2.3 PWM调制技术PWM调制技术是实现对逆变器输出电压调节的关键。
PWM调制技术通过改变开关管的导通时间比例,将输入直流电压转换为一系列脉冲信号,从而实现对输出电压的控制。
常用的PWM调制技术有脉宽调制(PWM)和正弦PWM调制(SPWM)。
3. 实验步骤3.1 实验器材•单相桥式PWM逆变电路实验板•示波器•直流电源•变压器3.2 实验步骤1.搭建实验电路:根据实验板上的连接图,连接单相桥式PWM逆变电路。
2.调节直流电源:将直流电源的输出电压调节为逆变器的输入电压。
3.设置PWM信号:使用示波器生成PWM信号,并通过控制开关管的导通时间比例,调节输出电压的大小。
4.连接负载:将负载接到逆变器的输出端,观察负载的输出情况。
5.调节PWM信号:通过改变PWM信号的频率和占空比,进一步调节输出电压的稳定性和波形质量。
6.记录实验数据:记录不同PWM信号参数下的输出电压和负载情况。
4. 实验结果与分析4.1 输出电压调节根据实验步骤中的操作,我们可以通过调节PWM信号的占空比,实现对输出电压的调节。
(完整word版)实验二、单相桥式整流电容滤波电路

实验二、单相桥式整流电容滤波电路一、实验目的:1、学习掌握单相半波整流电容滤波电路原理。
2、学习掌握斑驳整流电容滤波电路的构成,验证器运算关系。
3、进一步掌握常用电子仪器的使用方法。
二、实验内容:1、单相桥式整流(1)去掉滤波电容(断开开关X)并断开负载与电路的连线(断开开关S),用示波器观察变压器复变电压经电桥整流后的波形。
(2)测量输出电压实际测量值:V2=12.29V, V L=11.23V根据V2的值,理论上计算V L值,公式为:V L=0.9V2,得理论值V L=11.061V。
2、单相桥式整流电容滤波(1)将滤波电容连入电路,负载断开,观察输出波形。
(2)电压的测量值V L=17.07V。
测得变压器副边电压V2=12.28V,根据公式V L=1.414V2,V L的理论值=17.36V 3、(1)将滤波电容连入电路,负载闭合,观察输出波形。
(2)电压的测量值V L=16.42V。
测得变压器副边电压V2=12.18V,根据公式V L=(1.1~1.2)V2,V L的理论值=14.616V4、滤波电容对输出波形的影响改变滤波电容C(如C=47uF和C=470uF时),哪种滤波效果更好一些?为什么?结论:C=470uF时更好一些。
电容越大,充放电能力越强,滤波效果更好。
思考:1、单相桥式整流电路输出电压V L与变压器二次侧电压V2有什么关系?2、单相桥式整流滤波电路中,空载时和有负载时,输出电压V L与变压器二次侧电压V2之间分别有什么关系?空载时:V L=1.414V2负载时:V L=(1.1~1.2)V2。
单相桥式有源逆变线路

课程设计任务书前言电力电子学,又称功率电子学(Power Electronics)。
它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。
电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。
随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。
通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有广泛的应用前景由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。
故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,因而我们进行了此次课程设计。
又因为整流电路应用非常广泛,而锯齿波移相触发三相晶闸管全控整流电路又有利于夯实基础,故我们单结晶体管触发的单相晶闸管全控整流电路这一课题作为这一课程的课程设计的课题。
目录1.封面2.课程设计任务书3.前言4.目录1.课程设计的目的1.单相桥式有源逆变电路1.1有源逆变概述1.2逆变电路的分类1.21单相桥式有源逆变的工作原理1.2.2工作原理1.2.3逆变产生的条件1.2.4逆变失败(逆变颠覆)的原因1.2.5最小逆变角的限制2.单相桥式有源逆变电路的设计2.1元器件的选择2.2整流电路的选择2.3保护系统的设计3.单相桥式有源逆变的设计以及仿真图4.总结5.对本次课程设计的体会和建议参考文献致谢课程设计的目的加深理解单相桥式全控整流及逆变电路的工作原理;究单相桥式变流电路由整流切换到逆变的全过程,掌握实现有源逆变的条件;握产生逆变颠覆的原因及预防方法。
单相桥式全控整流及有源逆变电路的实现与仿真研究

