高三下学期数学模拟试题(二)

合集下载

浙江省杭州市2023届高三下学期教学质量检测(二模)数学试题

浙江省杭州市2023届高三下学期教学质量检测(二模)数学试题

()
A. f 2023 2
B. f x 的一个周期是 4 C. f x 是偶函数
D. f 1 1
【答案】BC 【解析】
【 分 析 】 根 据 函 数 奇 偶 性 与 f (x 2) f (x) 可 得 f (x 4) f (x) , 根 据 导 数 的 运 算 可 得
f (x 4) f (x) 从而可判断 B 项,根据周期性与奇偶性可判断 A 项,根据奇偶性与导数运算可得
故选:D.
6. 已知 a 1 , b 1,且 log2 a logb 4 ,则 ab 的最小值为( )
A. 4
B. 8
【答案】C
【解析】
C. 16
D. 32
【分析】运用对数运算及换底公式可得 log2 a log2 b 4 ,运用基本不等式可求得 ab 的最小值.
【详解】∵ log2 a logb 4 ,
故选:D.
8.
已知
f (x)
sin(x )
(
0) 满足
f
(
)
1

4f5 30且f (x) 在 4
, 5 6
上单调,则
的最大
值为( )
12
A.
7
【答案】B
18
B.
17
6
C.
17
30
D.
17
【解析】
【分析】通过对称轴与对称点得出 的式子,再通过单调得出 的范围,即可得出答案.
【详解】
f
A. 2
B. 3
C. 4
D. 5
【答案】CD
【解析】
【分析】首先找到直线所过定点 P 0,1 ,根据直线所截圆的弦长公式求出弦长 AB 的取值范围,进而求出

