10kV线路单相接地故障处理方法

合集下载

试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法10kV电力系统是现代电力系统中常见的一种电压等级,而单相接地故障是在10kV电力系统中比较常见的故障之一。

这种故障如果处理不及时和有效,就有可能对电力系统的安全稳定运行产生影响。

本文将从10kV电力系统单相接地故障的原因、特点及处理方法等方面进行论述,以便于更好地理解和处理此类故障。

1. 设备故障:10kV电力系统中的变电所、配电室、开关设备等设备在长期运行中可能会出现故障,例如设备内部的绝缘击穿、接触不良等问题,从而导致设备出现单相接地故障。

2. 外部因素:10kV电力系统所处的环境中可能存在各种外部因素,如雷电、动物触碰、人为操作失误等,这些因素也可能导致单相接地故障的发生。

3. 设计缺陷:有些10kV电力系统在设计上可能存在一些缺陷,如绝缘距离不足、接地装置设置不当等,这些设计缺陷也有可能引发单相接地故障。

二、10kV电力系统单相接地故障的特点1. 故障电流大:单相接地故障时,故障线路上的电流会突然增大,有可能远远超过正常运行时的电流值。

2. 导致相间故障:单相接地故障有可能会引起相间故障,对电力系统的其他线路产生影响。

3. 安全隐患大:单相接地故障会导致线路和设备的绝缘受损,存在着较大的安全隐患,一旦处理不当就可能引发火灾、电击等事故。

1. 及时排除故障原因:一旦发生单相接地故障,首先要及时排除故障的具体原因,找出是设备故障、外部因素还是设计缺陷引起的故障,以便有针对性地采取后续处理措施。

2. 绝缘检测和维修:对发生单相接地故障的设备和线路进行绝缘检测,找出绝缘击穿、绝缘老化等问题,并及时进行维修和更换,保证设备和线路的正常运行。

3. 接地处理:针对发生单相接地故障的设备和线路进行接地处理,提高绝缘等级,减少接地故障的发生概率。

4. 故障检测与消除:在电力系统中设置故障检测装置,一旦发生单相接地故障能够及时报警并消除故障,保证电力系统的安全可靠运行。

10kV线路单相接地故障原因及解决策略

10kV线路单相接地故障原因及解决策略

10kV线路单相接地故障原因及解决策略摘要:现阶段,我国的电力事业发展步伐日渐加快,人们对于电力应用质量的需求也在不断增加,若想顺应时代的发展趋势,就应当针对电网运行中的各个环节进行把控,众所周知,10kV电网是较为常见的线路种类,在对其进行单相接地的过程中,容易遇到诸多故障和问题,而笔者则主要针对10kV线路单相接地故障的特点进行总结和阐述,而后对其引发原因予以归纳,最后提出了相对应的解决对策,具体见下述。

关键词:10kV线路;单相接地故障;原因;解决措施电力系统可以分为大电流接地系统和小电流接地系统等,我国3-66千伏电力系统多数都是运用经消弧线圈接地亦或是中性点不接地等途径实现供电的。

现阶段各县级电力企业大多都将110kV变电所作为有效电源点,将10kV配电线作为网架结构,同时将35kV输电线作为支撑骨架,在此线路的运作环节,会受各类因素的制约,比如,地电容小、电压等级低以及输配电线路短等等,使得整个接地电流系统相对较小。

如若小接地电流和负载电流小,同时系统线电压处于对称的状态,将会给用户供电过程带来不利影响,所以,大多数规章制度均允许携带一个接地点,并要求其持续运行不得超出两小时。

需要注意的是,非故障相电压会在此过程中相应的提升,影响了其本身的绝缘性能。

一、单相接地故障的典型特点单相接地可以结合其本身的接地性质进行划分,主要分为间歇性接地、完全接地和不完全接地几类,所谓的一相完全接地指的也就是金属性接地,相电压主要特点就是将一相电压归零,而其他的两相电压将会有所身高,高于线电压之时,即可判断为电压为零相即是接地相。

间歇性接地,随着击穿放电次数的变化,三项电压表将会处于来回摆动的状态,接地相电压可能会增加或是减少,非故障相电压时也会增减不一,状态不定。

一相不完全接地,也就是运用电弧接地或是高电阻接地途径,相电压的主要特点就是减少相电压,但是值得注意的是其不归零,另外两相电压如若身高,此时相较于相电压较大,最终的判断结果则是:电压相对较低的一相是接地相。

