遗传算法求解函数最大值
遗传算法求函数最大值实验报告

遗传算法求函数最大值实验报告遗传算法是一种模拟自然界进化过程的优化算法,它通过模拟生物进化过程中的遗传、交叉和变异等机制,逐步优化解空间中的个体,以找到问题的最优解。
在本次实验中,我们利用遗传算法来求解一个函数的最大值。
下面我们将详细介绍实验的过程和结果。
首先,我们选择了一个简单的函数作为实验对象,即f(x) = x^2,在x的范围为[-10, 10]。
我们的目标是找到使函数值最大的x。
首先,我们需要定义遗传算法中的基本元素,包括编码方式、适应度函数、选择策略、交叉和变异操作等。
在本实验中,我们选择二进制编码方式,将x的范围[-10, 10]离散化为10位的二进制编码。
适应度函数即为f(x) = x^2,它表示个体的适应度。
选择策略采用轮盘赌选择算法,交叉操作采用单点交叉,变异操作采用随机位变异。
接下来,我们需要初始化种群,并迭代进行交叉和变异操作,直到满足终止条件。
在每一代中,我们根据适应度函数对种群中的个体进行评估,并根据选择策略选择父代个体进行交叉和变异操作。
通过交叉和变异操作,产生新的子代个体,并替代原有种群中的个体。
在本次实验中,我们设置了100个个体的种群,并进行了100代的迭代。
实验结果显示,经过多次迭代,算法逐渐优化到了最优解。
最终找到了使函数值最大的x,即x=10,对应的函数值为100。
总结起来,本次实验利用遗传算法求解函数的最大值,展示了遗传算法在优化问题中的应用。
通过适当选择编码方式、适应度函数和操作策略,我们可以有效地找到问题的最优解。
在后续的研究中,我们可以进一步探索遗传算法在更复杂问题上的应用,并通过改进算法的参数和操作策略来提高算法的性能。
利用遗传算法求rosenbrock函数的极大值

利用遗传算法求rosenbrock函数的极大值遗传算法是一种常用于解决复杂问题的机器学习算法,而Rosenbrock函数是一种特殊的二叉搜索树函数,它在搜索树中找到了一组最优解,并且能够保持这些最优解的稳定性。
因此,Rosenbrock函数的极大值是搜索树中的一个重要问题。
为了求解Rosenbrock函数的极大值,可以使用遗传算法来解决。
遗传算法的基本思想是通过随机化交配和自然选择来改进算法的性能。
在遗传算法中,每个个体都是随机生成的,并且每个决策变量和变异体都对应着不同的搜索树结构和策略。
然后,通过交叉和变异操作,算法不断迭代,直到达到最优解。
对于Rosenbrock函数的极大值问题,我们可以将搜索树看作是一个二叉搜索树,并且通过计算每个节点的Rosenbrock函数值来确定搜索树的根节点的值。
具体来说,我们可以将搜索树分成两个子搜索树,一个子搜索树是Rosenbrock函数的极大值所在的子搜索树,另一个子搜索树是搜索树中任意一个节点的Rosenbrock函数的极大值所在的子搜索树。
在求解Rosenbrock函数的极大值问题时,我们可以使用经典的遗传算法求解步骤。
首先,初始化所有个体的值,然后随机生成所有个体的变异体。
接着,计算每个个体的父节点的值,并将这些父节点的值作为个体的变异系数。
然后,计算每个个体的交叉子节点的值,并将这些交叉子节点的值作为个体的变异系数。
最后,根据交叉和变异操作的结果,不断迭代,直到达到最优解。
需要注意的是,在遗传算法中,每个个体的值是由所有个体的值和变异系数计算得到的。
因此,在计算每个个体的值时,需要考虑到所有个体的值和变异系数。
此外,在计算交叉和变异操作的结果时,需要考虑到所有个体的值和变异系数。
利用遗传算法求解Rosenbrock函数的极大值问题是一种有效的方法,可以高效地求解这个问题。
此外,遗传算法还可以应用于其他搜索树的求解问题,如最小生成树、最短路径问题等。
matlab遗传算法计算函数区间最大值和最小值

matlab遗传算法计算函数区间最大值和最小值下面是用matlab实现遗传算法计算函数区间最大值和最小值的示例代码:首先定义函数(此处以f(x)=x*sin(10*pi*x)+1为例):matlabfunction y = myfun(x)y = x*sin(10*pi*x)+1;end然后设置遗传算法参数:matlaboptions = gaoptimset('Generations', 1000, 'PopulationSize', 50,'StallGenLimit', 200, 'TolCon', 1e-10);其中,Generations表示遗传算法的迭代次数,PopulationSize表示种群大小,StallGenLimit表示在连续多少代没有改变时停止迭代,TolCon表示收敛精度。
接着,编写遗传算法主函数:matlab[x, fval] = ga(@myfun, 1, [], [], [], [], -1, 2, [], [], options);其中,第一个参数为要优化的函数,第二个参数为变量维度,后面的参数为变量的取值范围。
最后,输出结果:matlabfprintf('Function maximum is %f\n',-fval);fprintf('Function minimum is %f\n',fval);其中,-fval表示函数最大值,fval表示函数最小值。