单相桥式全控整流及有源逆变电路的实现研究与仿真设计摘要本文以单相桥式全控整流及有源逆变电路为研究对象,介绍了单相桥式全控整流及有源逆变电路的工作原理,并对MATLAB/Simulink模块中电力电子仿真所需要的电力系统模块做了简要的说明,介绍了单相桥式全控整流及有源逆变电路的主要环节整流及有源逆变的工作原理,并且分析了几种常见的触发角,在此基础上运用MATLAB软件分别对电路的仿真进行了设计;实现了对单相桥式全控整流及有源逆变电路的仿真。
关键词:Simulink;单相桥式全控整流及有源逆变电路;仿真设计AbstractBased on single bridge rectifying and full control of active inverter circuits for research object, introduces the whole point of single-phase bridge rectifying and active inverter circuit principle of work, and on MATLAB/Simulink module power electronic simulation need power system module provides a brief explanation, introduces the whole point of single-phase bridge rectifying and active inverter circuits of the main rectifier and active link inverter principle of work, and analyzes some common triggering Angle, on the basis of using MATLAB software simulation of the circuit design, The realization of single-phase bridge rectifying and full control of the active inverter circuits. Keywords:Simulink, Single-phase bridge rectifying and active all control circuit, Simulation design目录第1章绪论 (1)1.1 课题背景 (1)1.2 整流技术的发展概况 (1)1.3 系统仿真概述 (2)第2章单相桥式全控整流及有源逆变的工作原理 (4)2.1 整流电路概述 (4)2.2有源逆变概述 (4)2.3 单相桥式全控整流电路的工作原理 (5)2.3.1 工作原理 (5)2.3.2 参数计算公式 (7)2.4 单相桥式全控有源逆变的工作原理 (8)2.4.1 工作原理 (8)2.4.2 逆变颠覆 (9)2.4.3 最小逆变角限制 (9)2.5 晶闸管整流电路的触发控制 (9)2.5.1 锯齿波的形成环节 (10)2.5.2 移相控制环节 (10)2.5.3 脉冲的形成环节 (11)2.5.4 脉冲的输出环节 (11)第3章单相桥式全控整流及有源逆变的实验 (12)3.1 单相桥式全控整流及有源逆变的电路图 (12)3.2 单相桥式全控整流电路的实验 (13)3.3 单相桥式有源逆变电路的实验 (14)3.4 逆变颠覆现象的观察 (16)第4章单相桥式全控整流及有源逆变的仿真 (17)4.1 单相桥式全控整流及有源逆变的仿真模型 (17)4.1.1 仿真模型的设计 (17)4.1.2 仿真模型模块的参数设置 (17)4.2 模型仿真及仿真结果 (28)4.3 仿真过程中问题的解决及一些技巧 (34)4.3.1 如何根据原理建立仿真模型 (34)4.3.2 调试中参数设置方法 (34)4.3.3 创建模型的一些技巧 (35)第5章总结 (36)5.1 论文主要内容总结 (36)5.2 实验过程总结 (36)5.3 仿真过程总结 (37)5.4 设计和开发方面的不足 (37)参考文献 (38)致谢 (39)附录实验接线图 (40)第1章绪论1.1课题背景在电力电子技术中,可控整流电路是非常重要的章节,整流电路是将交流电变为直流电的电路,其应用非常广泛。
实验二单相全桥逆变电路

实验二单相全桥逆变电路一、实验目的1.加深理解单相全桥逆变电路的工作原理2.研究单相全桥逆变电路整流的全过程3.掌握单相全桥逆变电路MATLAB的仿真方法,会设置各模块的参数。
二、预习内容要点1.单相全桥逆变电路电阻性负载的运行情况2.单相全桥逆变电路带阻感性负载的运行情况三、实验仿真模型图 1.1 单相全桥逆变电路四、实验内容及步骤1.对单相全桥逆变电路带电阻性负载,阻感性负载的运行情况进行仿真并记录分析改变脉冲频率及占空比。
(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(3)参数设置1.双击直流电源把电压设置为200V2.双击脉冲把频率设为50Hz,60Hz,因为此单位用秒来衡量,所以为方便起见,周期可用表达式:1/50和1/60来代替。
3.占空比为50%和80%。
4.双击负载把电阻设为20Ω,电感设为100H。
5.双击示波器把Number of axes设为6,同时把History选项卡下的Limit data points to last前面的对勾去掉;6.晶闸管参数保持默认即可(4)仿真波形及分析1、纯电阻占空比50%,频率50Hz频率60Hz占空比80%,频率50Hz频率60Hz2、阻感性负载(占空比50%频率50 Hz)频率60Hz占空比80%,频率50Hz频率60Hz仿真波形图五、实验总结通过上一次实验的摸索,大概熟悉了simunlink里的模块原件。
上次实验基于单相桥式整流电路的原理,这次是反过来运用,进行直流变交流的逆变,利用simulink的平台,对相关参数进行设置后仿真。
晶闸管正常使用,对于另外的信号检测端可用一个示波器检测即可,对于电流信号则与电压信号相似,电流信号则与电压信号检测模块同时接在负载两端时会无法检测出电压。
电力电子技术实验指导书V10.docx

