10KV系统单相接地故障
关于10kV线路单相接地故障原因分析及处理措施分析

关于 10kV 线路单相接地故障原因分析及处理措施分析摘要:我国社会经济的迅速发展使国民用电需求不断增加,因而各类配电线路的架设也越来越多,为我国人民的生活带来了极大的便利。
而配电系统中容易出现很多问题,单相接地故障是最容易且最多发的一种故障问题,其造成的危害也是非常严重的。
本文旨在分析10kV配电线路中单相接地故障发生的原因以减少故障发生率,并探究相应的处理措施降低危害与各类资源的损耗。
关键词:10kV线路;单相接地故障;原因;处理措施单相接地故障是指电力运输时某一单相与地面意外接触导致的故障,其产生原因有很多种,需要结合实地检测情况进行仔细分析才能对症下药的解决故障问题。
当油田电网系统中10kV配电线路出现单相接地故障时,对油田的原油挖掘和提炼工作无疑会造成巨大的负面影响。
1.10kV配电线路单相接地故障原因分析1.1避雷器被击穿由于10kV配电线路覆盖面积比较广,很容易遭受雷击,长时间被雷击之后就会导致避雷器被击穿,或是防雷装置不够完善、抗雷水平较低等。
避雷器被击穿可能出现两种状态,第一种是避雷器被击穿炸裂开,从外表上就能一眼看见;第二种是避雷器外部看上去完好,但内部被击穿并出现损坏,其底座会变黑,经测量后会发现避雷器本体升温[1]。
1.2绝缘子出现破损由于在室外被雷电长期击打、绝缘子在施工安装时没有按照要求规范安装工艺或是其本身材料较为劣质等情况而导致绝缘子破裂,无法完全隔离导线,最终致使导线裸露在外形成单相接地,引发故障情况。
第一,如果是由于雷击使绝缘子破裂,一般是由于雷击损坏了伞裙,从而使导线直接搭挂在了杆塔上,发生线路单相接地的故障现象。
第二,绝缘子在安装施工时没有规范安装方式,横向或朝下安装以致于伞裙长期积水,在雨水和雷电的长期作用下使伞裙逐渐被损毁,最终致使单相接地故障的发生。
绝缘子本身质量较差也会导致绝缘性能低,起不到绝缘作用[2]。
1.3导线脱离掉落导线会由于两种情况脱离,第一种是由于导线与瓷瓶连接扎绑不牢固,使得导线没有固定在瓷瓶上;第二种是固定绝缘子的设施出于种种原因而产生了松动掉落,导线借由绝缘子来支撑,绝缘子松动掉落之后迫使导线跟随绝缘子一起掉落,最后引发单相接地故障。
10kv系统发生单相接地及PT断线地判断与处理1310

10kv 系统发生单相接地及PT 断线的判断与处理第一节10kv 系统发生单相接地的判断与处理一、发生单相接地故障的特点中性点不接地或经过消弧线圈和高阻抗接地的三相系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,这种系统被称为小电流接地系统。
在小电流接地系统中,单相接地是一种常见的临时故障,多发生在潮湿、多雨天气。
发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统仍可运行1 —2h。
这也是小电流接地系统的最大的优点。
但若发生单相接地故障时电网长期运行,因非故障的两相对地电压可升高根号3 倍,可能引起绝缘薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常供电;也可能使电压互感器铁芯严重饱和,导致电压互感器严重过负荷而烧毁。
同时,弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。
二、发生单相接地故障现象分析与判断下面是一台三相五芯柱电压互感器接图。
如图所示接成Y0/Y0/ △。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号IfBn⑴ 完全接地。
如果发生A相完全接地,则故障相的电压降到0,非故障相的电压升高到线电压。
此时,电压互感器开口处出现110V电压,电压继电器动作,发出接地信号。
⑵ 不完全接地。
当发生一相(如A相)不完全接地,即通过高电阻或电弧接地时,中性点位移。
这时,故障相的电压降低,但不为0;非故障相的电压升高,且大于相电压,但不大于线电压。
电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。