浙江省天域全国名校协作体2024届高三下学期二模数学试题含答案

浙江省天域全国名校协作体2024届高三下学期二模数学试题含答案

2023-2024学年第二学期天域全国名校协作体联考高三年级数学学科试题(答案在最后)命题学校:考生须知:1.本卷共5页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}=1,2,3M ,{}=0,1,2,3,4,7N ,若M A N ⊆⊆,则满足集合A 的个数为()A.4B.6C.7D.8【答案】D 【解析】【分析】根据包含关系,写出所有满足条件的集合A 即可得解.【详解】因为M A N ⊆⊆,所以A 可以是{}{}{}{}{}{}{}{}1,2,3,1,2,3,4,1,2,3,0,1,2,3,7,1,2,3,0,4,1,2,3,0,7,1,2,3,7,4,1,2,3,0,4,7,共8个,故选:D2.抛物线2:6C y x =的焦准距是()A.112B.16C.3D.6【答案】A 【解析】【分析】根据抛物线标准方程求出p 即可得解.【详解】2:6C y x =化为标准方程为216x y =,所以126p =,112p =,即焦点与准线的距离为112p =,故选:A3.在正三棱台111ABC A B C -中,已知AB =,11A B =1AA 的长为2,则此正三棱台的体积为()A.212 B.74C.214D.72【答案】C 【解析】【分析】先计算出三棱台的上下底面的面积,再根据底面边长与侧棱长求解三棱台的高,进而计算出三棱台的体积.【详解】正三棱台111ABC A B C -中,已知AB =,11A B =所以ABC 的面积为1224=,111A B C△的面积为122⨯=,设O ,1O 分别是ABC ,111A B C △的中心,设D ,1D 分别是BC ,11B C 的中点,A ∴,O ,D 三点共线,1A ,1O ,1D 三点共线,π33sin 322AD AB =⨯==,1111π3sin 332A D AB =⨯==,1132OD AD ∴==,1111113O D A D ==,12DD ===,过D 作11DE A D ⊥,垂足为E ,则1//DE OO ,DE === ∴三棱台的高为∴三棱台的体积为121(344V =++=.故选:C .4.628log 3x ⎛⎝⎭展开式的常数项为()A.512B.512-C.136D.136-【答案】A 【解析】【分析】写出二项展开式的通项公式,令x 的指数为0,得出常数项的项数,即可得常数项.【详解】展开式的通项公式为()()(66212316868C log 3C log 3rr r r r r rr T x x---+⎛=⋅⋅-=⋅⋅⋅ ⎝⎭,令1230r -=,解得4r =,所以常数项为()(242445686231115C log 3C log 3log 215323612T ⎛⎫=⋅⋅=⋅⨯=⨯=⎪⎝⎭.故选:A.5.已知()()1cos cos cos cos 3αβγαβγ+-+=,则()()sin sin sin sin αβγαβγ+-+=()A.16-B.13-C.16D.13【答案】B 【解析】【分析】根据余弦两角和公式将()cos αβγ++展开成角αβ+与γ的两角和形式与α与βγ+的两角和形式,建立等式关系结合已知等式即可得结论.【详解】因为()()()cos cos cos sin sin αβγαβγαβγ++=+-+,又()()()cos cos cos sin sin αβγαβγαβγ++=+-+,所以()()cos cos sin sin αβγαβγ+-+()()cos cos sin sin αβγαβγ=+-+,因为()()1cos cos cos cos 3αβγαβγ+-+=,则()()sin sin sin sin αβγαβγ+-+=()()1cos cos cos cos 3αβγαβγ+-+=-.故选:B.6.为了解某中学学生假期中每天自主学习的时间,采用样本量比例分配的分层随机抽样,现抽取高一学生40人,其每天学习时间均值为8小时,方差为0.5,抽取高二学生60人,其每天学习时间均值为9小时,方差为0.8,抽取高三学生100人,其每天学习时间均值为10小时,方差为1,则估计该校学生每天学习时间的方差为()A.1.4B.1.45C.1.5D.1.55【答案】B 【解析】【分析】利用分层随机抽样的均值与方差公式即可解决.【详解】由题意可得,该校学生每天学习时间的均值为40601008910200200200x =⨯+⨯+⨯9.3=,该校学生每天学习时间的方差为()22400.589.3200s ⎡⎤=⨯+-⎣⎦()2600.899.3200⎡⎤+⨯+-⎣⎦()21001109.3200⎡⎤+⨯+-⎣⎦ 1.45=.故选:B7.已知函数()f x 满足对任意的(),1,x y ∈+∞且x y <都有111x y f f f xy x y ⎛⎫⎛⎫-⎛⎫=-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,若2155n a f n n ⎛⎫= ⎪++⎝⎭,*n ∈N ,则1232024a a a a ++++= ()A.253385f ⎛⎫⎪⎝⎭B.253380f ⎛⎫⎪⎝⎭C.253765f ⎛⎫⎪⎝⎭D.253760f ⎛⎫⎪⎝⎭【答案】D 【解析】【分析】根据111x y f f f xy x y ⎛⎫⎛⎫-⎛⎫=-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭将21115523n a f f f n n n n ⎛⎫⎛⎫⎛⎫==-⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭,再用裂项相消法求1232024a a a a ++++ 的值.【详解】∵函数()f x 满足对任意的(),1,x y ∞∈+且x y <都有111x y f f f xy x y ⎛⎫⎛⎫-⎛⎫=-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∴令2,3x n y n =+=+,则()()()()2231112355n n x y xy n n n n +-+-==--++++,∴21115523n a f f f n n n n ⎛⎫⎛⎫⎛⎫==-⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭∴1232024111111344520262027a a a a f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭113202725332027132027760f f f f -⎛⎫⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪ ⎪-⨯⎝⎭⎝⎭⎝⎭⎝⎭.故选:D【点睛】关键点点睛:本题主要考查数列的求和问题,关键是理解数列的规律,即研究透通项,本题的关键是将通项分析为:2111.5523n a f f f n n n n ⎛⎫⎛⎫⎛⎫==-⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭8.古人把正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数、正矢函数、余矢函数这八种三角函数的函数线合称为八线.其中余切函数1cot tan θθ=,正割函数1sec cos θθ=,余割函数1csc sin θθ=,正矢函数sin 1cos ver θθ=-,余矢函数cos 1sin ver θθ=-.如图角θ始边为x 轴的非负半轴,其终边与单位圆交点P ,A 、B 分别是单位圆与x 轴和y 轴正半轴的交点,过点P 作PM 垂直x 轴,作PN 垂直y 轴,垂足分别为M 、N ,过点A 作x 轴的垂线,过点B 作y 轴的垂线分别交θ的终边于T 、S ,其中AM 、PS 、BS 、NB 为有向线段,下列表示正确的是()A.sin ver AM θ=B.csc PS θ=C.cot BS θ=D.sec NBθ=【答案】C 【解析】【分析】利用单位圆以及三角函数的定义可知sin =MP θ,cos OM θ=,tan =AT θ,然后结合新定义简单计算可判断各个选项.【详解】根据题意,易得OMP OAT SBO PNO V :V :V :V ,对于A ,因为1cos 1OM MA θ-=-=,即sin ver MA θ=,故A 错误;对于B ,根据三角函数定义结合相似三角形相似比可得,11csc sin BO OS OS MP MP OPθθ=====,故B 错误;对于C ,11cot tan tan BS OSBθθ===∠,故C 正确;对于D ,根据三角函数定义结合相似三角形相似比可得11sec cos OA OTOT OM OM OPθθ=====,故D 错误.故选:C.【点睛】关键点睛:本题属于新定义题,解题关键是读懂题意,根据新定义,利用三角函数定义结合相似三角形相似比求解,注意有向线段.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.正方体1111ABCD A B C D -中,E ,F 分别为棱AD 和1DD 的中点,则下列说法正确的是()A.1//AD 平面BEFB.1B C ⊥平面BEFC.异面直线11B D 与EF 所成角为60°D.平面BEF 截正方体所得截面为等腰梯形【答案】ACD 【解析】【分析】于A ,连接1AD ,利用三角形中位线证得1//AD EF ,结合线面平行判定定理即可判断A ;对于B ,取1AA 中点Q ,连接1,,A D QE QB ,设正方体棱长为2,根据线段长度结合勾股定理判断QE 与BE 是否垂直,即判断1B C 与BE 是否垂直,从而可判断B ;对于C ,连接11,AD B A ,根据正方体的面对角线性质,即可得异面直线11B D 与EF 所成角的大小,从而判断C ;对于D ,连接111,,AD BC C F ,确定截面完整图形为四边形1BEFC ,再计算其四边长度与位置关系,即可判断D.【详解】对于A ,如图,连接1AD ,因为E ,F 分别为棱AD 和1DD 的中点,所以1//AD EF ,又1AD ⊄平面BEF ,EF ⊂平面BEF ,所以1//AD 平面BEF ,故A 正确;对于B ,如图,取1AA 中点Q ,连接1,,A D QE QB ,在正方体1111ABCD A B C D -中,1111,//AB CD A B CD =,所以四边形11A B CD 为平行四边形,所以11//BC AD ,又,QE 分别为1AA ,1A D 中点,则1//QE A D ,故1//B C QE ,设正方体棱长为2,则BE BQ QE ======,故222QE BE BQ +≠,所以QE 不垂直于BE ,故1B C 不垂直于BE ,又BE ⊂平面BEF ,所以1B C 不垂直平面BEF ,故B 错误;对于C ,如图,连接11,AD B A ,在正方体1111ABCD A B C D -中,1111AB B D AD ==,即11AB D 为正三角形,又因为E ,F 分别为棱AD 和1DD 的中点,所以1//EF AD ,故异面直线11B D 与EF 所成角即为1160B D A ∠=︒,故C 正确;对于D ,如图,连接111,,AD BC C F ,在正方体1111ABCD A B C D -中,1111,//C D AB C D AB =,所以四边形11ABC D 为平行四边形,则11//AD BC ,又1//EF AD ,所以1//EF BC ,所以1,,,B E F C 四点共面,故平面BEF 截正方体所得截面为四边形1BEFC ,设正方体棱长为2,则112BE C F ====所以11,C F BE EF BC =≠,又1//EF BC ,故截面为四边形1BEFC 为等腰梯形,故D 正确.故选:ACD.10.已知正实数a ,b ,c ,且a b c >>,x ,y ,z 为自然数,则满足0x y za b b c c a++>---恒成立的x ,y ,z 可以是()A.1x =,1y =,4z =B.1x =,2y =,5z =C.2x =,2y =,7z =D.1x =,3y =,9z =【答案】BC 【解析】【分析】利用基本不等式“1”的妙用得到2x y a b b c a c+≥---,进而得到只需2z >即可,再依次判断四个选项即可.【详解】要满足0x y z a b b c c a ++>---,只需满足x y za b b c a c+>---,其中正实数a ,b ,c ,且a b c >>,x ,y ,z 为正数,()()a b b c x y x y a b b c a c a b b c -+-⎛⎫+=+ ⎪-----⎝⎭()()()()()()b c x a b y x y a c a b a c a c b c a c--=+++------x y a c a c≥++--2x ya c a c a c+=+=---,当且仅当()()()()()()b c x a b y a b a c a c b c --=----,即()()22b c x a b y -=-时,等号成立,观察各选项,故只需2z a ca c+>--,故只需2z >即可,A 选项,1x =,1y =,4z =时,24=,A 错误;B 选项,1x =,2y =,5z =时,235=+,B 正确;C 选项,2x =,2y =,7z =时,287=>,C 正确;D 选项,1x =,3y =,9z =时,249=+,D 错误.故选:BC.11.已知椭圆()222:1039x y C b b+=<<左右两个焦点分别为1F 和2F ,动直线l 经过椭圆左焦点1F 与椭圆交于,A B 两点,且228AF BF +≤恒成立,下列说法正确的是()A.b =B.[]4,6AB ∈C.离心率2e =D.若OA OB ⊥,则2211518OAOB+=【答案】AB 【解析】【分析】根据椭圆定义利用通径长可求得b ,由椭圆性质可得[]4,6AB ∈,且离心率33e =,联立直线和椭圆方程可知当OA OB ⊥,方程无解,因此D 错误.【详解】如下图所示:易知3a =,由椭圆定义可知22412AB AF BF a ++==,因为228AF BF +≤恒成立,所以4AB ≥,当AB x ⊥轴,即AB 为通径时,AB 最小,所以2min 24b AB a==,解得b =,所以A 正确;当AB 为长轴时,AB 最大,此时26AB a ==,所以[]4,6AB ∈,即B 正确;可得椭圆方程为22:196x y C +=,易知c ==3c e a ==,即C 错误;因为()1F ,可设直线l的方程为x my =()()1122,,,A x y B x y ,联立22196x my x y ⎧=-⎪⎨+=⎪⎩,整理可得()2223120m y +--=,因此12122212,2323y y y y m m +==-++;若OA OB ⊥,可得0OA OB ⋅=,即12120x x y y +=,所以()()21212130m y y y y +-++=;整理得2610m +=,此时方程无解,因此D 错误.故选:AB非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12.已知复数1i +与3i 在复平面内用向量OA 和OB 表示(其中i 是虚数单位,O 为坐标原点),则OA 与OB夹角为__________.【答案】45°(或π4)【解析】【分析】根据复数的几何意义、向量夹角公式运算得解.【详解】根据题意,()1,1OA = ,()0,3OB =,cos ,2OA OB OA OB OA OB ⋅∴==u u u r u u u ru u u r u u u r u u u r u u u r ,又0,πOA OB ≤≤ ,所以向量OA 与OB 的夹角为π4.故答案为:o 45(或π4).13.将函数()cos 2g x x =的图象上的每个点横坐标不变,纵坐标扩大为原来的2倍,再将所得图象向右平移π4得到函数()y h x =的图象,若函数()y g x =与函数()1y h x =+图象交于点()(),g αα,其中π02α-<<,则sin α的值为__________.【答案】255-##【解析】【分析】先利用伸缩变换和平移变换得到()h x ,再根据题意,由()()1h g αα+=求解.【详解】解:由题意得:()2sin 2h x x =,因为函数()y g x =与函数()1y h x =+图象交于点()(),g αα,所以2sin 21cos 2αα+=,即22224sin cos sin cos cos sin αααααα++=-,整理得()2sin 2cos sin 0ααα+=,因为π02α-<<,所以2cos sin 0αα+=,又因为22sin cos 1αα+=,所以sin 5α=-,故答案为:255-14.如图为世界名画《星月夜》,在这幅画中,文森特·梵高用夸张的手法,生动地描绘了充满运动和变化的星空.假设月亮可看作半径为1的圆O 的一段圆弧E ,且弧E 所对的圆心角为4π5.设圆C 的圆心C 在点O 与弧E 中点的连线所在直线上.若存在圆C 满足:弧E 上存在四点满足过这四点作圆O 的切线,这四条切线与圆C 也相切,则弧E 上的点与圆C 上的点的最短距离的取值范围为__________.(参考数据:2π1cos54=)【答案】(【解析】【分析】设弧E 的中点为M ,根据圆与圆相离,确定两圆的外公切线与内公切线,确定圆O 的位置,分析可得弧E 上的点与圆C 上的点的最短距离.【详解】如图,设弧E 的中点为M ,弧E 所对的圆心角为4π5,圆O 的半径1OM =,在弧E 上取两点,A B ,则4π5AOB ∠≤,分别过点,A B 作圆O 的切线,并交直线OM 于点D ,当过点,A B 的切线刚好是圆O 与圆C 的外公切线时,劣弧AB 上一定还存在点,S T ,使过点,S T 的切线为两圆的内公切线,则圆C 的圆心C 只能在线段MD 上,且不包括端点,过点C ,分别向,AD BD 作垂线,垂足为,R P ,则CR 即为圆C 的半径,设线段OC 交圆C 于点N ,则弧E 上的点与圆C 上的点的最短距离即为线段MN 的长度.在Rt AOD中,12πcos 51cos cos 254OAOA OAOD AOB AOD ==≤==∠∠,则11011MN OC OM CN OC CR OD =--=--<--=-=即弧E 上的点与圆C上的点的最短距离的取值范围为(.故答案为:(.【点睛】结论点睛:本题考查了根据两圆位置关系求距离的范围的问题.可按如下结论求解:相离的两个圆(圆心分别为1O 和2O ,半径分别为R 和r )上的两个动点之间的距离L 的最小值是两圆心之间的距离减去两圆的半径,最大值是两圆心之间的距离加上两圆的半径,即min 12max 12,L O O R r L O O R r =--=++.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,已知多面体111111,,,ABC A B C A A B B C C -均垂直于平面111,120,4,1,2ABC ABC A A C C AB BC B B ∠=︒=====.(Ⅰ)求证:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)3913.【解析】【分析】(Ⅰ)方法一:通过计算,根据勾股定理得111111,AB A B AB B C ⊥⊥,再根据线面垂直的判定定理得结论;(Ⅱ)方法一:找出直线AC 1与平面ABB 1所成的角,再在直角三角形中求解即可.