完整代码如下:matlabfunction y = myfun(x)y = x*sin(10*pi*x)+1;endoptions = gaoptimset('Generations', 1000, 'PopulationSize', 50, 'StallGenLimit', 200, 'TolCon', 1e-10);[x, fval] = ga(@myfun, 1, [], [], [], [], -1, 2, [], [], options);fprintf('Function maximum is %f\n',-fval);fprintf('Function minimum is %f\n',fval);参考资料:[1][2]。
遗传算法用matlab求函数极大值

遗传算法用matlab求函数极大值一、题目:寻找f(x)=x2,,当x在0~31区间的最大值。
二、源程序:%遗传算法求解函数最大值%本程序用到了英国谢菲尔德大学(Sheffield)开发的工具箱GATBX,该工具箱比matlab自带的GATOOL使用更加灵活,但在编写程序方面稍微复杂一些Close all;Clear all;figure(1);fplot('variable*variable',[0,31]); %画出函数曲线%以下定义遗传算法参数GTSM=40; %定义个体数目ZDYCDS=20; %定义最大遗传代数EJZWS=5; %定义变量的二进制位数DG=0.9; %定义代沟trace=zeros(2, ZDYCDS); %最优结果的初始值FieldD=[5;-1;2;1;0;1;1]; %定义区域描述器的各个参数%以下为遗传算法基本操作部分,包括创建初始种群、复制、交叉和变异Chrom=crtbp(GTSM, EJZWS); %创建初始种群,即生成给定规模的二进制种群和结构gen=0; %定义代数计数器初始值variable=bs2rv(Chrom, FieldD); %对生成的初始种群进行十进制转换ObjV=variable*variable; %计算目标函数值f(x)=x2 while gen<ZDYCDS %进行循环控制,当当前代数小于定义的最大遗传代数时,继续循环,直至代数等于最大遗传代数FitnV=ranking(-ObjV); %分配适应度值SelCh=select('sus', Chrom, FitnV, DG); %选择,即对个体按照他们的适配值进行复制SelCh=recombin('xovsp', SelCh, 0.7); %交叉,即首先将复制产生的匹配池中的成员随机两两匹配,再进行交叉繁殖SelCh=mut(SelCh); %变异,以一个很小的概率随机地改变一个个体串位的值variable=bs2rv(SelCh, FieldD); %子代个体的十进制转换ObjVSel=variable*variable; %计算子代的目标函数值[Chrom ObjV]=reins(Chrom, SelCh, 1, 1, ObjV, ObjVSel);%再插入子代的新种群,其中Chrom为包含当前种群个体的矩阵,SelCh为包好当前种群后代的矩阵variable=bs2rv(Chrom, FieldD); %十进制转换gen=gen+1; %代数计数器增加%输出最优解及其序号,并在目标函数图像中标出,Y为最优解, I为种群的%序号[Y, I]=max(ObjV);hold on; %求出其最大目标函数值plot(variable(I), Y, 'bo');trace(1, gen)=max(ObjV); %遗传算法性能跟踪trace(2, gen)=sum(ObjV)/length(ObjV);end%以下为结果显示部分,通过上面计算出的数值进行绘图variable=bs2rv(Chrom, FieldD); %最优个体进行十进制转换hold on, grid;plot(variable,ObjV,'b*'); %将结果画出三、运行结果:由图可见该函数为单调递增函数,即当X=31时,该取得最大值f(x)max =961。
实验五:遗传算法求解函数最值问题实验

EJdoublefitness(constCh^crrcscrcRc)
{
doublek,y;
decode(cx# y);
retiurnf(x, y)+5;
2•交叉操作
首先是根据交叉概率probCross选择要交叉的个体进行交叉
//根据交叉槪率进行交叉
for(inti=pre = -1;i<N; i++)
//根据变异概率迸行变异
for (inti=0;i<N; i++)
if(randQm61() < probMutation)
mutate(group[i]);
变异时先随机生成变异的位置,然后把改位的01值翻转。
//变异操作
Hvoidmutate(ChrcfnosomeS c)
{
//随机选行翻转
inti-rand()%len; c-g[i] =
//骑越
boolflag-令;
for(inti = j=0; i<1.亡n;i++)