⑶ 电弧接地。
如果发生A相完全接地,则故障相的电压降低,但不为0,非故障相的电压升高到线电压。
10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理文章结合宝钢冷轧薄板厂的相关经验,综述了中性点不接地系统发生单相接地短路故障的原因、影响,从管理及技术两方面总结了预防、处理小电流接地系统发生单相接地短路故障的措施、步骤和办法。
标签:不接地系统;单相接地;小电流接地宝钢冷轧薄板厂10kV系统属于中性点不接地的系统,也成为小电流接地的系统。
这种系统的最大的优点是:采用中性点不接地的,“三相三线”的供电方式,大大地提高了供电的可靠性,减少了线路损耗,降低了跳闸发生率,增强了线路的绝缘。
当电网发生单相接地故障时,暂时不会影响用户的用电,电网可以带故障运行1-2小时。
然而当发生单相接地故障后,非故障相对地电压将抬升至接近线电压,对地电容电流亦将增大。
如此极易导致电网非故障相的绝缘的薄弱处发生对地绝缘的击穿,造成两相或者三相短路,事故范围扩大。
急剧增加的电容电流极容易造成接地弧光,而且难以自动熄灭,还会产生间隙弧光性过电压,损坏设备,破坏电网的稳定性。
因此,如果系统发生单相接地故障,必须在最短的时间内查到故障点,并及时处理。
1 中性点不接地系统单相接地原理中性点不接地电网在正常运行时,三相对地电压呈对称性,中性点对地电压为零,无零序电压。
由于各相对地电容均相同,故各相电容电流相等,并超前于各相电压90度。
可得出下列结论[1]:(1)中性点不接地电网发生单相接地后,中性点电压UN上升为相压电(-EA),A、B、C三相对地电压:冷轧薄板厂发生此类故障后,读取各相相电压,故障相相电压平均在0.6kV,其余两相相电压平均在9.8kV。
各相相电压情况也是我厂单相接地故障报警是否真是的最终判断标准,即为电网线电压。
同时电网出现零序电压:(2)所有线路都出现零序电流,故障线路的接地电容电流等于所有其他线路的接地电容电流的总和。
根据历史统计,冷轧薄板厂单相接地电流一般在40至60安培之间。
(3)故障线路零序电流相位滞后零序电压90度,非故障线路的零序电流相位超前零序电压90度两者之间相差180度。
10kV电力系统单相接地故障与处理技术

10kV电力系统单相接地故障与处理技术摘要:当前整个世界的电网互联网程度,都呈现出了不断提升的状态,因此也就对电力系统配电网安全可靠运行,提出更高层次的要求。
配电网的安全运行,与社会大众联系的极为紧密,因为社会生产生活都离不来电力资源,如果配电网运行的稳定性存在较大的问题,那么必定会导致电力资源的供应量受到阻碍。
配电网系统中最常应用的便是10KV电力系统,但10KV电力系统却存在单相接地故障问题,因此需要采取措施来对此问题加以解决。
关键词:10KV电力系统;单相接地;故障问题;处理技术对于当前配电网系统的运行情况来看,任何形式的电力系统都需要具备接地系统,同时这些接地系统需要划分成小电流系统以及大电流系统。
其中,小电流系统最大的优势在于当系统出现单相接地问题时,因为线电压依然处于对称状态,所以并不会影响到连续供电,系统仍然可以运行下去,大电流系统相反。
目前,10KV电力系统在社会生产生活中应用的极为广泛,这样直接表明10KV电力系统安全运行将会是确保社会生产生活正常运行的重要环节。
本文接下来将对此展开分析。
一、10KV电力系统中单相接地故障的特性为了能够在故障问题发生时,更加及时的处理问题,确保电路顺利运行,那么了解单相接地故障的特性也就会显得非常重要。
一般情况来讲,当10KV配电系统发生单相接地故障时,变电站绝缘监察装置的警铃会发生报警信号,这时候母线接地也会出现亮灯的状态,这是判断故障问题发生的重要特征。
另外,有关技术人员所使用的监察电压表也会表现出明显的特征,当此类故障问题发生时,接低电压的相电业会直接降低,又或者直接为零,那么两相电压便会直接大于相电业,或者直接转化成线电压。
此时的电压表与正常运转的电压表会明显区别开来,呈现出来回摆动的特点。