【详解】(Ⅰ)[方法一]:几何法由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A B AB AA +=,即有111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =,由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,即有111AB B C ⊥,又11111A B B C B = ,因此1AB ⊥平面111A B C .[方法二]:向量法如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:()()()()()1110,,1,0,0,0,4,1,0,2,0,,A B A B C因此111112),(1,2),(0,3)AB A B A C ==-=-,由1110AB A B ⋅= 得111AB A B ⊥;由1110AB A C ⋅=得111AB AC ⊥,所以1AB ⊥平面111A B C .(Ⅱ)[方法一]:定义法如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB ,由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111B C A B A C ===得111111cosC A B C A B ∠=∠=,所以1C D =,故111sin 13C D C AD AC ∠==.因此,直线1AC 与平面1ABB所成的角的正弦值是13.[方法二]:向量法设直线1AC 与平面1ABB 所成的角为θ.由(I)可知11(0,(0,0,2)AC AB BB ===,设平面1ABB 的法向量(,,)n x y z =.由100n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩即020x z ⎧=⎪⎨=⎪⎩,可取(n = ,所以111sin cos ,13||AC n AC n AC n θ⋅===⋅ .因此,直线1AC 与平面1ABB所成的角的正弦值是13.[方法三]:【最优解】定义法+等积法设直线1AC 与平面1ABB 所成角为θ,点1C 到平面1ABB 距离为d (下同).因为1C C ∥平面1ABB ,所以点C 到平面1ABB 的距离等于点1C 到平面1ABB 的距离.由条件易得,点C 到平面1ABB 的距离等于点C 到直线AB 的距离,而点C 到直线AB,所以d =1sin 13d AC θ===.[方法四]:定义法+等积法设直线1AC 与平面1ABB 所成的角为θ,由条件易得111111A B B C AC ===,所以2221111111111111cos 25A B B C AC A B C A B B C +-∠==-⋅,因此11115sin 5A B C ∠=.于是得11111111111sin 2A B C S A B B C A B C =⋅⋅∠=△,易得114AA B S =△.由111111C AA B A A B C V V --=得1111111133AA B A B C S d S AB ⋅=⋅△△,解得d =故139sin 13d AC θ===.[方法五]:三正弦定理的应用设直线1AC 与平面1ABB 所成的角为θ,易知二面角11C AA B --的平面角为6BAC π∠=,易得11sinC AA ∠=,所以由三正弦定理得11139sin sin sin 213C AA BAC θ=∠⋅∠==.[方法六]:三余弦定理的应用设直线1AC 与平面1ABB 所成的角为θ,如图2,过点C 作CG AB ⊥,垂足为G ,易得CG ⊥平面1ABB ,所以CG可看作平面1ABB 的一个法向量.结合三余弦定理得1139sin cos ,cos cos 13AC CG C AC GCA θ=〈=∠⋅∠=〉=.[方法七]:转化法+定义法如图3,延长线段1A A 至E ,使得1AE C C =.联结CE ,易得1EC AC ∥,所以1AC 与平面1ABB 所成角等于直线EC 与平面1ABB 所成角.过点C 作CG AB ⊥,垂足为G ,联结GE ,易得CG ⊥平面1ABB ,因此EG 为EC 在平面1ABB 上的射影,所以CEG ∠为直线EC 与平面1ABB所成的角.易得CE =,CG =,因此39sin 13CG CEG CE ∠===.[方法八]:定义法+等积法如图4,延长11,A B AB 交于点E ,易知2BE =,又2AB BC ==,所以AC CE ⊥,故CE ⊥面11AA C C .设点1C 到平面1ABB 的距离为h ,由1111E AA C C AA E V V --=得1111113232AA AE h AA AC CE ⨯⋅⋅=⨯⋅⋅,解得h =又1AC =,设直线1AC 与平面1ABB 所成角为θ,所以sin 13θ==.【整体点评】(Ⅰ)方法一:通过线面垂直的判定定理证出,是该题的通性通法;方法二:通过建系,根据数量积为零,证出;(Ⅱ)方法一:根据线面角的定义以及几何法求线面角的步骤,“一作二证三计算”解出;方法二:根据线面角的向量公式求出;方法三:根据线面角的定义以及计算公式,由等积法求出点面距,即可求出,该法是本题的最优解;方法四:基本解题思想同方法三,只是求点面距的方式不同;方法五:直接利用三正弦定理求出;方法六:直接利用三余弦定理求出;方法七:通过直线平移,利用等价转化思想和线面角的定义解出;方法八:通过等价转化以及线面角的定义,计算公式,由等积法求出点面距,即求出.16.欧拉函数()()*Nn n ϕ∈的函数值等于所有不超过正整数n 且与n 互素的正整数的个数,例如:()11ϕ=,()42ϕ=,()84ϕ=,数列{}n a 满足()()*2N n n a n ϕ=∈.(1)求1a ,2a ,3a ,并求数列{}n a 的通项公式;(2)记()222log 1nnn na b a =-,求数列{}n b 的前n 和n S .【答案】(1)11a =,22a =,34a =,12n n a -=(2)()620625254n nn S +=-+⨯-【解析】【分析】(1)根据题意理解可求1a ,2a ,3a ,结合与2n 互素的个数可求数列{}n a 的通项公式;(2)求出数列{}n b 的通项公式,利用错位相减法求和即可.【小问1详解】由题意可知()121a ϕ==,()242a ϕ==,()384a ϕ==,由题意可知,正偶数与2n 不互素,所有正奇数与2n 互素,比2n 小的正奇数有12n -个,所以()122nn n a ϕ-==;【小问2详解】由(1)知()122nn n a ϕ-==,所以()221222nn n a ϕ-==,所以()()()()()21222212log log 2211112142244nn nn n n n n n n a b n n a --⎛⎫=-=-=--=-- ⎪⎝⎭,12n n S b b b =+++ ,所以()()12111112646424444n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-++-⨯-+-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,①()()2311111126464244444nn n S n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-++-⨯-+-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,②所以①-②得()12151111244244444n n n S n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-++---⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()111111641144212414n n n -+⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+⨯--⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()()1111111320614225441054n n n n n -++⎡⎤+⎛⎫⎛⎫=-+----⨯-=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⨯-⎢⎥⎣⎦,所以()620625254n nn S +=-+⨯-.17.已知双曲线()2222:10,0x y C a b a b-=>>左右焦点分别为1F ,2F ,点()3,2P 在双曲线上,且点()3,2P 到双曲线两条渐近线的距离乘积为65,过1F 分别作两条斜率存在且互相垂直的直线1l ,2l ,已知1l 与C 双曲线左支交于A ,B 两点,2l 与C 左右两支分别交于E ,F 两点.(1)求双曲线C 的方程;(2)若线段AB ,EF 的中点分别为M ,N ,求证:直线MN 恒过定点,并求出该定点坐标.【答案】(1)22132x y -=(2)证明见解析,()-【解析】【分析】(1)根据题意,列出,,a b c 的方程组求出22,a b 得解;(2)设直线1l的方程为(y k x =+,可得2l的方程(1y x k=-+,分别与双曲线方程联立,结合韦达定理求出点,M N 的坐标,表示直线MN 的方程,令0y =求得x 是定值.【小问1详解】设双曲线C 的两渐近线方程分别为by x a=,b y x a =-,点()3,2P 到双曲线两渐近线的距离乘积为22294323265b a b a b a ccc --+⨯==,由题意可得:22222229465941a b c b a a b ⎧+=⎪⎪-⎪=⎨⎪⎪-=⎪⎩,解得23a =,22b =,所以双曲线C 的方程为22132x y -=.【小问2详解】设直线1l的方程为(y k x =,由1l ,2l 互相垂直得2l的方程(1y x k=-,联立方程得(22132y k x x y ⎧=+⎪⎨⎪-=⎩,消y 得()2222231560k x x k ----=,0∆>成立,所以212235223M x x x k +==-,(22523M M y k x k=+=-,所以点M 坐标为2223525,2323k k ⎛⎫⎪ ⎪--⎝⎭,联立方程得(221132y x k x y ⎧=-+⎪⎪⎨⎪-=⎪⎩,所以342223N x x x k +==-,(2123N N y x k k -=-=-,所以点N坐标为22,2323k k ⎛⎫- ⎪ ⎪--⎝⎭,根据对称性判断知定点在x 轴上,直线MN 的方程为()N MM M N My y y y x x x x --=--,则当0y =时,222222222323232325252323M N N M N M x y x y k k k k x y y k k -⋅-⋅-==----,所以直线MN恒过定点,定点坐标为()-.【点睛】关键点点睛:本题第二问的关键是采用设线法再联立双曲线方程从而解出点,M N 的坐标,再得到直线MN 的方程,最后令0y =即可得到其定点坐标.18.定义{},max ,,a a b a b b a b≥⎧=⎨<⎩,已知函数(){}3max ln ,41f x x x mx =-+-,其中R m ∈.(1)当5m =时,求过原点的切线方程;(2)若函数()f x 只有一个零点,求实数m 的取值范围.【答案】(1)e 0x y -=或20x y -=(2)3m <或5m >【解析】【分析】(1)当5m =时,求出()f x ,利用导数的几何意义得出切线斜率,即可求切线方程;(2)对m 分类讨论,根据函数只有一个零点,结合函数的单调性分别分析求出m 的取值范围.【小问1详解】由题意知()f x 定义域()0,∞+,当5m =时,()333451,451ln ln ,451ln x x x x x f x x x x x ⎧-+--+-≥=⎨-+-<⎩,令()3451g x x x =-+-,()21250012g x x x '=-+>⇒<<,()g x ⇒在0,12⎛ ⎝⎭单调递增,12⎛⎫+∞ ⎪ ⎪⎝⎭单调递减,且()10g =,令()ln h x x =,则在()0,∞+单调递增,而()()101f h ==,又13416g ⎛⎫=⎪⎝⎭,11ln 144h ⎛⎫=<- ⎪⎝⎭,而()01g =-,所以当104x <<时,()()>g x h x ,当114x ≤<时,()()0g x h x >>,所以当01x <<时,()()f x g x =,当1x ≥时,()()f x h x =,所以()3451,01ln ,1x x x f x x x ⎧-+-<<=⎨≥⎩,所以()f x 在0,12⎛ ⎝⎭和()1,+∞单调递增,在,112⎛⎫ ⎪ ⎪⎝⎭单调递减.(ⅰ)当01x <<时,()2125f x x '=-+,设切点()3000,451M x x x -+-,则此切线方程为()()230000125451y x x x xx =-+--+-,又此切线过原点,所以()()23000001250451x x x x =-+--+-,解得012x =,即此时切线方程是20x y -=;(ⅱ)当1x ≥时,()ln f x x =,所以()1f x x'=,设切点为()00,ln x x ,此时切线方程()0001ln y x x x x =-+,又此切线过原点,所以()000100ln x x x =-+,解得0e x =,所以此时切线方程e 0x y -=,综上所述,所求切线方程是:e 0x y -=或20x y -=;【小问2详解】(ⅰ)当5m =时,由(1)知,()f x在0,12⎛ ⎝⎭和()1,+∞单调递增,,112⎛⎫ ⎪ ⎪⎝⎭单调递减,且()01f =,130416f ⎛⎫=> ⎪⎝⎭,()10f =,此时()f x 有两个零点;(ⅱ)当5m >时,当01x <<时,3345141x x x mx -+-<-+-,由(1)知:()3451g x x x =-+-在0,12⎛⎫⎪ ⎪⎝⎭递增,12⎛⎫ ⎪ ⎪⎝⎭递减,且()10g =,所以60,12x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x >,而()01f =-,所以()f x在0,12⎛ ⎪⎝⎭只有一个零点,,12⎛⎫+∞ ⎪ ⎪⎝⎭没有零点;(ⅲ)当05m <<时,341y x mx =-+-,此时2120y x m '=-+>得012x <<<,由(1)知,当1x ≥时,()ln f x x =只有一个零点1x =,要保证()f x 只有一个零点,只需要当01x <<时,()341f x x mx =-+-没有零点,34110901f m ⎧⎛⎛⎪=-+-=-< ⎪⎝⎝⎨⎪<<⎪⎩,得03m <<;(ⅳ)当0m ≤时,当()0,x ∈+∞时,()3410g x x mx =-+-<,此时()f x 只有一个零点1x =,综上,()f x 只有一个零点时,3m <或5m >.【点睛】关键点点睛:通过对m 的分类讨论,得出()f x 解析式,再由函数的单调性,结合函数只有一个零点,分别分析或列出不等式求m 的范围,解题过程较繁琐.19.甲、乙两人进行知识问答比赛,共有n 道抢答题,甲、乙抢题的成功率相同.假设每题甲乙答题正确的概率分别为p 和13,各题答题相互独立.规则为:初始双方均为0分,答对一题得1分,答错一题得﹣1分,未抢到题得0分,最后累计总分多的人获胜.(1)若3n =,12p =,求甲获胜的概率;(2)若20n =,设甲第i 题的得分为随机变量i X ,一次比赛中得到i X 的一组观测值()1,2,,20i x i = ,如下表.现利用统计方法来估计p 的值:①设随机变量11ni i X X n ==∑,若以观测值()1,2,,20i x i = 的均值x 作为X 的数学期望,请以此求出p 的估计值 1p ;②设随机变量i X 取到观测值()1,2,,20i x i = 的概率为()L p ,即()L p ()11222020,,,P X x X x X x ==== ;在一次抽样中获得这一组特殊观测值的概率应该最大,随着p 的变化,用使得()L p 达到最大时p 的取值 2p 作为参数p 的一个估计值.求 2p .题目12345678910得分100﹣111﹣1000题目11121314151617181920得分﹣1011﹣100010表1:甲得分的一组观测值.附:若随机变量X ,Y 的期望()E X ,()E Y 都存在,则()()()E X Y E X E Y +=+.【答案】(1)539864(2)①135p =;② 235p =【解析】【分析】(1)根据甲抢到题目数,分类讨论利用条件概率和全概率公式求解.(2)①由公式计算的数学期望与观测值的均值x 相等,可求出p 的估计值 1p ;②由概率()L p 的表达式,利用导数求取最大值时时p 的取值.【小问1详解】记甲获胜为事件A ,甲抢到3道题为事件3A ,甲抢到2道题为事件2A ,甲抢到1道题为事件1A ,甲抢到0道题为事件0A ,则()331128P A ⎛⎫== ⎪⎝⎭,()322313C 28P A ⎛⎫== ⎪⎝⎭,()311313C 28P A ⎛⎫== ⎪⎝⎭,()301128P A ⎛⎫== ⎪⎝⎭,而()322331111|C 12222P A A ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,()212211117|C 11222312P A A ⎛⎫⎛⎫⎛⎫=+⋅⋅--= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,()1122211222|21233332333P A A ⎛⎫⎛⎫=⋅+⋅⋅+-⋅⋅= ⎪ ⎪⎝⎭⎝⎭,()3210321220|C 33327P A A ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,所以()()()()()()()()()33221100||||P A P A P A A P A P A A P A P A A P A P A A =+++1137321205398281283827864=⋅+⋅+⋅+⋅=.【小问2详解】①()12i p P X ==,()102i P X ==,()112i p P X -=-=,所以()11211012222i p p p E X --=⨯+⨯-⨯=;因为()()1111111212122n n ni i i i i i p p E X E X E X E X n n n n n ===--⎛⎫⎛⎫====⋅⋅= ⎪ ⎪⎝⎭⎝⎭∑∑∑,由表中数据可知110x =,所以1211210p -=, 135p =.②因为()1,2,,20i X i = 取值相互独立,所以()()()()()1122202011222020,,,L p P X x X x X x P X x P X x P X x ======== ()()()6104610411101222i i i p p P X P X P X -⎛⎫⎛⎫⎛⎫==⨯=⨯=-=⎡⎤⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭,所以()10546310531111135322222222222p p p p p p p L p ⎡⎤---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=-=-⎢⎥ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;令()0L p '=得35p =,又01p <<,所以当30,5p ⎛⎫∈ ⎪⎝⎭时,()0L p '>,()L p 单调递增;当3,15p ⎛⎫∈ ⎪⎝⎭时,()0L p '<,()L p 单调递减;即当35p =时()L p 取到最大值,从而235p =.【点睛】方法点睛:正确提取题干中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。