swap(d.g[l]Jc2.g[i]);
if(i== crosspcint[j])
//妇杲若干个交叉点重合”则效果叠加 "偃数个交叉点效果瑁当于没有交叉点while(j<
flag = [flag;
3.变异操作
首先是根据变异概率probMutation选择要变异的个体
经过一定的进化之后得到最终种群,从中选择最优的个体即可得
到最终的结果。
//获取种群最优你
-intgetOptimal(Ch^crescr:-oup[mxn]doubled—double&』doubled\)
遗传算法求解函数最大值

S9 李麒星用遗传算法通过复制交叉过程循环求解函数f(x)=x^2在[0,31]区间上的最大值点x。
代码如下:using System;using ;using ;namespace Project2{class Class1{public int ff(int a){return a * a;}public int Max(int[] args){int s = 0;int m = args[0];for (int i = 0; i < ; i++){if (m < args[i]){m = args[i];s = i;}}return s;}public int Min(int[] args){int s = 0;int m = args[0];for (int i = 0; i < ; i++){if (m > args[i]){m = args[i];s = i;}}return s;}static void Main(String[] args)S9 李麒星{string[] A = new string[4];A[0] = "01101";A[1] = "11000";A[2] = "01000";A[3] = "10011";Class1 cl = new Class1();Random a = new Random();int[] x = new int[4];ubstring(k1);ubstring(k2);string s3 = A[3 - max].Substring(k1);string s4 = A[3 - min].Substring(k2);A[max] = A[max].Substring(0, k1) + s3;A[min] = A[min].Substring(0, k2) + s4;A[3 - max] = A[3 - max].Substring(0,k1) + s1; A[3 - min] = A[3 - min].Substring(0,k2) + s2; }elseif ((max > min) && (min + 1 ==max))ubstring(k1);ubstring(k2);string s3 = A[3].Substring(k1);string s4 = A[0].Substring(k2);A[max] = A[max].Substring(0,k1) + s3;A[min] = A[min].Substring(0,k2) + s4;A[3] = A[3].Substring(0,k1) + s1;A[3] = A[3].Substring(0,k2) + s2;S9 李麒星}elseif ((max < min) && (min == max +1))ubstring(k1);ubstring(k2);string s3 = A[0].Substring(k1);string s4 = A[3].Substring(k2);A[max] = A[max].Substring(0,k1) + s3; A[min] = A[min].Substring(0,k2) + s4; A[0] = A[0].Substring(0,k1) + s1;A[3] = A[3].Substring(0,k2) + s2;}elseif ((max > min) && (max ==min +3))ubstring(k1);ubstring(k2);string s3 = A[2].Substring(k1);string s4 = A[1].Substring(k2);A[max] = A[max].Substring(0,k1) + s3; A[min] = A[min].Substring(0,k2) + s4; A[2] = A[2].Substring(0,k1) + s1;A[1] = A[1].Substring(0,k2) + s2;}elseif ((max < min) && ( min==max +3 ))ubstring(k1);ubstring(k2);string s3 = A[1].Substring(k1);string s4 = A[2].Substring(k2);A[max] = A[max].Substring(0,k1) + s3;A[min] = A[min].Substring(0,k2) + s4;A[1] = A[1].Substring(0,k1) + s1; S9 李麒星A[1] = A[1].Substring(0,k2) + s2; }}("最大值是={0}", t1); }}}输出如下:S9 李麒星结论:由图可知每次循环结果不唯一。