另一方面,当发生弧光接地问题时,整个电力系统中的非故障相电业将会提升到较高状态,电压表的指针将会偏转到表头,严重情况下还会直接烧坏电业互感器装置。
假如电路中存在较大在容性以及感性参数的元件,又或者是带有铁芯的铁磁电感元件,这些都可以作为故障发生时的可靠依据,如果发生了相应故障,那么将会很容易导致这些元件的参数组合,不能很好匹配从而引起铁磁谐振,最后也应当发出明确的接地信号。
试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法10kV电力系统是电力系统中常见的一种电压等级,而单相接地故障是在电力系统中经常发生的故障之一。
接地故障的发生会对电力系统的安全稳定运行造成影响,因此对接地故障的分析和处理显得尤为重要。
本文将从10kV电力系统单相接地故障的原因、特点、分析方法以及处理方法进行论述,希望能给读者提供一定的参考和帮助。
一、10kV电力系统单相接地故障的原因:在10kV电力系统中,单相接地故障的原因可能有很多,主要包括以下几个方面:1.设备老化:电力系统中的设备如变压器、开关、断路器等随着使用时间的增加会逐渐老化,老化设备可能造成电气绝缘的减弱,导致接地故障的发生。
2.操作失误:操作人员在操作设备的过程中,如果操作不当或疏忽大意,可能会导致设备出现故障,进而引发接地故障。
3.外部环境影响:外部环境的影响也是引发单相接地故障的重要原因,比如雷击、动物触碰、植被生长等都可能导致接地故障的发生。
二、10kV电力系统单相接地故障的特点:1.电压波动:在接地故障发生后,电压波动较大,甚至可能导致电力系统的停电。
2.过流保护动作:接地故障引起的过电流可能会导致过流保护装置的动作,从而影响电力系统的正常运行。
3.设备振动和声响:接地故障造成的故障电流通过设备会产生振动和声响,这也是接地故障的一个特点。
4.绝缘破坏:接地故障可能导致电气设备的绝缘破坏,进而影响设备的正常运行和安全性。
三、10kV电力系统单相接地故障的分析方法:1.现场检查:一旦接地故障发生,首先需要进行现场检查,查找故障点的具体位置,可以通过巡视设备、检测电流及电压等方式进行检查。
2.故障特征分析:通过对接地故障特征的分析,比如电压波动、设备振动和声响等特点,可以初步确定接地故障的性质和范围。
3.设备运行参数分析:对相关设备的运行参数进行分析,比如电流、电压、功率因数等参数的变化,以确定接地故障的具体原因和影响。
4.数据记录分析:通过对电力系统运行数据的记录进行分析,可以找出故障点并确定故障原因,以便制定相应的处理方案。
10kV配电线路单相接地故障的危害及解决方法

配电线路单相接地故障的危害电力系统可分为大电流接地系统(包括直接接地、经电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。
我国3~66 kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统,我厂的6kv和10kv配电线路都是小电流接地系统。
在小电流接地系统中,单相接地是一种常见故障。
10 kV配电线路在实际运行中,经常发生单相接地故障,特别是在雨季、大风和雪等恶劣天气条件下,单相接地故障更是频繁发生。
2011年的线路故障,单相接地就占了近50%。
单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可运行1~2 h,这也是小电流接地系统的最大优点;但是,若发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。
目前在水电厂有人值守的变电所中都有单相接地故障检测装置。
单相接地故障的特征发生接地故障时,中央信号:警铃响,“某千伏某段母线接地”光字牌亮,中性点经消弧线圈接地系统,还有“消弧线圈动作”光字牌亮;绝缘监察电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针无摆动,若电压表不停地摆动,则为间歇性接地;中性点经消弧线圈接地系统,装有中性点位移电压表时,可看到有一定指示(不完全接地)或指示为相电压值(完全接地时)消弧线圈的接地报警灯亮;发生弧光接地时,产生过电压,非故障相电压很高,电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。