北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试题(解析版)

北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试题(解析版)

海淀区2023—2024学年第二学期期末练习高三数学2024.05本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,0,1,2,{3}A B x a x =-=≤<∣.若A B ⊆,则a 的最大值为()A.2 B.0C.1- D.-2【答案】C 【解析】【分析】根据集合的包含关系可得1a ≤-求解.【详解】由于A B ⊆,所以1a ≤-,故a 的最大值为1-,故选:C2.在52()x x-的展开式中,x 的系数为()A.40B.10C.40-D.10-【答案】A 【解析】【分析】利用二项式定理的性质.【详解】设52(x x-的通项1k T +,则()5115C 2k k k k T x x --+=-,化简得()5215C 2k kk k T x -+=⋅-⋅,令2k =,则x 的系数为()225C 240-=,即A 正确.故选:A3.函数()3,0,1,03x x x f x x ⎧≤⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩是()A.偶函数,且没有极值点B.偶函数,且有一个极值点C.奇函数,且没有极值点D.奇函数,且有一个极值点【答案】B 【解析】【分析】根据函数奇偶性定义计算以及极值点定义判断即可.【详解】当0x ≤时,0x ->,则1()(3()3xx f x f x --===,当0x >时,0x -<,则1()3()()3xx f x f x --===,所以函数()f x 是偶函数,由图可知函数()f x 有一个极大值点.故选:B.4.已知抛物线24x y =的焦点为F ,点A 在抛物线上,6AF =,则线段AF 的中点的纵坐标为()A.52B.72C.3D.4【答案】C 【解析】【分析】根据抛物线定义求得点A 的纵坐标,再求AF 中点纵坐标即可.【详解】抛物线24x y =的焦点()0,1F ,又16A AF y =+=,解得5A y =,故线段AF 的中点的纵坐标为1532+=.故选:C.5.在ABC 中,34,5,cos 4AB AC C ===,则BC 的长为()A.6或32B.6C.3+D.3【答案】A 【解析】【分析】根据余弦定理即可求解.【详解】由余弦定理可得222222543cos 2104AC CB ABCB C AC BCBC+-+-===⋅,故22151806CB BC BC -+=⇒=或32,故选:A6.设,R,0a b ab ∈≠,且a b >,则()A.b a a b< B.2b a a b+>C.()sin a b a b -<- D.32a b>【答案】C 【解析】【分析】举反例即可求解ABD,根据导数求证()sin ,0,x x x <∈+∞即可判断C.【详解】对于A ,取2,1a b ==-,则122b aa b=->=-,故A 错误,对于B ,1,1a b ==-,则2b aa b+=,故B 错误,对于C ,由于()sin 0,cos 10y x x x y x '=->-≤=,故sin y x x =-在()0,∞+单调递减,故sin 0x x -<,因此()sin ,0,x x x <∈+∞,由于a b >,所以0a b ->,故()sin a b a b -<-,C 正确,对于D,3,4a b =-=-,则11322716a b =<=,故D 错误,故选:C7.在ABC 中,π,2C CA CB ∠===,点P 满足()1CP CA CB λλ=+- ,且4CP AB ⋅= ,则λ=()A.14-B.14C.34-D.34【答案】B 【解析】【分析】用CB ,CA 表示AB ,根据0CA CB ⋅=,结合已知条件,以及数量积的运算律,求解即可.【详解】由题可知,0CA CB ⋅=,故CP AB ⋅()()()()2211881168CA CB CB CA CA CB λλλλλλλ⎡⎤=+-⋅-=-+-=-+-=-+⎣⎦,故1684λ-+=,解得14λ=.故选:B.8.设{}n a 是公比为()1q q ≠-的无穷等比数列,n S 为其前n 项和,10a >.则“0q >”是“n S 存在最小值”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的判定以及等比数列前n 项和公式判断即可【详解】若10a >且公比0q >,则110n n a a q -=>,所以n S 单调递增,n S 存在最小值1S ,故充分条件成立.若10a >且12q =-时,11112211013212n nn a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-->⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭,当n 为奇数时,121132nn S a ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递减,故最大值为1n =时,11S a =,而123n S a <,当n 为偶数时,121132n n S a ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递增,故最小值为2n =,122aS =,所以n S 的最小值为112a ,即由10a >,n S 存在最小值得不到公比0q >,故必要性不成立.故10a >公比“0q >”是“n S 存在最小值”的充分不必要条件.故选:A9.设函数()f x 的定义域为D ,对于函数()f x 图象上一点()00,x y ,若集合()(){}0,k k x x y f x x D ≤∈-+∀∈R∣只有1个元素,则称函数()f x 具有性质0x P .下列函数中具有性质1P 的是()A.()1f x x =- B.()lg f x x=C.()3f x x = D.()πsin2f x x =-【答案】D 【解析】【分析】根据性质1P 的定义,结合各个函数的图象,数形结合,即可逐一判断各选择.【详解】根据题意,要满足性质1P ,则()f x 的图象不能在过点()()1,1f 的直线的上方,且这样的直线只有一条;对A :()1f x x =-的图象,以及过点()1,0的直线,如下所示:数形结合可知,过点()1,0的直线有无数条都满足题意,故A 错误;对B :()lg f x x =的图象,以及过点()1,0的直线,如下所示:数形结合可知,不存在过点()1,0的直线,使得()f x 的图象都在该直线的上方,故B 错误;对C :()3f x x =的图象,以及过点()1,1的直线,如下所示:数形结合可知,不存在过点()1,1的直线,使得()f x 的图象都在该直线的上方,故C 错误;对D :()πsin2f x x =-的图象,以及过点()1,1-的直线,如下所示:数形结合可知,存在唯一的一条过点()1,1-的直线1y =-,即0k =,满足题意,故D 正确.故选:D.10.设数列{}n a 的各项均为非零的整数,其前n 项和为n S .若()*,j i i j -∈N为正偶数,均有2ji aa ≥,且20S =,则10S 的最小值为()A.0B.22C.26D.31【答案】B 【解析】【分析】因为2120S a a =+=,不妨设120,0a a ><,由题意求出3579,,,a a a a 的最小值,46810,,,a a a a 的最小值,10122S a =,令11a =时,10S 有最小值.【详解】因为2120S a a =+=,所以12,a a 互为相反数,不妨设120,0a a ><,为了10S 取最小值,取奇数项为正值,取偶数项为负值,且各项尽可能小,.由题意知:3a 满足312a a ≥,取3a 的最小值12a ;5a 满足51531224a a a a a ≥⎧⎨≥≥⎩,因为1110,42a a a >>,故取5a 的最小值14a ;7a 满足717317531224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,取7a 的最小值18a ;同理,取9a 的最小值116a ;所以135791111112481631a a a a a a a a a a a ++++=++++=,4a 满足422a a ≥,取4a 的最小值22a ;6a 满足62642224a a a a a ≥⎧⎨≥≥⎩,因为20a <,所以2224a a >,取6a 的最小值12a ;8a 满足828418641224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,因为20a <,所以222482a a a >>,取8a 的最小值12a ;同理,取10a 的最小值12a ;所以24681022222222229a a a a a a a a a a a ++++=++++=,所以101211131931922S a a a a a =+=-=,因为数列{}n a 的各项均为非零的整数,所以当11a =时,10S 有最小值22.故选:B【点睛】关键点点睛:10S 有最小值的条件是确保各项最小,根据递推关系2j i a a ≥分析可得奇数项的最小值与偶数项的最小值,从而可得10S 的最小值.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.若()2(i)2i R x x +=∈,则x =__________.【答案】1【解析】【分析】利用复数的四则运算,结合复数相等的性质得到关于x 的方程组,解之即可得解.【详解】因为2(i)2i x +=,所以222i i 2i x x ++=,即212i 2i x x -+=,所以21022x x ⎧-=⎨=⎩,解得1x =.故答案为:1.12.已知双曲线22:14x C y -=,则C 的离心率为__________;以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为__________.(写出一个即可)【答案】①.②.22(1x y ++=或(22(1x y +=)【解析】【分析】根据离心率的定义求解离心率,再计算焦点到渐近线的距离,结合圆的标准方程求解即可.【详解】22:14x C y -==,又渐近线为12y x =,即20x y -=,故焦点)与()到20x y -=1=,则以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为22(1xy ++=或22(1x y -+=,故答案为:2;22(1xy ++=或(22(1x y +=)13.已知函数()2cos sin f x x a x =+.(i )若0a =,则函数()f x 的最小正周期为__________.(ii )若函数()f x 在区间()0,π上的最小值为2-,则实数=a __________.【答案】①.π②.2-【解析】【分析】根据二倍角公式即可结合周期公式求解,利用二次函数的性质即可求解最值.【详解】当0a =时,()2cos 21cos 2x f x x +==,所以最小正周期为2ππ2T ==,()2222cos sin sin sin 1sin 124a a f x x a x x a x x ⎛⎫=+=-++=--++⎪⎝⎭,当()0,πx ∈时,(]sin 0,1x ∈,且二次函数开口向下,要使得()f x 在区间()0,π上的最小值为2-,则需要1022a a-≥-,且当sin 1x =时取最小值,故112a -++=-,解得2a =-,故答案为:π,2-14.二维码是一种利用黑、白方块记录数据符号信息的平面图形.某公司计划使用一款由()2*nn ∈N 个黑白方块构成的n n ⨯二维码门禁,现用一款破译器对其进行安全性测试,已知该破译器每秒能随机生成162个不重复的二维码,为确保一个n n ⨯二维码在1分钟内被破译的概率不高于1512,则n 的最小值为__________.【答案】7【解析】【分析】根据题意可得21615260122n⨯≤,即可由不等式求解.【详解】由题意可知n n ⨯的二维码共有22n 个,由21615260122n⨯≤可得2216153126022602n n -⨯⨯≤⇒≤,故2231637n n -≥⇒≥,由于*n ∈N ,所以7n ≥,故答案为:715.如图,在正方体1111ABCD A B C D -中,P 为棱AB 上的动点,DQ ⊥平面1,D PC Q 为垂足.给出下列四个结论:①1D Q CQ =;②线段DQ 的长随线段AP 的长增大而增大;③存在点P ,使得AQ BQ ⊥;④存在点P ,使得PQ //平面1D DA .其中所有正确结论的序号是__________.【答案】①②④【解析】【分析】根据给定条件,以点D 为原点,建立空间直角坐标系,求出平面1D PC 的法向量坐标,进而求出点Q 的坐标,再逐一计算判断各个命题即得答案.【详解】在正方体1111ABCD A B C D -中,令1AB =,以点D 为原点,建立如图所示的空间直角坐标系,设(01)AP t t =≤≤,则1(0,0,0),(0,1,0),(0,0,1),(1,,0)D C D P t ,1(0,1,1),(1,1,0)CD CP t =-=-,令平面1D PC 的法向量(,,)n x y z = ,则10(1)0n CD y z n CP x t y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,取1y =,得(1,1,1)n t =- ,由DQ ⊥平面1D PC 于Q ,得((1),,)DQ n t λλλλ==-,即((1),,)Q t λλλ-,((1),1,)CQ t λλλ=-- ,显然2(1)10CQ n t λλλ⋅=-+-+=,解得21(1)2t λ=-+,于是222111(,,)(1)2(1)2(1)2t Q t t t --+-+-+,对于①,222222221||(1)(1)(1)(1)||D Q t t CQ λλλλλλ=-++--+-+,①正确;对于②,2221||(1)11(1)2(1)2DQ t t t =-++-+-+在[0,1]上单调递增,②正确;对于③,而(1,0,0),(1,1,0)A B ,((1)1,,),((1)1,1,)AQ t BQ t λλλλλλ=--=---,若2222[(1)1](1)(23)(32)10AQ BQ t t t t λλλλλλ⋅=--+-+=-+--+=,显然22(32)4(23)430t t t t ∆=---+=--<,即不存在[0,1]t ∈,使得0AQ BQ ⋅=,③错误;对于④,平面1D DA 的一个法向量(0,1,0)DC =,而((1)1,,)PQ t t λλλ=--- ,由0PQ DC t λ⋅=-=,得t λ=,即21(1)2t t =-+,整理得322310t t t -+-=,令32()231,[0,1]f t t t t t =-+-∈,显然函数()f t 在[0,1]上的图象连续不断,而(0)10,(1)10f f =-<=>,因此存在(0,1)t ∈,使得()0f t =,此时PQ ⊄平面1D DA ,因此存在点P ,使得//PQ 平面1D DA ,④正确.所以所有正确结论的序号是①②④.故答案为:①②④【点睛】思路点睛:涉及探求几何体中点的位置问题,可以建立空间直角坐标系,利用空间向量证明空间位置关系的方法解决.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数2()2cos(0)2xf x x ωωω=+>,从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在且唯一确定.(1)求ω的值;(2)若不等式()2f x <在区间()0,m 内有解,求m 的取值范围.条件①:(2π)3f =;条件②:()y f x =的图象可由2cos2y x =的图象平移得到;条件③:()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)条件选择见解析,2ω=;(2)π(,)3+∞.【解析】【分析】(1)选条件①,由ππ1cos()332ω-=的解不唯一,此条件不符合题意;选条件②,由周期求出ω;选条件③,由给定等式确定最大最小值条件,求出周期范围,由给定区间内无极值点求出周期即可.(2)由(1)求出函数()f x 的解析式,再借助不等式有解列式求解即得.【小问1详解】依题意,π()cos 12cos()13f x x x x ωωω=++=-+,选条件①,由(2π)3f =,得ππ2cos()1233ω-+=,即ππ1cos()332ω-=,于是πππ2π,N 333k k ω-=+∈或πππ2π,N 333k k ω*-=-+∈,显然ω的值不唯一,因此函数()f x 不唯一,不符合题意.选条件②,()y f x =的图象可由2cos2y x =的图象平移得到,因此()y f x =的最小正周期为函数2cos2y x =的最小正周期π,而0ω>,则2ππω=,所以2ω=.选条件③,()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+,则ππ(()463f f --=,即函数()f x 分别在ππ,63x x ==-时取得最大值、最小值,于是()f x 的最小正周期ππ2[(π63T ≤⨯--=,由()f x 在区间ππ(,36-内无极值点,得()f x 的最小正周期ππ2[()]π63T ≥⨯--=,因此πT =,而0ω>,所以2π2Tω==.