10kV配电线路单相接地故障原因分析及其处理

10kV配电线路单相接地故障原因分析及其处理

10kV配电线路单相接地故障原因分析及其处理摘要:10kV配电线路覆盖范围广,涉及用户众多,工作环境复杂,因此时常会出现各种故障,导致系统工作失衡。

单相接地是目前10kV配电系统常见的故障类型之一,受到业内广泛关注。

本文主要对10kV配电网络单相接地故障诱因进行探讨,据此给出相应的故障处理办法,希望可以为同行提供参照帮助。

关键词:配电系统;单相接地;故障;引言相较于其它电压等级输电线路,10kV配电线路出现单相接地故障的概率要高出许多,尤其在雨季、风雪天气时常会出现单相接地故障,对变电设备以及配网安全运行造成极大的威胁,不利于电力系统可持续运行[1]。

另外,配电线路点多、面广、设备众多,用电环境极为复杂,一旦线路出现单相接地故障,很有可能造成难以预料的严重后果。

因此,本文就10kV配电线路常见的单相接地故障进行讨论有着一定的现实意义。

1.单相接地故障主要表现及其检测一旦10kV配电系统出现单相接地故障,配套搭载的监控系统便会响应作出动作,常见的包括在变电所端会发出告警,对应的光字牌会被点亮、对故障回路进行检测的电压表显示数值趋向于零,而其它两个回路的电压值则趋向于线电压、中性点所搭载的电压表得到的数值趋向于相电压,告警灯被点亮[2]。

当发生单相接地故障时,站内随即做出告警动作,运维人员需要基于系统的告警指示开展故障排查,比如结合母线判定故障所在回路,并予以断电处理,并委派地方工作团队进行实地的勘查,直至故障的彻底排除。

1.单相接地故障原因不同于其它电压等级的输电线路,10kV配电线路运行环境更为复杂,因此多方面因素影响均会对系统造成干扰,引发线路故障。

单相接地故障常见的诱因可分成下面几种。

第一,金属接地原因。

该原因较为常见,且多出现于馈线中[3]。

主要表现即故障相电压为零或是趋向于零,非故障回路的相电压趋向于线电压。

第二,非金属接地原因,相较于前一种该类故障问题出现比例要低一些,主要出现在反馈回路中。

10kV配电线路单相接地故障检测与处理

10kV配电线路单相接地故障检测与处理

10kV配电线路单相接地故障检测与处理摘要:10kv配电线路是我国电网的关键基础设施,也是电力循环系统的最后一个环节,其重要程度是显而易见的。

通常情况下,在配电网系统当中,配电线路能够和地面之间形成单相连接,同时不会产生直接的回路,这种情况可以保障故障产生的情况下,也不会对供电工作的稳定性造成影响。

但在面对电压升高以及自然天气的异常变化时,单相接地更容易导致谐振过电压现象产生,最终造成的结果就是供电不畅,最终给用户带来不好的使用体验。

在这样的背景下,本文先阐述了这种配电线路单相接地故障的特征,又分析了故障产生的具体原因以及相应的危害,最终提出了10kv配电线路单相接地故障的检测与处理方式,希望能够为相关工作的优化落实提供合理参考。

关键词:10kv;配电线路;单相接地故障随着配电网系统的逐渐完善,我国人民的用电质量和生活水平几乎是处于同步提升的状态当中。

但就当下的实际情况分析,在配电网系统当中,配电线路的中单接地依旧是需要寻找合理方式克服的工作难点。

配电网系统当中的设备,在恶劣天气条件下往往故障率也会提升,这不仅会产生相应的经济损失,还会影响用户的用电体验。

一、单相接地故障的特征配电线路单相接地故障的表现特征主要有三个方面[1],首先是变电所,一旦发生故障则警示铃会响起,接地母线位置标记的灯牌也会亮起。

其次是绝缘电压表,在发生故障的状态下,单项电压值几乎=0,另两相的电压值也比较接近线路电压值,最直观的表现就是电压表当中的指针处于静止状态。

最后就是中性点内置电压表,其电压值若接近,则指示灯亮起。

此外就是检测程序,在单相接地故障发生之后,变电所当中设置的配电母线电压感应器也就会与绝缘电压之间形成感应,这种情况会引发变电所警铃响起,这就是在提醒工作人员查找故障所在位置。