对单相接地故障的危害和影响分析1.对变电设备的危害10 kV配电线路发生单相接地故障后,变电站10 kV母线上的电压互感器检测到零序电流,在开口三角形上产生零序电压,电压互感器铁芯饱和,励磁电流增加,如果长时间运行,将烧毁电压互感器。
在实际运行中,近几年来,已发生变电站电压互感器烧毁情况,造成设备损坏、大面积停电事故。
10kV配电线路单相接地故障分析及处理预防措施

10kV配电线路单相接地故障分析及处理预防措施摘要:10kV配电线路单相接地故障对整个配电网的安全和运行有较大影响,是电网的基础设施之一。
本文先对单相接地故障的原因及危害进行了分析,并对相应故障的处理方法进行了阐述,在此基础上提出故障处理整改预防措施,从而提高电网供电的可靠性。
关键词:单相接地;故障分析;处理预防措施在电力系统中,单相接地故障是一种较常的故障。
当前,我国的城市街道配电网线路网架伴随城市发展也趋于复杂,在抗风、防雷等方面的能力得到了加强,然而还是会频繁出现10kV线路单相接地故障,影响了城市生产和生活。
因此,运维人员只有掌握电力系统单相接地故障的分析与处理方法,及时发现并排除线路故障,才能确保电网正常供电,1、单相接地故障产生的主要原因一般来说,电网短路主要有4种,而单相接地短路则是其中最常见的短路故障,在电网短路故障中占70%。
导致单相短路故障的原因很多:①异物搭接,是由其他物体遇到风雨等天气时,线头搭落在导线上。
树木短接,是指树木直接穿过裸线或是树枝搭在线路上。
②外力破坏,供电所在巡线过程中,经常发现转角杆下有许多鸟的尸体,因为10kV线路转角杆都有挑线,线路较密集,使导线与导线之间、导线与横担之间安全距离很小,大型鸟类脚落在横担上,收翅膀的瞬间,触及带电导线,体型小的鸟就落在地上,体型大的鸟就横挂在电杆上,造成接地故障。
③绝缘子击穿,主要是由于绝缘子污闪和雷击造成的。
④老式开关设备,出现问题难以分辨出是瞬时故障还是真正的严重故障,就会导致电网发生更严重的事故。
所以电线周围一定范围不能有楼房、大树等物体,保证线路在最大风偏向的情况下不会对楼房、大树放电,并留有一定宽裕度。
2、单相接地故障的主要危害(1)对变电及配电设备的危害。
变电站10kV母线上的电压互感器在开口三角形上产生零序电压,运行时间过长,会导致电压互感器损坏。
故障还可能引起谐振过电压,对设备绝缘产生危害,绝缘被击穿后发生短路事故,造成变压器烧毁,进而诱发电气火灾事(2)影响供电稳定。
10kV配电网单相接地故障及处理措施

10kV配电网单相接地故障及处理措施随着我国电力事业的快速发展,为了能够降低配电线路的跳闸率以及提高配电线路的实际绝缘水平,促使供电可靠性的提升,农网10kV配电路采用了绝缘导线。
实际上农网10kV配电线路的供电方式主要是以中性点不接地为主,这种供电方式会比较容易出现接地故障,造成配网的运行受到影响。
所以,相关工作人员要注重对此的故障分析,并结合实际的情况采取合理的应对措施。
标签:10kV电力系统;单相接地;故障分析;处理引言单相接地故障作为10kV电力系统常见故障类型,一旦没有采取适当的措施加以应对,将会造成严重的电力设备故障,甚至危及人身安全。
为了有效防范电力故障,减少线路短路、电路设备损伤机率,确保电力资源的持续稳定供应,电力企业在日常线路管理维护环节,应当做好单相接地故障检查与处理工作,实现故障点快速定位与切除,但从实际效果来看,定位不准确,故障处理质量不佳。
1 10kV电力系统单相接地故障概述1.1 单相接地故障发生原因从实际情况来看,目前单相接地故障的诱发原因相对较多。
在电力网络运行环节,线路以及设备的绝缘层发生损伤,造成绝缘层击穿,引发短路,造成电力设备结构性损伤。
基于单相接地故障发生原因的多样性,在故障处理环节,技术人员需要有针对性地开展相应的处理手段,确保故障快速排除,实现电力系统的正常运转。
1.2 單相接地故障处理机理分析目前我国10kV电力系统在规划设计与施工环节,主要采取中性点有效接地以及中性点全接地等方式,并以此为基础,形成了系统完备的电力网络,较好地适应了电力资源的调配需求。