【小问2详解】由(1)知π()2cos(213f x x =-+,由(0,)x m ∈,得πππ2(,2)333x m -∈--,由不等式()2f x <在区间(0,)m 内有解,即π1cos(2)32x -<在区间(0,)m 内有解,则有ππ233m ->,解得π3m >,所以m 的取值范围是π(,)3+∞.17.在三棱锥-P ABC 中,2,AB PB M ==为AP 的中点.(1)如图1,若N 为棱PC 上一点,且MN AP ⊥,求证:平面BMN ⊥平面PAC ;(2)如图2,若O 为CA 延长线上一点,且PO ⊥平面,2ABC AC ==,直线PB 与平面ABC 所成角为π6,求直线CM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)根据BM AP ⊥和,MN AP ⊥可证线面垂直,即可求证面面垂直,(2)根据线面角的几何法可得π6PBO ∠=,建立空间直角坐标系,利用法向量与方向向量的夹角即可求解.【小问1详解】连接,,BM MN BN.因为,AB PB M =为AP 的中点,所以BM AP ⊥.又,MN AP ⊥,,MN BM M MN BM ⋂=⊂平面BMN ,所以AP ⊥平面BMN .因为AP ⊂平面,PAC 所以平面BMN ⊥平面PAC .【小问2详解】因为PO ⊥平面,ABC OB ⊂平面,ABC OC ⊂平面ABC ,所以,,PO OB PO OC PBO ∠⊥⊥为直线PB 与平面ABC 所成的角.因为直线PB 与平面ABC 所成角为π6,所以π6PBO ∠=.因为2PB =,所以1,PO OB ==.2=,所以1OA =.又2AB =,故222AB OB OA =+.所以OB OA ⊥.如图建立空间直角坐标系O xyz -.则())0,1,0,A B,()()0,3,0,0,0,1C P ,110,,22M ⎛⎫⎪⎝⎭.所以()0,3,1PC =-,()BC = ,510,,22MC ⎛⎫=- ⎪⎝⎭.设平面PBC 的法向量为(),,n x y z =,则0,0,n PC n BC ⎧⋅=⎪⎨⋅=⎪⎩即30,330.y z x y -=⎧⎪⎨+=⎪⎩令1y =,则)3,1,3n = .设CM 与平面PBC 所成角为θ,则2sin cos ,132511344MC n MC n MC nθ⋅====⋅+⋅.所以直线CM 与平面PBC 所成角的正弦值为213.18.图象识别是人工智能领域的一个重要研究方向.某中学人.工智能兴趣小组研发了一套根据人脸照片识别性别的程序.在对该程序的一轮测试中,小组同学输入了200张不同的人脸照片作为测试样本,获得数据如下表(单位:张):识别结果真实性别男女无法识别男902010女106010假设用频率估计概率,且该程序对每张照片的识别都是独立的.(1)从这200张照片中随机抽取一张,已知这张照片的识别结果为女性,求识别正确的概率;(2)在新一轮测试中,小组同学对3张不同的男性人脸照片依次测试,每张照片至多测一次,当首次出现识别正确或3张照片全部测试完毕,则停止测试.设X 表示测试的次数,估计X 的分布列和数学期望EX ;(3)为处理无法识别的照片,该小组同学提出上述程序修改的三个方案:方案一:将无法识别的照片全部判定为女性;方案二:将无法识别的照片全部判定为男性;方案三:将无法识别的照片随机判定为男性或女性(即判定为男性的概率为50%,判定为女性的概率为50%).现从若干张不同的人脸照片(其中男性、女性照片的数量之比为1:1)中随机抽取一张,分别用方案一、方案二、方案三进行识别,其识别正确的概率估计值分别记为123,,p p p .试比较123,,p p p 的大小.(结论不要求证明)【答案】(1)34(2)分布列见解析;()2116E X =(3)231p p p >>【解析】【分析】(1)利用用频率估计概率计算即可(2)由题意知X 的所有可能取值为1,2,3,分别求出相应的概率,然后根据期望公式求出即可(3)分别求出方案一、方案二、方案三进行识别正确的概率,然后比较大小可得【小问1详解】根据题中数据,共有206080+=张照片被识别为女性,其中确为女性的照片有60张,所以该照片确为女性的概率为603804=.【小问2详解】设事件:A 输入男性照片且识别正确.根据题中数据,()P A 可估计为9031204=.由题意知X 的所有可能取值为1,2,3.()()()31331111,2,3444164416P X P X P X ====⨯===⨯=.所以X 的分布列为X123P34316116所以()331211234161616E X =⨯+⨯+⨯=.【小问3详解】231p p p >>.19.已知椭圆E 的焦点在x 轴上,中心在坐标原点.以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为(1)求栯圆E 的方程;(2)设过点()2,0M 的直线l (不与坐标轴垂直)与椭圆E 交于不同的两点,A C ,与直线16x =交于点P .点B 在y 轴上,D 为坐标平面内的一点,四边形ABCD 是菱形.求证:直线PD 过定点.【答案】(1)22186x y +=(2)证明见解析【解析】【分析】(1)根据焦点三角形的周长以及等边三角形的性质可得22a c +=且12c a =,即可求解,,a b c 得解,(2)联立直线与椭圆方程得韦达定理,进而根据中点坐标公式可得2286,3434t N t t ⎛⎫-⎪++⎝⎭,进而根据菱形的性质可得BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭,即可求解220,34t B t ⎛⎫ ⎪+⎝⎭,221614,3434t D t t ⎛⎫- ⎪++⎝⎭.进而根据点斜式求解直线PD 方程,即可求解.【小问1详解】由题意可设椭圆E 的方程为22222221(0),x y a b c a b a b+=>>=-.因为以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为所以22a c +=且12c a =,所以a c ==.所以26b =.所以椭圆E 的方程为22186x y +=.【小问2详解】设直线l 的方程为()20x ty t =+≠,令16x =,得14y t =,即1416,P t ⎛⎫ ⎪⎝⎭.由223424,2x y x ty ⎧+=⎨=+⎩得()223412120t y ty ++-=.设()()1122,,,A x y C x y ,则1212221212,3434t y y y y t t +=-=-++.设AC 的中点为()33,N x y ,则12326234y y ty t +==-+.所以3328234x ty t =+=+.因为四边形ABCD 为菱形,所以N 为BD 的中点,AC BD ⊥.所以直线BD 的斜率为t -.所以直线BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭.令0x =得222862343434t t t y t t t =-=+++.所以220,34t B t ⎛⎫ ⎪+⎝⎭.设点D 的坐标为()44,x y ,则4343222162142,2343434t t x x y y t t t ===-=-+++,即221614,3434t D t t ⎛⎫-⎪++⎝⎭.所以直线PD 的方程为()221414143416161634tt t y x t t ++-=--+,即()746y x t =-.所以直线PD 过定点()4,0.【点睛】方法点睛:圆锥曲线中定点问题的两种解法:(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.20.已知函数()()ln 0)f x x a a =-+>.(1)若1a =,①求曲线()y f x =在点()()22f ,处的切线方程;②求证:函数()f x 恰有一个零点;(2)若()ln 2f x a a ≤+对(),3x a a ∈恒成立,求a 的取值范围.【答案】(1)①2y =;②证明见解析(2)[)1,+∞【解析】【分析】(1)①求导,即可求解斜率,进而可求直线方程,②根据函数的单调性,结合零点存在性定理即可,(2)求导后构造函数()()(),,3g x x a x a a =-∈,利用导数判断单调性,可得()f x 的最大值为()()()000ln 2f x x a x a =-+-,对a 分类讨论即可求解.【小问1详解】当1a =时,()()ln 1f x x =-+.①()11f x x =--'.所以()()22,20f f =='.所以曲线()y f x =在点()()22f ,处的切线方程为2y =.②由①知()()(]()1ln 11,3,1f x x x f x x =-=-'+∈,且()20f '=.当()1,2x ∈时,因为111x >>-()0f x ¢>;当()2,3x ∈时,因为111x <<-,所以()0f x '<.所以()f x 在区间()1,2上单调递增,在区间()2,3上单调递减.因为()()()322,3ln20,1e 330f f f -==>+=-+<-+<.所以函数()f x 恰有一个零点.【小问2详解】由()()ln f x x a =-+得()f x -='.设()()(),,3g x x a x a a =-∈,则()10g x '=-<.所以()g x 是(),3a a 上的减函数.因为()()0,320g a g a a =>=-<,所以存在唯一()()()000,3,0x a a g x x a ∈=-=.所以()f x '与()f x 的情况如下:x()0,a x 0x ()0,3x a ()f x '+-()f x极大所以()f x 在区间(),3a a 上的最大值是()()()()0000ln ln 2f x x a x a x a =-+=-+-.当1a ≥时,因为()20g a a =-≤,所以02x a ≤.所以()()()0ln 222ln 2f x a a a a a a ≤-+-=+.所以()()0ln 2f x f x a a ≤≤+,符合题意.当01a <<时,因为()20g a a =>,所以02x a >.所以()()()0ln 222ln 2f x a a a a a a >-+-=+,不合题意.综上所述,a 的取值范围是[)1,+∞.【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21.设正整数2n ≥,*,i i a d ∈N ,(){}1,1,2,i i i A x x a k d k ==+-= ,这里1,2,,i n = .若*12n A A A ⋃⋃⋃=N ,且()1i j A A i j n ⋂=∅≤<≤,则称12,,,n A A A 具有性质P .(1)当3n =时,若123,,A A A 具有性质P ,且11a =,22a =,33a =,令123m d d d =,写出m 的所有可能值;(2)若12,,,n A A A 具有性质P :①求证:()1,2,,i i a d i n ≤= ;②求1nii ia d =∑的值.【答案】(1)27或32(2)①证明见解析②12n +【解析】【分析】(1)对题目中所给的12,,,n A A A ,我们先通过分析集合中的元素,证明()1,2,,i i a d i n ≤= ,111ni i d ==∑,以及112ni i i a n d =+=∑,然后通过分类讨论的方法得到小问1的结果;(2)直接使用(1)中的这些结论解决小问2即可.【小问1详解】对集合S ,记其元素个数为S .先证明2个引理.引理1:若12,,,n A A A 具有性质P ,则()1,2,,i i a d i n ≤= .引理1的证明:假设结论()1,2,,i i a d i n ≤= 不成立.不妨设11a d >,则正整数111a d A -∉,但*12n A A A ⋃⋃⋃=N ,故11a d -一定属于某个()2i A i n ≤≤,不妨设为2A .则由112a d A -∈知存在正整数k ,使得()11221a d a k d -=+-.这意味着对正整数1112c a d d d =-+,有()111212111c a d d d a d d A =-+=+-∈,()()11122212212211c a d d d a k d d d a k d d A =-+=+-+=++-∈,但12A A =∅ ,矛盾.所以假设不成立,从而一定有()1,2,,i i a d i n ≤= ,从而引理1获证.引理2:若12,,,n A A A 具有性质P ,则111ni i d ==∑,且112ni i ia n d =+=∑.证明:取集合{}121,2,...,...n T d d d =.注意到关于正整数k 的不等式()1201...i i n a k d d d d <+-≤等价于12...11i i n i i ia a d d dk d d d -<≤-+,而由引理1有i i a d ≤,即011iia d ≤-<.结合12...n i d d d d 是正整数,知对于正整数k ,12...11i i n i i i a a d d d k d d d -<≤-+当且仅当12...n i iT d d dk d d ≤=,这意味着数列()()11,2,...k i i x a k d k =+-=恰有iT d 项落入集合T ,即i iT T A d ⋂=.而12,,,n A A A 两两之间没有公共元素,且并集为全体正整数,故T 中的元素属于且仅属于某一个()1i A i n ≤≤,故12...n T A T A T A T ⋂+⋂++⋂=.所以1212......n nT T T T A T A T A T d d d +++=⋂+⋂++⋂=,从而12111...1nd d d +++=,这就证明了引理2的第一个结论;再考虑集合T 中全体元素的和.一方面,直接由{}121,2,...,...n T d d d =知T 中全体元素的和为()1212 (12)n n d d d d d d +,即()12T T +.另一方面,i T A ⋂的全部iT d 个元素可以排成一个首项为i a ,公差为i d 的等差数列.所以i T A ⋂的所有元素之和为11122i i i i i i i iTT TT T a a d T d d d d d ⎛⎫⎛⎫⋅+-=+- ⎪ ⎪⎝⎭⎝⎭.最后,再将这n 个集合()1,2,...,i T A i n ⋂=的全部元素之和相加,得到T 中全体元素的和为112ni i i i T Ta T d d =⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.这就得到()11122ni i i i T T T Ta T d d =⎛⎫+⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑,所以有()221111111222222nnn ni i i i i i i i i iiiT T T TTn TTn T a a a T TT d d d d d ====⎛⎫+⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑.即1122ni i iT T na d =+-=+∑,从而112ni i i a n d =+=∑,这就证明了引理2的第二个结论.综上,引理2获证.回到原题.将123,,d d d 从小到大排列为123r r r ≤≤,则123123m d d d r r r ==,由引理2的第一个结论,有1231231111111r r r d d d ++=++=.若13r ≥,则1231111111111311r r r r r r r =++≤++=≤,所以每个不等号都取等,从而1233r r r ===,故12327m r r r ==;情况1:若11r =,则23111110r r r +=-=,矛盾;情况2:若12r =,则231111112r r r +=-=,所以232221111122r r r r r =+≤+=,得24r ≤.此时如果22r =,则3211102r r =-=,矛盾;如果24r =,则32111124r r =-=,从而34r =,故12332m r r r ==;如果23r =,由于12r =,设()()123123,,,,i i i r r r d d d =,{}{}123,,1,2,3i i i =,则12i d =,23i d =.故对于正整数对()()2121212112331212211i i i i i i i i k a a a a k a a a a ⎧=+--+--⎪⎨=+--+--⎪⎩,有2112231i i k k a a -=--,从而12121223i i i i a k a k A A +=+∈⋂,这与12i i A A ⋂=∅矛盾.综上,m 的取值只可能是27或32.当()()123,,3,3,3d d d =时,27m =;当()()123,,4,2,4d d d =时,32m =.所以123m d d d =的所有可能取值是27和32.【小问2详解】①由引理1的结论,即知()1,2,,i i a d i n ≤= ;②由引理2的第二个结论,即知112nii ia n d=+=∑.【点睛】关键点点睛:本题的关键点在于,我们通过两个方面计算了一个集合的各个元素之和,从而得到了一个等式,这种方法俗称“算二次”法或富比尼定理.。