电力电子技术实验装置简介................................................. -2 -电力电子技术实验的基本要求和安全操作说明 (6)第一章晶闸管部分 (8)实验一正弦波同步移相触发电路实验 (8)实验二锯齿波同步移相触发电路实验 (10)实验三单相半波整流电路实验 ............................................ -12 -实验四单相桥式半控整流电路实验 (75)实验五单相桥式全控整流及有源逆变电路实验 ........................... -18 -实验六三相半波可控整流电路实验 ...................................... -22 -实验七三相桥式半控整流电路实验 ...................................... -25 -实验八三相桥式全控整流及有源逆变电路实验 . (28)实验九单相并联逆变电路实验 (33)实验十单相交流调压电路的性能研究 (36)实验^一三相交流调压电路实验 (39)第二章全控型器件特性部分 (42)实验十二SCR、GTO、MOSFET、GTR、IGBT特性实验 (42)实验十三GTO、MOSFET、GTR、IGBT驱动与保护电路实验 (45)第三章控型器件典型线路部分 (48)实验十四单相交直交变频电路原理 (48)(单相正眩波脉宽调制(SPWM)逆变实验) (48)实验十五半桥型开关稳压电源的性能研究 (51)实验十八单相交流调功电路的性能研究 (65)电力电子技术实验装置简介一、概述:1、特点:1)实验装置采用挂件式结构,可根据不同的实验内容进行自由组合,故结构紧凑、使用方便灵活,并且可随着功能的扩展只需增加挂件即可.2)装置布局合理,外型美观,面板示意图明确、、清晰、直观,学生可通过面板的示意查寻故障,分析工作原理。
《电力电子技术》实验指导书

龙岩学院《电力电子技术》实验指导书龙岩学院物理与机电学院电气工程系2007.1前言本书依据电气自动化技术等专业“电力电子技术”课程的教学大纲的要求,配合课程主教材《电力电子技术》(王兆安、黄俊主编,机械工业出版社)而编写的实验指导教材,供电气自动化技术、电子与信息工程、物理教学、机电一体化技术、矿山机械等专业使用。
实验课有两方面的重要意义:首先,学生通过做实验,可以加深对课程内容中的重点、难点的理解。
例如:在课程学习时,学生对整流电路的输出电压波形及结论理解不深,若在做实验时,通过观察示波器,则可在直观、生动的感性认识中深刻理解原理,通过整流电路带不同负载时波形的变化,分析和研究最基本的几种可控整流电路的工作原理、基本数量关系,以及负载性质对整流电路的影响,从而使学生得到直接的实际经验,使理解更加深刻。
其次,实验课的第二个重要意义在于:通过对工控电力电子设备安装、调试、维修的训练,不仅有利于对课程内容本身的理解,更有助于实际工作能力的培养。
实验课的目的不在于使学生会做几个固定内容的实验,而在于给学生一个动手的机会,通过实验使学生掌握一些基本的电路测试的知识和技能;使学生会正确地使用一些最基本的电工、电子测量仪器;使学生能将理论的分析方法和实际测量的手段结合起来;学会正确地选择测量仪器及进行必要的误差分析;通过对工控电力电子设备安装、调试、维修的训练,不仅有利于对课程内容本身的理解,更有助于实际工作能力的培养。
学生参考有关的书籍和资料,自己动手去设计一个合理的实验电路是要求较高、较困难的题目。
在条件允许的情况下,可作为选作内容,希望学生这方面的能力也有所培养和提高,已达到分层教学之目的。
另外,在上实验课之前,学生应根据实验内容要求仔细地阅读本实验指导书,做好实验课前的预习以明确实验课的目的与要求,弄懂原理与电路,明确操作方法与步骤,了解电路元件、仪器设备的性能和使用方法、以及实验的注意事项。
实验时,必须亲自动手,认真做安装、操作、调试、测量和记录、故障诊断和故障排除。
实验二 单相桥式全控整流及有源逆变