但受制于多种因素的影响,单相接地故障在10kV 电力系统中时有发生,为了有效解决接地故障,还需要对故障发生机理进行分析,确保单相接地故障处理的针对性,减少故障排除周期。
在10kV中性不接地系统中,一旦出现单相接地故障,系统内原有的三相平衡状态发生变化,技术人员可以在较短时间内,快速判定故障位置;中性点直接接地系统中,如果发生单相接地故障,接地系统中的三相仍然可以保持平衡,无形之中,增加了单相接地故障评估与处理难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统可分为大电流接地系统(包括直接接地、经电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。
我国3~66 kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统。
在小电流接地系统中,单相接地是一种常见故障。
10 kV配电线路在实际运行中,经常发生单相接地故障,特别是在雨季、大风和雪等恶劣天气条件下,单相接地故障更是频繁发生。
黑龙江省龙沙供电局,2005年的24次异常中,单相接地故障占了7次,2006年的31次异常中,单相接地故障占8次。
发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可运行1~2 h,这也是小电流接地系统的最大优点;但是,若发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。
1 单相接地故障的特征及检测装置
单相接地故障的特征
中央信号:警铃响,“某千伏某段母线接地”光字牌亮,中性点经消弧线圈接地系统,还有“消弧线圈动作”光字牌亮;
绝缘监察电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针无摆动,若电压表不停地摆动,则为间歇性接地;
中性点经消弧线圈接地系统,装有中性点位移电压表时,可看到有一定指示(不完全接地)或指示为相电压值(完全接地时)消弧线圈的接地报警灯亮;
发生弧光接地时,产生过电压,非故障相电压很高,电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。
真假接地的判断
电压互感器一相高压熔断器熔断,发出接地信号。
发生接地故障时,故障相对地电压降低,另两相升高,线电压不变。
而高压熔断器一相熔断时,对地电压一相降低,另两相不会升高,线电压则会降低。
用变压器对空载母线充电时,断路器三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,发出接地信号。
这种情况只在操作时发生,只要检查母线及连接设备无异常,即可以判定,投入一条线路或投入一台所用变压器,即可消失。
系统中三相参数不对称,消弧线圈的补偿度调整不当,倒运行方式时,会发出接地信号。
此情况多发生在系统中倒运行方式操作时,经汇报调度,在相互联系时,了解到可先恢复原运行方式,消弧线圈停电,调整分接开关,然后重新投入,倒运行方式;
在合空载母线时,可能激发铁磁谐振过电压,发出接地信号。
此情况也发生在倒闸操作时,可立即送上一条线路,破坏谐振条件,消除谐振。
检测装置
对于绝缘监察装置,通常采用三相五柱式电压互感器加上电压继电器、信号继电器及监视仪表构成。
它由五个铁芯柱组成,有一组原绕组和二组副绕组,均绕在三个中间柱上,其接线方式为Ynynd。
这种接线的优点是:第一副绕组不仅能测量线电压,而且还能测相电压;第二副绕组接成开口三角形,能反映零序电压。
当网络在正常情况下,第一副绕组的三相电压是对称的,开口三角形开口端理论上无电压,当网络中发生单相金属性接地时(假设A相),网络中就出现了零序电压。
网络中发生非金属性单相接地时,开口两端点间同样感应出电压,因此,当开口端达到电压继电器的动作电压时,电压继电器和信号继电器均动作,发出音响及灯光信号。
值班人员根据信号和电压表指示,便可以知道发生了接地故障,并判定接地相别,然后向调度值班员汇报。