北京市海淀区2022届高三下学期二模数学试题 (解析版)

北京市海淀区2022届高三下学期二模数学试题 (解析版)

北京市海淀区2022届高三下学期二模数学试题一、单选题1.已知集合{}01A x x x =或,则A =R ð( )A .{}01x x <<B .{}01x x ≤<C .{}01x x <≤D .{}01x x ≤≤2.在()312x -的展开式中,x 的系数为( )A .2-B .2C .6-D .6【答案】C【分析】直接由二项展开式求含x 的项即可求解.【详解】由题意知:含x 的项为()13C 26x x ⋅-=-,故x 的系数为6-.故选:C.3.已知双曲线2222:1x y C a b -=的渐近线经过点()1,2,则双曲线的离心率为( )AB C .2D4.已知,x y ∈R ,且0x y +>,则( )A .11x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>5.若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则( )A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-6.已知F 为抛物线24y x =的焦点,点()(),1,2,3n n n P x y n =L ,在抛物线上.若11n n P F P F +-=,则( )A .{}n x 是等差数列B .{}n x 是等比数列C .{}n y 是等差数列D .{}n y 是等比数列【答案】A【分析】根据抛物线的定义:抛物线上的点到焦点的距离等于到准线的距离,即可求解.【详解】由题可知,抛物线的焦点为(1,0)F ,准线为=1x -,点()(),1,2,3n n n P x y n =L ,在抛物线上,由抛物线的定义可知,,7.已知向量(1,0)a =r ,(b =-.若,,c a c b =,则c r可能是( )A .2a b -r rB .a b+rrC .2a b+r r D b+r8.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】由()f x 是R 上的增函数得()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之若对任意0a >,()()f x a f x +<,满足()()y f x a f x =+-无零点,但不满足()f x 是R 上的增函数,不满足必要性,即可判断.【详解】若()f x 是R 上的增函数,则对任意0a >,显然x a x +>,故()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之,若对任意0a >,()()f x a fx +<,即()()0f x a f x +<-,满足()()y f x a f x =+-无零点,但()f x 是R 上的减函数,不满足必要性,故“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的充分而不必要条件.故选:A.9.从物理学知识可知,图中弹簧振子中的小球相对平衡位置的位移y 与时间t (单位:s )的关系符合函数()()sin 100y A t ωϕω=+<.从某一时刻开始,用相机的连拍功能给弹簧振子连拍了20张照片.已知连拍的间隔为0.01s ,将照片按拍照的时间先后顺序编号,发现仅有第5张、第13张、第17张照片与第1张照片是完全一样的,请写出小球正好处于平衡位置的所有照片的编号为( )A .9、15B .6、18C .4、11、18D .6、12、1810.在正方体ABCD A B C D -''''中,E 为棱DC 上的动点,F 为线段B E '的中点.给出下列四个①B E AD ''⊥;②直线D F '与平面ABB A ''所成角不变;③点F 到直线AB 的距离不变;④点F 到,,A D D A '',四点的距离相等.其中,所有正确结论的序号为( )A .②③B .③④C .①③④D .①②④【答案】C【点睛】(1)判定和动点相关的问题时,只要找出动点的轨迹,行判断;(2)判定与动直线相关的位置关系问题时,可找出动直线所在的平面进行判定;(3)根据定义作出线面角可用来解决运动型的问题二、填空题11.已知,a b 均为实数.若()i i i b a +=+,则a b +=_________.【答案】0【分析】直接由复数的乘法及复数相等求解即可.【详解】()i i i i 1b a a ==++-,故1,1a b ==-,0a b +=.故答案为:0.12.不等式112x⎛⎫> ⎪⎝⎭的解集为_________.13.在现实世界,很多信息的传播演化是相互影响的.选用正实数数列{}n a ,{}n b 分别表示两组信息的传输链上每个节点处的信息强度,数列模型:11(2,21,2)n n n n n n a a b b a b n ++=+=+=L ,描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足11a b >,则在该模型中,关于两组信息,给出如下结论:①*,n n n a b ∀∈>N ;②*11,,n n n n n a a b b ++∀∈>>N ;③*k ∃∈N ,使得当n k >时,总有10110nna b --<④*k ∃∈N ,使得当n k >时,总有101210n na a -+-<.其中,所有正确结论的序号是_________三、解答题14.如图,已知四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PA ⊥底面ABCD ,2PA =,点E 是PC 的中点.(1)求证://DC 面ABE ;(2)求DC 到平面ABE 的距离.由(1)知//DC 面ABE ,故DC 到平面连接,AE AC ,取AC 中点F ,连接BF 易得EF PA ∥且1=12EF PA =,则EF 2,23AC BD ==,故12ABC ABCD S S =V 又113,122BF BD AF AC ====,故15.在ABC V 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC V 存在.求ABC V 的面积条件①:sin 47A =; 条件②:sin B16.PMI值是国际上通行的宏观经济监测指标之一,能够反映经济的变化趋势.下图是国家统计局发布的某年12个月的制造业和非制造业PMI值趋势图.将每连续3个月的PMI值做为一个观测组,对国家经济活动进行监测和预测(1)现从制造业的10个观测组中任取一组,(ⅰ)求组内三个PMI 值至少有一个低于50.0的概率;(ii )若当月的PMI 值大于上一个月的PMI 值,则称该月的经济向好.设X 表示抽取的观测组中经济向好的月份的个数(由已有数据知1月份的PMI 值低于去年12月份的PMI 值),求X 的分布列与数学期望;(2)用1,2)1(2j b j =L ,,表示第j 月非制造业所对应的PMI 值,b 表示非制造业12个月PMI 值的平均数,请直接写出j b b -取得最大值所对应的月份.所以随机变量X 的数学期望()121301225105E X =⨯+⨯+⨯=.(2)8月份,理由如下由某年12个月的非制造业PMI 值趋势图中的数据,得52.451.456.354.955.253.553.347.553.252.452.352.752.912b +++++++++++=≈根据某年12个月的非制造业PMI 值趋势图,可知当8j =时,j b b -取得最大值为847.552.9 5.4b b -=-=.17.椭圆2222:1(0)x y M a b a b +=>>的左顶点为()2,0A -(1)求椭圆M 的方程;(2)已知经过点⎛ ⎝的直线l 交椭圆M 于,B C 两点,D 是直线4x =-上一点.若四边形ABCD 为平行四边形,求直线l 的方程.2a )11224,),(,),(,)t B x y C x y -,又(2,0)A -,故AD k =-18.已知函数1()ln 2x af x x -=+.(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)当12a =-时,求函数()f x 的单调区间;(3)当0x <时,()12f x ≥恒成立,求a 的取值范围.19.已知有限数列{}n a 共M 项(4)M ≥,其任意连续三项均为某等腰三角形的三边长,且这些等腰三角形两两均不全等.将数列{}n a 的各项和记为S .(1)若{1,2}(1,2,,)n a n M ∈=L ,直接写出,M S 的值;(2)若{}1,2,3,2,()1,n a n M ∈=L ,求M 的最大值;(3)若*(1,2,,),16n a n M M ∈==N L ,求S 的最小值【答案】(1)4,7M S ==;(2)8;(3)50【分析】(1)直接列举出数列{}n a ,即可求得,M S ;(2)先构造数列使8M =,再说明不同的等腰三角形只有6个,故628M ≤+=,即可求得M 的最大值;(3)先构造数列使50S =,再设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,即可求解.【详解】(1)边长为1或2的等腰三角形只有1,1,1;1,2,2;2,2,2;若前三项为1,1,1,则该数列只有3项,不合题意;所以50S ≥.⑤由①④,S 的最小值为50.【点睛】本题关键点在于设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,将S 最小,转化为T 和11621522a a a a +++最小,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,再构造数列使50S =即可求解.四、双空题20.已知圆22:20C x y x ++=,则圆C 的半径为_________;若直线y kx =被圆C 截得的弦长为1,则k =_________.21.已知()sin cos f x x x =+的图象向右平移()0a a >个单位后得到()g x 的图象,则函数()g x 的最大值为_________;若()()f x g x +的值域为{}0,则a 的最小值为_________.。

2022—2023学年第二学期高三二模数学试题(试卷+答案)

2022—2023学年第二学期高三二模数学试题(试卷+答案)

2022—2023学年第二学期高三二模数学试题(试卷+答案)数学做题方法有哪些当我们遇到不会的数学题时,一个特别好用的方法就是画图,这个方法适用于选择题,因为不需要计算过程,可以直接选正确答案。

数学中有一些题目可能用公式计算比较麻烦,或者是有些同学不会按部就班做,可是画完图往往就能立见答案,还节省做题时间,效率很高。

做数学题还可以用试值法去做,也比较适合选择题,当不知道这道题目该怎么做时,可以把每个选项都代入进去,利用试值法求解,如果正确答案在前面,做题速度就会很快,如果答案在后面,就需要把每个值都代入试一遍。

分类讨论法。

数学有的解答题是需要进行分类讨论的,有些题目有最大值、最小值以及临界值,做题时都需要考虑到,不能丢解,否则采分点就没有了。

这类大题一般前一两步比较简单,最后一步比较难,大家还需要认真去做,要不然很容易丢分。

此外做数学题目还有很多方法,比如待定系数法、换元法等等,可以在做题中慢慢积累。

做数学题目有窍门吗数学选择题是不需要写过程的,所以可以投机取巧去做,也就是用更简便的方法,只要能选出正确答案即可,因此试值法、代入法、画图法、折纸法等都可以用,而解答题则不同,需要按步骤去写。

做数学其实没有太多技巧可言,都是需要在平时踏实学习、训练才能有解题思路。

那么为什么很多人学不会数学呢?首先是数学基础知识学的不扎实,其实是有畏难情绪,最后是没掌握数学思维。

学数学就要听懂以后自己尝试去做题,不自己做永远都不会,数学好的人多是靠自学的,所以预习在数学这科里面很重要,能培养自学能力。

学数学的技巧就是自己多研究,题目做多了就会了。

学好数学的方法和技巧1、认真“听”的习惯。

为了教和学的同步,教师应要求学生在课堂上集中思想,集中精力听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

2、积极“想”的习惯。

积极思考老师和同学提出的题目,始终置身于教学活动之中,这是提高学习质量和效率的重要保证。

浙江省宁波市2022届高三下学期二模数学试题 (2)

浙江省宁波市2022届高三下学期二模数学试题 (2)

一、单选题二、多选题1. 已知复数满足,则等于A.B.C.D.2. 正多面体共有5种,统称为柏拉图体,它们分别是正四面体、正六面体(即正方体)、正八面体、正十二面体、正二十面体.连接正方体中相邻面的中心,可以得到另一个柏拉图体.已知该柏拉图体的体积为,则生成它的正方体的棱长为( )A .2B.C.D .43. 已知,则一定成立的是( )A.B.C.D.4. 已知是空间两个不同的平面,则“平面上存在不共线的三点到平面的距离相等”是“”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件5. 某市在文明城市建设中,鼓励市民“读书好,好读书,读好书”.在各阅览室设立茶座,让人们在休闲中阅读有用有益图书.某阅览室为了提高阅读率,对于周末前来阅读的前三名阅读者各赠送一本图书,阅读者从四种不同的书籍随意挑选一本,则他们有且仅有2名阅读者挑选同一种书的概率为( )A.B.C.D.6.化简( )A.B.C.D.7.已知,那么( )A.B.C.D.8. 明朝著名易学家来知德以其太极图解释一年、一日之象的图式.如图是来氏太极图,其大圆半径为4,大圆内部的同心小圆半径为1,两圆之间的图案是对称的,若在大圆内随机取一点,则该点落在黑色区域的概率为()A.B.C.D.9.已知函数,若,且,则( )A.B.C.D.10. 今年第5号台风“杜苏芮”于7月28日9时55分在福建晋江登陆,为1949年以来登陆福建的第二强台风,登陆后强度迅速减弱并一路北上影响黄淮、华北,给华北、黄淮等地带来较大范围的特大暴雨.华中地区某市受此次台风影响,最高气温同比有所下降,测得七天的最高气温分别是28,26,25,27,29,27,25(单位:℃),则( )浙江省宁波市2022届高三下学期二模数学试题 (2)浙江省宁波市2022届高三下学期二模数学试题 (2)三、填空题四、解答题A .该组数据的极差为4B .该组数据的众数为27C .该组数据的中位数为27D .该组数据的第70百分位数为2811. 为了普及环保知识,增强环保意识,某学校分别从两个班各抽取位同学分成甲、乙两组参加环保知识测试,得分(十分组)如图所示,则下列描述正确的有()A .甲、乙两组成绩的平均分相等B .甲、乙两组成绩的中位数相等C .甲、乙两组成绩的极差相等D .甲组成绩的方差小于乙组成绩的方差12.已知函数,,则( )A .在上为增函数B .当时,方程有且只有3个不同实根C.的值域为D .若,则13. 多项式展开式的常数项为__________.(用数字作答)14. 现安排A ,B ,C ,D ,E 这5名同学参加校园文化艺术节,校园文化艺术节包含书法、唱歌、绘画、剪纸四个项目,每个项目至少有一人参加,每人只能参加一个项目,A 不会剪纸但能胜任其他三个项目,剩下的人都能胜任这四个项目,则不同的安排方案有_______________种.15. 在数学解题中,时常会碰到形如“”的式子,它与“两角和的正切公式”的结构类似.若,则________.16. 已知函数.(1)在所给的坐标纸上作出函数的图像(不要求写出作图过程);(2)令,求函数的定义域及不等式的解集.17.已知点为双曲线上的动点.(1)判断直线与双曲线的公共点个数,并说明理由;(2)(i)如果把(1)的结论推广到一般双曲线,你能得到什么相应的结论?请写出你的结论,不必证明;(ii)将双曲线的两条渐近线称为“退化的双曲线”,其方程为,请利用该方程证明如下命题:若为双曲线上一点,直线:与的两条渐近线分别交于点,则为线段的中点.18. 如图,从这6个点中随机选取3个点,将这3个点及原点两两相连构成一个“立体”,记该“立体”的体积为随机变量(如果选取的3个点与原点在同一个平面内,此时“立体”的体积).(1)求的概率;(2)求的分布列及数学期望.19. 如图,在三棱柱中,底面是边长为的正三角形,侧棱的长为,,分别是棱,的中点,平面平面,且.(1)求证:;(2)若三棱柱的侧面积为,求它的体积.20. 已知函数,.(1)当时,若曲线与直线相切于点,求点的坐标;(2)当时,证明:;(3)若对任意,不等式恒成立,求出的取值范围.21. 已知椭圆长轴长为6,点和点中有且只有一个点在椭圆上.(1)求椭圆的方程;(2)过椭圆短轴(不包括端点)上一点作斜率为和的两条直线和分别交椭圆于,和,,若,求的值.。