遗传算法求函数极值

遗传算法求函数极值遗传算法是一种基于模拟生物进化过程的优化算法,它通过模拟生物的进化过程中的遗传、交叉和变异等操作,对问题的解空间进行,并到满足最优条件的解。
它被广泛应用于求解各种复杂问题,包括函数极值问题。
在使用遗传算法求函数极值的过程中,首先需要明确问题的目标函数。
目标函数是一个将自变量映射到一个实数值的函数,它描述了问题的优化目标。
例如,我们可以考虑一个简单的目标函数f(x),其中x表示自变量,f(x)表示因变量。
遗传算法的基本流程如下:1.初始化种群:随机生成一组初始解,也就是种群。
种群中的每个个体都是一个可能的问题解,而个体中的染色体则表示了问题解的具体数值。
2.适应度评估:对于种群中的每个个体,通过计算目标函数的值,评估每个个体的适应度。
适应度越高的个体,越有可能成为下一代个体的基因。
3.选择操作:根据个体的适应度,选择一些个体作为下一代遗传操作的基因。
4.交叉操作:从选择出的个体中随机选择一对个体,进行交叉操作。
交叉操作通过交换两个个体的染色体信息,产生新的个体。
5.变异操作:对交叉操作生成的新个体进行变异操作。
变异操作通过改变个体染色体中的部分基因,引入新的解,以增加问题解的多样性。
6.新种群产生:基于交叉和变异操作,生成新的种群。
7.终止条件判断:如果满足终止条件(例如达到最大迭代次数、找到了满足要求的解等),则停止算法;否则,返回第2步。
通过以上步骤的循环迭代,遗传算法可以到问题的最优解,即函数的极值。
由于遗传算法充分利用了进化算法的生物特点,具有全局能力和自适应优化能力,因此在函数极值求解中得到了广泛的应用。
遗传算法的关键在于如何进行适应度评估、选择操作、交叉操作和变异操作。
适应度评估是指根据目标函数计算个体的适应度值,一般情况下适应度越高的个体越有可能成为下一代的基因。
选择操作可以采用轮盘赌选择、最优选择等方式,根据个体的适应度选择一定数量的个体进行交叉和变异。
交叉操作通过交换染色体信息,产生新的个体;变异操作通过改变个体染色体中的部分基因,引入新的解。
遗传算法计算函数最大值

遗传算法计算函数最大值遗传算法是一种模拟进化过程的优化算法,被广泛应用于求解函数最大值问题。
在遗传算法中,问题的解被表示为染色体的形式,每个染色体都是由一串基因组成。
每个基因可以看作是染色体中的一个变量值,它们合起来构成了一个可行解。
随着进化的进行,每个可行解都会被评估,评估函数即为目标函数,目标函数可以是我们需要求解的函数。
根据目标函数的评价结果,我们可以对染色体进行选择、交叉和变异,以产生新的一代染色体,进而继续进行优化。
遗传算法的核心是选择、交叉和变异这三个基本操作。
选择操作是指从当前种群中选择部分优秀的染色体作为父代,根据染色体的适应度值进行随机抽样。
交叉操作是指将两个父代染色体的一部分基因进行互换,产生新的子代染色体。
变异操作是指对子代染色体的某个基因进行随机改变,产生新的基因。
遗传算法具有很好的鲁棒性和适应性,能够应对大规模的优化问题。
它的优势在于不要求问题具有良好的可微性,也不需要先验知识,能够处理不确定的搜索空间和复杂的非线性函数。
在求解函数最大值问题时,我们需要首先定义一个适当的目标函数。
目标函数可以是实际应用中的函数,也可以是一些基本函数或常用函数。
常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
以求解f(x)=-x^2+2x+6函数最大值为例,假设x的范围在[0,5]之间,则可定义目标函数如下:f(x)=-x^2+2x+6在遗传算法的优化过程中,我们需要确定初始种群、目标函数、选择、交叉和变异等相关参数。
初始种群可以采用随机生成的方式,或者根据某些规律生成;目标函数应该能够给出染色体的适应度值;选择操作可以根据适应度函数对染色体进行排序,或者采用轮盘赌的方式选择优秀染色体;交叉操作可以随机选取父代染色体的一部分基因进行交叉;变异操作可以按照一定概率随机对子代染色体的基因进行改变。
最终,经过多轮迭代,我们可以得到一组较优的染色体,以及它们所对应的函数最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)转动轮盘20次,每次为新群体选择一单个染色体。生成一个区间[0,1]里的20个数的一个随机序列。如果一个随机数位于qi于q(i+1)之间,则q(i+1)被选择。
如果当前代的最优值大于上一代的,则将当前代的最优值拷贝出来,否则则用上一代的最优值取代当前代的最差值。确保我们始终取到最适合的那个值。
选择函数:为的是解决优化模型中的最大问题,确保最优秀的成员始终存活下来。
杂交函数:void Xover(int one, int two)
对选择出来的双亲进行杂交。
变异:void mutate(void)
2.2