实验二 单相桥式全控整流及有源逆变一.实验目的1.加深理解单相桥式全控整流及逆变电路的工作原理。
2.研究单相桥式变流电路整流的全过程。
3.研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。
4.掌握产生逆变颠覆的原因及预防方法。
二.实验所需挂件及附件序号 型号 备注1 DJK01电源控制屏 该控制屏包含“三相电源输出”、“励磁电源”等模块2 DJK02晶闸管主电路 该挂件包含“晶闸管”、“电感”等模块3 DJK03-1晶闸管触发电路 该挂件包含“锯齿波同步触发电路”模块4 DJK10变压器实验 该挂件包含“逆变变压器”、“三相不控整流”等模块5 D42 三相可调电阻6 双踪示波器 7万用表三.实验线路及原理图3-2为单相桥式整流带电阻电感性负载,其输出负载R 用D42三相可调电阻器,将两个900Ω接成并联形式,电抗L d 用DJK02面板上的700mH ,直流电压、电流表均在DJK02面板上。
触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。
图3-3为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。
“三相不控整流”是DJK10-1上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接气心式变压器”的中压端Am 、Bm ,返回电网的电压从其高压端A 、B 输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成Y/Y 接法。
图中的电阻R 、电抗L d 和触发电路与整流所用相同。
图3-2 单相桥式整流实验原理图 锯齿波 G1K1有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。
四.实验内容1.单相桥式全控整流电路带电阻电感负载。
2.单相桥式有源逆变电路带电阻电感负载。
3.有源逆变电路逆变颠覆现象的观察。
五.预习要求1.阅读电力电子技术教材中有关单相桥式全控整流电路的有关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二单相桥式全控整流及有源逆变
一.实验目的
1.研究单相桥式变流电路整流的全过程。
2.研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。
二.实验所需挂件及附件
三.实验线路及原理
图 3-3 为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。
“三相不控整流”是 DJK10-1 上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接气心式变压器”的中压端 Am 、Bm ,返回电网的电压从其高压端 A 、B 输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成 Y/Y 接法。
图中的电阻 R 、电抗 L d 和触发电路与整流所用相同。
图 3-3单相桥式有源逆变实验原理图
有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。
四.实验内容
1.单相桥式有源逆变电路带电阻电感负载。
2.有源逆变电路逆变颠覆现象的观察。
DJK03-1 挂件 锯齿波 触发电路 Ⅰ 锯齿波 触发电路 Ⅱ G1 K1 G4 K4 G2 K2 G3 K3 2
五.预习要求
1.阅读电力电子技术教材中有关有源逆变电路的内容,掌握实现有源逆变的基本条件。
六.思考题
实现有源逆变的条件是什么?在本实验中是如何保证能满足这些条件?
七.实验方法
1.单相桥式有源逆变电路实验
按图3-3 接线,将电阻器放在最大阻值处,按下“启动”按钮,保持U b 偏移电压不变(即RP3 固定),逐渐增加U ct(调节RP2),在β=30°、60°、90°时,观察、记录逆变电流i d 和晶闸管两端电压u VT 的波形,并记录负载电压U d 的数值于下表中。
2.逆变颠覆现象的观察
调节U ct,使α=150°,观察U d 波形。
突然关断触发脉冲(可将触发信号拆去),用双踪慢扫描示波器观察逆变颠覆现象,记录逆变颠覆时的u d 波形。
八.实验报告
1.画出α=30°、60°、90°、120°、150°时u d 和u VT 的波形。
2.画出电路的移相特性U d=f (α)曲线。
3.分析逆变颠覆的原因及逆变颠覆后会产生的后果。
九.注意事项
1.参照实验一的注意事项
2.为了保证从逆变到整流不发生过流,其回路的电阻R 应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。