但必须指出,绝缘监察装置是与母线共用的。
2 发生单相接地故障的原因
导线断线落地或搭在横担上;导线在绝缘子中绑扎或固定不牢,脱落到横担或地上;导线因风力过大,与建筑物距离过近;配电变压器高压引下线断线;配电变压器台上的10 kV避雷器或10 kV熔断器绝缘击穿;配电变压器高压绕组单相绝缘击穿或接地;绝缘子击穿;线路上的分支熔断器绝缘击穿;同杆架设导线上层横担的拉线一端脱落,搭在下排导线上;线路落雷;树木短接;鸟害;飘浮物(如塑料布、树枝等);其它偶然或不明原因。
3 对单相接地故障的危害和影响分析
对变电设备的危害
10 kV配电线路发生单相接地故障后,变电站10 kV母线上的电压互感器检测到零序电流,在开口三角形上产生零序电压,电压互感器铁芯饱和,励磁电流增加,如果长时间运行,将烧毁电压互感器。
在实际运行中,近几年来,已发生变电站电压互感器烧毁情况,造成设备损坏、大面积停电事故。
单相接地故障发生后,也可能产生谐振过电压。
几倍于正常电压的谐振过电压,危及变电设备的绝缘,严重时使变电设备绝缘击穿,造成更大事故。
对配电设备的危害
单相接地故障发生后,可能发生间歇性弧光接地,造成谐振过电压,产生几倍于正常电压的过电压,将进一步使线路上的绝缘子击穿,造成严重的短路事故,同时可能烧毁部分配电变压器,使线路上的避雷器、熔断器绝缘击穿、烧毁,也可能发生电气火灾事故。
对区域电网的危害
严重的单相接地故障,可能破坏区域电网的稳定,造成更大事故。
对人畜危害
对于导线落地这一类单相接地故障,如果配电线路未停运,对于行人和线路巡视人员(特别是夜间),可能发生跨步电压引起的人身电击事故,也可能发生牲畜电击伤亡事故。
对供电可靠性的影响
发生单相接地故障后,一方面要进行人工选线,对未发生单相接地故障的配电线路要进行停电,中断正常供电,影响供电可靠性;另一方面发生单相接地的配电线路将停运,在查找故障点和消除故障中,不能保障用户正常用电,特别是在庄稼生长期、大风、雨、雪等恶劣气候条件,和在山区、林区等复杂地区,以及夜间、不利于查找和消除故障,将造成长时间、大面积停电,对供电可靠性产生较大影响。
对供电量的影响
发生单相接地故障后,由于要查找和消除故障,必然要停运故障线路,从而将造成长时间、大面积停电,减少供电量。
据不完全统计,每年由于配电线路发生的单相接地故障,将少供电十几万千瓦时,影响供电企业的供电量指标和经济效益。
4 对单相接地故障的预防和处理办法
预防办法
对于配电线路单相接地故障,可以采取以下几种方法进行预防,以减少单相接地故障发生。
对配电线路定期进行巡视,主要检查导线与树木、建筑物的距离,电杆顶端是否有鸟窝,导线在绝缘子中的绑扎或固定是否牢固,绝缘子固定螺栓是否松脱,横担、拉线螺栓是否松脱,拉线是否断裂或破股,导线弧垂是否过大或过小等。
对配电线路上的绝缘子、分支熔断器、避雷器等设备应定期进行绝缘测试,不合格的应及时更换。
对配电变压器定期进行试验,对不合格的配电变压器进行维修或更换。
在农村配电线路上加装分支熔断器,缩小故障范围,减少停电面积和停电时间,有利于快速查找故障点。
在配电线路上使用高一电压等级的绝缘子,提高配电网绝缘强度。
发生单相接地故障后的处理办法
当配电线路发生单相接地后,变电所值班人员应马上作好记录,迅速报告当值调度和有关负责人员,并按当值调度员的命令寻找接地故障,当拉开某条线路的断路器,接地现象消失,便可判断它为故障线路。
5 新技术新设备的应用
小电流接地自动选线装置
在变电所加装小电流接地自动选线装置,此装置能够自动选择出发生单相接地故障线路,时间短,准确率高,改变传统人工选线方法,对非故障线路减少不必要的停电,提高供电可
靠性,防止故障扩大。
目前,已有部分变电站加装了这套装置,取得了良好效果。
在实际应用中,应注意此装置与各配出线间隔上的零序电流互感器配合使用,否则不能发挥任何作用。
单相接地故障检测系统
在变电所的配出线出口处加装信号源,在配电线路始端、中部和各分支处,三相导线上加装单相接地故障指示器,指示故障区段。
配电线路发生单相接地故障后,根据指示器的颜色变化,可快速确定故障范围,快速查到故障点。