陕西省宝鸡市2023届高三下学期二模理科数学试题含解析

陕西省宝鸡市2023届高三下学期二模理科数学试题含解析

2023年宝鸡市高考模拟检测(二)数学(理科)(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷解答题又分必考题和选考题两部分,选考题为二选一.考生作答时,将所有答案写在答题卡上,在本试卷上答题无效.本试卷满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,书写要工整、笔迹清楚,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试卷上答题无效.第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{}40M x x =-<<,{}24N x x =<,则M N =()A.{}20x x -<<B.{}22x x -<<C.{}44x x -<<D.{}42x x -<<2.设1z ,2z 为复数,则下列说法正确的为()A.若22120z z +=,则120z z ==B.若12z z =,则1z ,2z 互为共轭复数C.若a ∈R ,i 为虚数单位,则()1i a +⋅为纯虚数D.若20z ≠,则1122z z z z = 3.直线l :cos sin 1()x y ααα+=∈R 与曲线C :221x y +=的交点个数为() A.0B. 1C.2D.无法确定4.我国古代数学家赵爽用弦图给出了勾股定理的证明,弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示),记大正方形和小正方形的面积分别为1S 和2S ,若125S S =,则直角三角形的勾(较短的直角边)与股(较长的直角边)的比值为()A.12B.13C.23D.255.设a ,b ∈R ,则“2a b +≥”是“222a b +≥”的() A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.ABC △中,5AB =,7AC =,D 为BC 的中点,5AD =,则BC =() A.3 B.3 C.22 D.427.已知抛物线C :()220x py p =>的焦点为F ,(),M x y 为C 上一动点,曲线C 在点M 处的切线交y 轴于N 点,若30FMN ∠=︒,则FNM ∠=() A.60︒B.45︒C.30︒D.15︒8.已知函数()()lg lg 2f x x x =+-,则() A.()f x 在()0,1单调递减,在()1,2单调递增 B.()f x 在()0,2单调递减 C.()f x 的图像关于直线1x =对称D.()f x 有最小值,但无最大值9.设m ,{}2,1,0,1,2,3n ∈--,曲线C :221mx ny +=,则下列说法正确的为() A.曲线C 表示双曲线的概率为15B.曲线C 表示椭圆的概率为16C.曲线C 表示圆的概率为110D.曲线C 表示两条直线的概率为1510.点(),P x y 在不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域上,则xy 的最大值为()A.94B. 2C.83D. 311.四棱锥P ABCD -中,底面ABCD 为边长为4的正方形,PBA PBC ∠=∠,PD AD ⊥,Q 为正方形ABCD 内一动点且满足QA QP ⊥,若2PD =,则三棱锥Q PBC -的体积的最小值为()A.3B.83C.43D. 212.已知正实数x ,y ,z 满足235log log log 0x y z ==≠,给出下列4个命题: ①x y z <<②x ,y ,z 的方程x y z +=有且只有一组解 ③x ,y ,z 可能构成等差数列④x ,y ,z 不可能构成等比数列 其中所有真命题的个数为() A. 1B.2C.3D.4第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,满分20分. 13.若a ,b ,c ,d 为实数,且a c ad bcb d=-,定义函数sin 3()2cos 2cos x xf x x x=,现将()f x 的图像先向左平移512π3()g x 的图像,则()g x 的解析式为______. 14.已知非零向量a ,b ,c 满足1a b a b ==-=且1c a b --=,则c 的取值范围是______.15.若函数31()3xxf x e ex ax -=-+-无极值点,则实数a 的取值范围是______. 16.如图,已知正四面体EFGH 和正四棱锥P ABCD -的所有棱长都相等,现将正四面体EFGH 的侧面EGH 与正四棱锥P ABCD -的侧面P AB 重合(P ,E 重合;A ,H 重合;B ,G 重合)后拼接成一个新的几何体,对于新几何体,下列说法正确的有______ ①PF CD ⊥ ②PF 与BC 异面 ③新几何体为三棱柱④新几何体的6个顶点不可能在同一个球面上三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分 17.(本小题12分)某市作为常住人口超2000万的超大城市,注册青年志愿者人数超114万,志愿服务时长超268万小时.2022年6月,该市22个市级部门联合启动了2022年市青年志愿服务项目大赛,项目大赛申报期间,共收到331个主体的416个志愿服务项目,覆盖文明实践、社区治理与邻里守望、环境保护等13大领域.已知某领域共有50支志愿队伍申报,主管部门组织专家对志愿者申报队伍选行评审打分,并将专家评分(单位:分)分成6组:[)40,50,[)50,60,…,[]90,100,得到如图所示的频率分布直方图.(1)求图中m 的值;(2)从评分不低于80分的队伍中随机选取3支队伍,该3支队伍中评分不低于90分的队伍数为X ,求随机变量X 的分布列和期望. 18.(本小题12分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,AB DC ∥,222CD AB AD ===,4PD =,AD CD ⊥,E 为棱PD 上一点.(1)求证:无论点E 在棱PD 的任何位置,都有CD AE ⊥成立; (2)若E 为PD 中点,求二面角A EC P --的余弦值. 19.(本小题12分)已知函数1()3xf x ⎛⎫= ⎪⎝⎭,等比数列{}n a 的前n 项和为()f n c -,数列{}()0n n b b >的首项为c ,且前n 项和nS 满足11(2)n n n n S S S S n ---=≥.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列11n n b b +⎧⎫⎨⎬⎩⎭前n 项和为n T ,求使10102023n T >的最小正整数n . 20.(本小题12分)已知椭圆1C :()222210x y a b a b+=>>,F 为左焦点,A 为上顶点,()2,0B 72AF AB=,抛物线2C 的顶点在坐标原点,焦点为F . (1)求1C 的标准方程;(2)是否存在过F 点的直线,与1C 和2C 交点分别是P ,Q 和M ,N ,使得12OPQ OMN S S =△△?如果存在,求出直线的方程;如果不存在,请说明理由(OPQ S △为OPQ △面积). 21.(本小题12分) 已知函数2()ln ()2a f x x x x x a =+-∈R ,且()f x 在()0,+∞内有两个极值点1x ,2x (12x x <). (1)求实数a 的取值范围; (2)求证:1220a x x +<+.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分. 22.(选修4-4:坐标系与参数方程)(10分)在直角坐标系xOy 中,曲线C 的参数方程为126126x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 13πρθ⎛⎫+= ⎪⎝⎭. (1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)已知点()2,0M ,若直线l 与曲线C 交于P ,Q 两点,求PM QM -. 23.(选修4-5:不等式选讲)(10分) 已知函数()11f x x x =-++. (1)求不等式()3f x <的解集;(2)若二次函数22y x x m =--+与函数()y f x =的图象恒有公共点,求实数m 的取值范围.2023年宝鸡市高考模拟检测(二)数学(理科)答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DDBACBCCBABC二、填空题:13.()2cos2g x x = 14.331⎡⎤⎣⎦15.{}2a a ≤ 16.①③④解答题答案17.解:(Ⅰ)由(0.00420.0220.0300.028)101m ⨯++++⨯=,解得0.012m =. (Ⅱ)由题意知不低于80分的队伍有()500.120.048⨯+=支, 不低于90分的队伍有500.042⨯=支. 随机变量X 的可能取值为0,1,2.∵36385(0)14C P X C ===,21623815(1)28C C P X C ===,1262383(2)28C C P X C ===, ∴X 的分布列为X 012P514 1528 32851533()0121428284E X =⨯+⨯+⨯=. 18.(1)证明:因为PD ⊥平面ABCD ,CD ⊂平面ABCD , 所以PD CD ⊥, 因为AD CD ⊥,AD PD D =,AD ,PD ⊂平面P AD ,所以CD ⊥平面P AD , 因为E 为棱PD 上一点, 所以AE ⊂平面P AD , 所以CD AE ⊥.(2)解:因为PD ⊥平面ABCD ,AD CD ⊥,所以DA ,DC ,DP 两两垂直,如图,建立空间直角坐标系,因为222CD AB AD ===,4PD =,所以()1,0,0A ,()0,2,0C ,()0,0,2E ,()0,0,4P , 所以()1,0,2EA =-,()0,2,2EC =-, 设平面AEC 的一个法向量为(),,n x y z =,则00EA n EC n ⎧⋅=⎪⎨⋅=⎪⎩,即2x z y z =⎧⎨=⎩,令1z =得()2,1,1n =,因为PD AD ⊥,AD CD ⊥,PD CD D =,PD ,CD ⊂平面PCD ,所以AD ⊥平面PCD .所以平面PCE 的一个法向量为()1,0,0m DA ==, 所以26cos ,36n m n m n m⋅===, 因为二面角A EC P --为钝二面角, 所以二面角A EC P --的余弦值为:6. 19.解:(Ⅰ)∵1()3xf x ⎛⎫= ⎪⎝⎭,等比数列{}n a 的前n 项和为1()3nf n c c ⎛⎫-=- ⎪⎝⎭,∴11(1)3a f c c =-=-,[][]22(2)(1)9a f c f c =---=-, [][]32(3)(2)27a f c f c =---=-, 数列{}n a 是等比数列,应有3212a a q a a ==,解得1c =,13q =. ∴首项112(1)33a f c c =-=-=-, ∴等比数列{}n a 的通项公式为12112333n nn a -⎛⎫⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.∵1111(2)n n n n n n n n S S S S S S S S n -----==≥,又0n b >0n S >11n n S S -=; ∴数列{}nS 构成一个首项为1,公差为1的等差数列,1(1)1n S n n =+-⨯=,∴2n S n =,当1n =时,111b S ==,当2n ≥时,221(1)21n n n b S S n n n -=-=--=-,又1n =时也适合上式, ∴{}n b 的通项公式21n b n =-. (Ⅱ)111111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, ∴1111111112335572121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11122121nn n ⎛⎫=-= ⎪++⎝⎭, 由10102023n T >,得1010212023n n >+,得336.6n >,故满足10102023n T >的最小正整数为337. 20.解:(172AF AB =,即2272a a b =+ 由右顶点为()2,0B ,得2a =,解得23b =,所以1C 的标准方程为22143x y +=. (2)依题意可知2C 的方程为24y x =-,假设存在符合题意的直线, 设直线方程为1x ky =-,()11,P x y ,()22,Q x y ,()33,M x y ,()44,N x y ,联立方程组221143x ky x y =-⎧⎪⎨+=⎪⎩,得()2234690k y ky +--=,由韦达定理得122634k y y k +=+,122934y y k -=+, 则212121k y y +-= 联立方程组214x ky y x=-⎧⎨=-⎩,得2440y ky +-=, 由韦达定理得344y y k +=-,344y y =-, 所以23441y y k -=+,若12OPQ OMN S S =△△, 则123412y y y y -=-221211k k +=+63k =±,所以存在符合题意的直线方程为610x y ++=或610x y +=. 21.解:(1)()ln f x x ax '=+,因为()f x 在()0,+∞内有两个极值点, 所以()f x '在()0,+∞内有两个零点,即方程ln 0x ax +=有两个正实根, 即ln xa x=-有两个正实根, 令ln ()x g x x =-,2ln 1()x g x x-'=, 当()0,x e ∈时,()0g x '<,所以()g x 在()0,e 上单调递减, 当(),x e ∈+∞时,()0g x '>,所以()g x 在(),e +∞上单调递增, 又()1g e e=-,画出函数()g x 的图象如图所示,由方程ln x a x =-有两个根,得10a e-<<. (2)证明:()f x 在()0,+∞内有两个极值点1x ,2x ,由(1)可知,1122ln 0ln 0x ax x ax +=⎧⎨+=⎩,则1221ln ln x x a x x -=-, 要证1220a x x +<+,只需122112ln ln 20x x x x x x -+<-+, 进一步化为122112ln ln 2x x x x x x -<--+, 从而得()1212122ln ln x x x x x x --<+,所以12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭<+,设12x t x =,可知t 的取值范围是()0,1,则只需证2(1)ln 1t t t -<+, 令2(1)()ln 1t h t t t -=-+,则22(1)()0(1)t h t t t -'=>+, 所以()h t 在()0,1上单调递增,从而()()10h t h <=, 因此1220a x x +<+.22.解:(1)因为126126x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),所以222222124363124363x t t y t t ⎧=+-⎪⎪⎨⎪=++⎪⎩,所以曲线C 的普通方程为2243y x -=, 因为cos 13πρθ⎛⎫+= ⎪⎝⎭,所以cos 3sin 2ρθρθ=,因为cos x ρθ=,sin y ρθ=,所以直线l 的直角坐标方程为320x -=.(2)由(1)可得直线l 的参数方程3212x y s ⎧=+⎪⎪⎨⎪=⎪⎩(s 为参数), 所以22134223s ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 整理得23123320s s ++=, 设1PM s =-,2QM s =-, 则1243s s +=-,12323s s =, 所以()21212128163448333PM Q s s M s s =+--=-==. 23.解:(1)由题设知:113x x ++-<;①当1x >时,得()112f x x x x =++-=,23x <,解得312x <<; ②当11x -≤≤时,得()112f x x x =++-=,23<,恒成立;③当1x <-时,得()112f x x x x =---+=-,23x -<,解得312x -<<-; 所以不等式的解集为:33,22⎛⎫-⎪⎝⎭; (2)由二次函数222(1)1y x x m x m =--+=-+++,该函数在1x =-取得最大值1m +,因为2(1)()2(11)2(1)x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩,所以在1x =-处取得最小值2,所以要使二次函数22y x x m =--+与函数()y f x =的图象恒有公共点, 只需12m +≥,即1m ≥.。