1 )首先确立变量x1的定义域长度为15.1;所要求的小数点以后第四位精度意味着区间[-3.0, 12.1]应该至少被分成15.1*10000个等距区间,即染色体的第一部分需要18位;自变量x2域长度为1.7,精度要求区间[4.1, 5.8]应该至少被分成1.7*10000个等距区间,即染色体的第二部分需要15位。所以染色体总长度为33位。用遗传算法的优化函数f,产生了一个有pop_size = 20个染色体的群体。所有染色体的33位都是随机初始化。对每个染色体进行解码并计算解码后的(x1,x2)的适应函数值,eval(vi) (i=1,..,pop_size) = f(x1,x2)。
随机值生成函数:多次用到此函数。
评价函数:函数需要用户自己定义一个数学函数式。population[mem].fitness = 21.5+x[1]*sin(4.0*PI*x[1])+x[2]*sin(20.0*PI*x[2]);
记录最优个体(取优函数):前一代的最优成员被存储在数组的最后。但如果现今这一代的最优成员并没有上一代的好(值小于),则后者(上一代的最优值)会取代本代中最差的成员。
人工智能
遗传算法函数优化
1
1.1
函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用算例。本文将用一个详细的例子来说明用遗传算法解一个简单参数优化问题的过程。这里求解的是一个函数的最大值的问题。
1.2
遗传算法采纳自然进化模型。通过保持一个潜在解的群体执行了多方向的搜索并支持这些方向上的信息构成和交换。群体经过一个模拟进化的过程:在每一代,相对“好”的解产生,相对“差”的解死亡。为区别不同解,我们使用了一个目标(评价)函数,它起着一个环境的作用。
7)由上面得到最新的向量群体。对每个染色体进行解码,并计算解码后的(x1,x2)的适应函数值。选出最好染色体的评价值。
8)准备再一次运行选择过程,继续进行迭代计算,Leabharlann 用遗传算子及评价下一代。2.3
2.3.1
初始化函数:在变量限定的范围内初始化遗传因子的值。从gadata.txt'这个文件中读取每个变量的上下边界,并且在这个范围内随机初始化产生染色体中的值。
选择是用来确定管理费用或交叉个体,以及被选个体将产生多少个代个体。
杂交组合了两个亲代染色体的特征,并通过交换父代相应的片断形成了两个相似的后代。杂交算子的意图是在不同潜在解之间进行信息交换。
变异是通过用一个等于变异率的概率随机地改变被选择染色体上的一个或多个基因。变异算子的意图是向群体引入一些额外的变化性。
4)对新群体中的个体应用杂交算子。杂交概率pc = 0.25,所以预计染色体中平均有25%将经历杂交。杂交按照下面的方法进行:对新群体中的每个染色体,产生在区间[0,1]里的随机数r,并从随机序列中选出r<0.25的染色体进行杂交。
5)对被选择的染色体随机进行配对。并从区间[1,32]里产生一个随机整数pos。数字pos表示杂交点的位置。
6)算子变异。在一位一位基础上执行。变异概率pm = 0.01,所以我们预计平均将有1%的位经历变异。整个群体共有m*pop_size = 660位,可以预计平均每代有6.6次变异。因为每一位都有均等的机会被变异,所以对群体中的每一位可以产生区间[0,1]里的一个随机数r,如果r<0.01,则变异此位。
运用遗传算法解题必经的五个步骤:
1.对问题潜在解的遗传表达。
2.产生潜在解初始群体的方法。
3.起环境作用的用“适应值”评价解的适应程度的评价函数。
4.改变后代组成的各种遗传算子。
5.遗传算法所使用的各种参数:群体规模、应用遗传算子的概率等。
2
2.1
在实验过程中,我们应用遗传算法来模拟一个函数优化的问题。程序所要解决的问题是求f(x1,x2)=21.5+x1*sin(4pi*x1)+x2*sin(20pi*x2)的最大值,其中-3.0≤x1≤12.1及4.1≤x2≤5.8。
5, 34.004917169, 27.171438656, 4.401705026
6, 34.004917169, 27.632563061, 4.342945746
7, 34.004917169, 28.507499261, 4.102991080
8, 34.295500976, 28.367508993, 4.434875924
1, 32.922158615, 23.048467665, 5.926697571
2, 32.922158615, 25.219353332, 4.748125277
3, 32.922158615, 25.602532313, 4.471082127
4, 32.922158615, 26.483624415, 4.712873791
某个被选择出来的要进行变异的因子,将会被一个取值范围内的随机量所代替。
报告函数:void report(void)用来报告演算程序的进展。输入output文件里的数据以逗号相隔。
2.3.3
写好程序之后,就可以进行调试了。当在gadat.txt里输入35;69;78;
16四组数据时,在”galog.txt”文件中可以看到输出的结果。现附上迭代500次的结果:
9, 34.295500976, 28.713407029, 3.942327273