湖北省黄冈中学2023届高三下学期5月第二次模拟考试数学试题及答案解析

湖北省黄冈中学2023届高三下学期5月第二次模拟考试数学试题及答案解析

湖北省黄冈中学2023届高三5月第二次模拟考试数学试卷考试时间:2023年5月17日下午15:00——17:00试卷满分:150分一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|0}=A x lgx ,2{||1|1}B x x =- ,则(A B = )A .AB .BC .R A ðD .R Bð2.已知复数z 满足||1z =,则|34|(z i i +-为虚数单位)的最大值为()A .4B .5C .6D .73.在一组样本数据112212(,),(,),,(,),(2,,,)n n n x y x y x y n x x x 互不相等 的散点图中,若所有样本点(,)(1,2,)i i x y i n = 都在直线153=-y x 上,则这组样本数据的样本相关系数为()A .13-B .13C .1-D .14.已知等差数列{}n a 的前n 项和为n S ,若10110a a +>,10120a a +<,则n S 取最大值时n 的值为()A .10B .11C .12D .135.甲、乙、丙、丁、戊五名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说“很遗憾,你和乙都没有得到冠军.”对乙说“你当然不会是最差.”从这两个回答分析,5人的名次排列可能有多少种不同情况?()A .27种B .36种C .54种D .72种6.设抛物线2:6C y x =的焦点为F ,过F 的直线交C 于A ,B 两点,分别以A ,B 为切点作C 的切线1l ,2l ,若1l 与2l 交于点P ,且满足||PF =||(AB =)A .5B .6C .7D .87.若函数()f x 在其定义域内存在实数x 满足()()f x f x -=-,则称函数()f x 为“局部奇函数”.知函数()933x x f x m =-⋅-是定义在R 上的“局部奇函数”,则实数m 的取值范围是()A .[-B .[2,)-+∞C .(,-∞D .[8.已知三棱锥S ABC -的四个顶点都在半径为2的外接球上,E 、F 分别是AC 和SC 的中点,090BEF ∠=,1AB =,BC =,当SC 取得最大值时,三棱锥S ABC -的体积为()B.262C.263D.266二、选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三下学期数学模拟试题(二)一、选择题:本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)sin15°cos165°的值是( ). A .41 B .21 C .41- D .21- (2)已知三条直线m 、n 、l ,三个平面γβα、、,下面四个命题中,正确的是( ). A .βαγβγα//⇒⊥⊥, B .n m n m //////⇒γγ, C .ββ⊥⇒⊥l m l m ,// D .n m n m //⇒⊥⊥γγ, (3)已知=a (-2,5)= ,且a 与b 方向相反,那么b =( ). A .(4,-10) B .)251(-, C .(-4,10) D .1(-,)25 (4)函数x y sin 2=的单调递增区间是( ). A .2ππ2[+k ,)](23ππ2Z ∈+k k B .2ππ-2[k ,)](2ππ2Z ∈+k k C .π2[k ,)](π2k πZ ∈+k D .ππ2[-k ,)](π2Z ∈k k(5)一直线0243=++y x 与圆0422=++y y x 交于A 、B 两点,则线段AB 的垂直平分线的方程是( ).A .0634=--y xB .0234=--y xC .0843=--y xD .0843=++y x(6)已知在一个球的球心两侧有相距为7的两个平行截面,截面面积分别为9π 和16 π .那么这个球的表面积为( ). A .3π500 B .100 π C .64 π D .36 π (7)口袋里有5个黑球和3个白球,每次任意取出一个球,若取出黑球,则放回袋中重新取球;若取出白球,则停止取球,那么正好在第4次取球后停止取球的概率是( ).A .481335C C C B .314)85(83C ⋅⋅ C .)83()85(3D .5153⋅ (8)若一个等差数列前3项和为34,最后3项的和为146,且所有项的和为390,则这个数列共有( ).A .13项B .12项C .11项D .10项(9)已知函数243615)(23-+-=x x ax x f 在3=x 处有极值,则)(x f 的递减区间是( ).A .-∞(,5()1 ,)∞+B .(1,5)C .(2,3)D .-∞(,3()2 ,)∞+(10)F 1、F 2是椭圆的左、右两焦点,以F 2为圆心,OF 2为半径的圆与椭圆交于点M ,O 是原点,如果F 1M 正好是这个圆的一条切线,则这个椭圆的离心率是( ). A .23 B .22C .32-D .13- (11)⎰=+dx ee xx12( ). A .C )1(222++x x e e B .C )1(22++x xe e C .C )1ln(21++x e D .C )1ln(++-x x e e (12)已知)(x f 是定义在R 上的奇函数,)2()(+=x f x f ,若当10<<x 时,x x f 2)(=,则)23(log 2f 的值为( ). A .1623 B .1623- C .2316 D .2316-二、填空题:本大题4小题,每小题4分,共16分,把答案填在题中横线上.(13)1231lim 221---→x x x x 的值为________.(14)正方形ABCD 、ABEF 有公共边AB ,它们所成二面角为60°,那么异面直线AC 、BF 所成角的余弦值为________.综8(15)双曲线k y kx 4422=+的离心率小于2,那么实数k 的取值范围是________.(16)⎰-323||4dx x =________.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 解关于x 的不等式)0(12)1(>>--a x x a .(18)(本小题满分12分)ABCD 是四边形,6(=,)1,)(y x ,=,)32(--=,. (Ⅰ)若∥,求x 、y 间的关系; (Ⅱ)若BC ∥AD ,AC ⊥,求x 、y 的值.(19)(本小题满分12分)如图综9,四面体ABCD 中,AB 、BC 、BD 两两垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成角的正弦为103.(Ⅰ)求二面角D -AC -B 的平面角的正切值; (Ⅱ)求点B 到平面ACD 的距离.综9(20)(本小题满分12分) 南方某林场有荒山3250亩,从1996年1月开始在该荒山上植树造林,且每年种树全部成活.第一年植树100亩,此后每年都比上一年多植树50亩. (Ⅰ)问至少需多少年才能把此荒山全部绿化?(Ⅱ)如果新种树苗每亩木材量为2立方米,树木每年的自然增材率为10%,那么到此荒山全部绿化后的那一年底,这林场树木的木材量总共有多少立方米?(可用1.111≈2.7) (21)(本小题满分12分)(Ⅰ)a 取什么值时,直线x y =是曲线ax x x y +-=233的切线?(Ⅱ)a 取什么范围内值时,函数)3(31)(3x x a x f -=在区间(-1,1)内是减函数? (22)(本小题满分14分)已知抛物线x y 42=的准线与x 轴交于M 点,过点M 作直线与这个抛物线交于两个不同的点A 、B ,线段AB 的垂直平分线与x 轴交于E (x 0,0).(Ⅰ)求x 0的取值范围.(Ⅱ)△ABE 能否是等边三角形?若能,求x 0的的值;若不能,说明理由.参考答案一、选择题:(1)C (2)D (3)A (4)B (5)A (6)B (7)C (8)A (9)C (10)D (11)D (12)B 提示:(3)设)0(<=k k ,则k 2(-=,)5k .于是有2)254(4)5()2(22-=⇒+=+-k k k .(4)函数u y 2=,x u sin +复合而成,又函数u y 2=在)(∞+-∞,上是增函数,只要求x y sin =的递增区间.(5)所求直线过已知圆圆心,且与已知直线垂直.(6)设球半径为R ,则791622=-+-R R .解得252=R .(7)从口袋里任取一球是黑球的概率是85,是白球的概率是83.这四次取球是前三次都为黑球,第4次为白球.(8)设等差数列公差为d ,共n 项,则有⎩⎨⎧=-=+.14633,34331d a d a n 故有601=+n a a .39021=+⋅n a a n. (9)36303)('2+-=x ax x f ,由0)3('=f 可得2=a . ∴ 36306)('2+-=x x x f ,由0)('<x f 解得32<<x . (10)由2224)2(c c c a =+-可得0222=-+e e .(11)只要验xxxxe e e e +=+-1)]'1ln([2.(12)由于)(x f 是奇函数,故)23(log )23log ()23(log 2221f f f -=-=,又)()2(x f x f =+,32log 23log 16log 222<<,即523log 42<<,∴ 4232log 222)423(log )23(log --=--=-f f .二、填空题: (13)21 (14) 41(15) 012<<-k (16)97 提示:(13)131123122++=---x x x x x .(14)取BC 中点G ,AB 中点H ,AF 中点P ,BE 中点Q ,设AB =2,则2=GH ,2=HP ,5=PG .(15)双曲线方程变为)0(1422<=-k ky x .于是2241<-<k. (16)⎰⎰⎰---=+-=+-=3230402023433397|)(|)(44||4x x dx x dx x dx x .三、解答题: (17)0)2](2)1[(022)1(12)1(>--+-⇔>--+-⇔>--x a x a x ax a x x a .当1=a 时,不等式为02>-x ,解得2>x .当1≠a 时,)0(10212><<⇔>--a a a a . 于是可得当10<<a 时,原不等式解为122--<<a a x ;当1=a 时,原不等式解为2>x ;当1>a 时,原不等式解为12--<a a x 或2>x .(18)(Ⅰ)=++=(6,1)+(x ,y )+(-2,-3)=(x +4,y-2).由AD BC //,故0)2()4(=--+y x y x ,即022=+y x . ① (Ⅱ)=+=(6,1)+(x ,y )=(x +6,y +1),=+=(x ,y )+(-2,-3)=(x -2,y -3).由BD AC ⊥,故0)3)(1()2)(6(=-++-+y y x x . ②由①,②解得⎩⎨⎧=-=;3,6y x ⎩⎨⎧-==.1,2y x (19)(Ⅰ)取CD 中点F ,连结BF 、EF .∴ EF ∥AD ,∠BEF 为AD ,BE 所成角,103sin =∠BEF ,101cos =∠BEF .∵ AB =BC ,设BD =x ,则42+==x CD AD .连结DE ,故AC DE ⊥,AC BE ⊥, ∴ ∠BED 为二面角D -AC -B 的平面角. 可以求得4212+=x BF ,4212+=x EF ,2=BE .由余弦定理可求得4=x . 在Rt △BOE 中,22242tan ===∠x BED .(Ⅱ)过B 作DE BH ⊥于H .∵平面⊥BDE 平面ACD ,∴⊥BH 平面ACD ,即BH 为B 到平面ACD 的距离,由BE BD DE BH ⋅⋅=可求得34=BH . (20)(Ⅰ)设至少要n 年才能把此荒山全部绿化,第一年,第二年,第三年,…所种树的亩数成等差数列,首项为100,公差为50,于是有3250502)1(100≥⨯-+n n n .化简得013032≥-+n n .解得10≥n ,即至少需10年才能把此荒山全部绿化.(Ⅱ)这10年中,每年所种树苗的木材量(单位:立方米)成等差数列,为200,300,400,…,1100.故所求木材总量S 为1.111001.110001.14001.13001.120028910⨯+⨯++⨯+⨯+⨯= S 由此可得8200≈S (立方米).(21)(Ⅰ)a x x y +-=63'2,设切点为(x 0,y 0),则1|'0==x x y ,即163020=+-a x x .又0203003ax x x x +-=.由此可解得⎩⎨⎧==1,00a x 或⎪⎪⎩⎪⎪⎨⎧==.413,230a x 经验证可得1=a 或413=a 时,直线x y =是已知曲线的切线. (Ⅱ))1()33(31'22-=-=x a x a y . ∵ 当11<<-x 时012<-x ,∴ 当0>a 时,0)1(2<-x a ,即0'<y∴ 当0>a 时,给出函数在(-1,1)上是减函数.(22)(Ⅰ)设过M 点的直线为)0)(1(≠+=k x k y ,代入x y 42=中可得0)2(22222=+-+k x k x k ∴ △04)2(4422>--=k k ,解得11<<-k ,且0≠k .设A (x 1,y 1),B (x 2,y 2),则2221)2(2k k x x -=+,则线段AB 中点为222(k k -,)2k . ∴ AB 的垂直平分线方程为)2(1222kk x k k y ---=-.令0=y ,得32120>+=k x ,即30>x .(Ⅱ)若△ABE 为等边三角形,则点E 到AB 的距离AB d 23=. 又||122k k d +=,2421214||1||k k x x k AB -=-+= ∴ ||12132224k k kk +=-.解得23±=k .从而得3110=x .。

相关文档
最新文档