收到警报之后,技术人员就可以根据现场实际情况以及母线等判断故障产生的具体位置,平有针对性地选择想用的措施整改。

二、单相接地故障的原因和危害(一)原因在常规的10kv配电网当中,单相接地的故障产生频率最高,同时一旦发生故障造成的损失也比较大[2]。

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理文章结合宝钢冷轧薄板厂的相关经验,综述了中性点不接地系统发生单相接地短路故障的原因、影响,从管理及技术两方面总结了预防、处理小电流接地系统发生单相接地短路故障的措施、步骤和办法。

标签:不接地系统;单相接地;小电流接地宝钢冷轧薄板厂10kV系统属于中性点不接地的系统,也成为小电流接地的系统。

这种系统的最大的优点是:采用中性点不接地的,“三相三线”的供电方式,大大地提高了供电的可靠性,减少了线路损耗,降低了跳闸发生率,增强了线路的绝缘。

当电网发生单相接地故障时,暂时不会影响用户的用电,电网可以带故障运行1-2小时。

然而当发生单相接地故障后,非故障相对地电压将抬升至接近线电压,对地电容电流亦将增大。

如此极易导致电网非故障相的绝缘的薄弱处发生对地绝缘的击穿,造成两相或者三相短路,事故范围扩大。

急剧增加的电容电流极容易造成接地弧光,而且难以自动熄灭,还会产生间隙弧光性过电压,损坏设备,破坏电网的稳定性。

因此,如果系统发生单相接地故障,必须在最短的时间内查到故障点,并及时处理。

1 中性点不接地系统单相接地原理中性点不接地电网在正常运行时,三相对地电压呈对称性,中性点对地电压为零,无零序电压。

由于各相对地电容均相同,故各相电容电流相等,并超前于各相电压90度。

可得出下列结论[1]:(1)中性点不接地电网发生单相接地后,中性点电压UN上升为相压电(-EA),A、B、C三相对地电压:冷轧薄板厂发生此类故障后,读取各相相电压,故障相相电压平均在0.6kV,其余两相相电压平均在9.8kV。

各相相电压情况也是我厂单相接地故障报警是否真是的最终判断标准,即为电网线电压。

同时电网出现零序电压:(2)所有线路都出现零序电流,故障线路的接地电容电流等于所有其他线路的接地电容电流的总和。

根据历史统计,冷轧薄板厂单相接地电流一般在40至60安培之间。

(3)故障线路零序电流相位滞后零序电压90度,非故障线路的零序电流相位超前零序电压90度两者之间相差180度。

10kV线路接地故障及处理

10kV线路接地故障及处理

10kV线路接地故障及处理线路一相的一点对地绝缘性能丧失,该相电流经过由此点流入大地,这就叫单相接地。

农村10kV电网接地故障约占70%。

单相接地是电气故障中出现最多的故障,它的危害主要在于使三相平衡系统受到破坏,非故障相的电压升高到原来的√3倍,很可能会引起非故障相绝缘的破坏。

10kV系统为中性点不接地系统。

(一)线路接地状态分析1、一相对地电压接近零值,另两相对地电压升高√3倍,这是金属性接地(1)若在雷雨季节发生,可能绝缘子被雷击穿,或导线被击断,电源侧落在比较潮湿的地面上引起的;(2)若在大风天气此类接地,可能是金属物被风刮到高压带电体上。

或变压器、避雷器、开关等引线刮断形成接地。

(3)如果在良好的天气发生,可能是外力破坏,扔金属物、车撞断电杆等。

或高压电缆击穿等。

2、一相对地电压降低,但不是零值,另两相对地电压升高,但没升高到√3倍,这属于非金属性接地(1)若在雷雨季节发生,可能导线被击断,电源侧落在不太潮湿的地面上引起的,也可能树枝搭在导线上与横担之间形成接地。

(2)变压器高压绕组烧断后碰到外壳上或内层严重烧损主绝缘击穿而接地。

(3)绝缘子绝缘电阻下降。

(4)观察设备绝缘子有无破损,有无闪络放电现象,是否有外力破坏等因素3、一相对地电压升高,另两相对地电压降低,这是非金属接地和高压断相的特征(1)高压断线,负荷侧导线落在潮湿的地面上,没断线两相通过负载与接地导线相连构成非金属型接地。

故而对地电压降低,断线相对地电压反而升高。

(2)高压断线未落地或落在导电性能不好的物体上,或线路上熔断器熔断一相,被断开地线路又较长,造成三相对地电容电流不平衡,促使二相对地电压也不平衡,断线相对地电容电流变小,对地电压相对升高,其他两相相对较低。

(3)配电变压器烧损相绕组碰壳接地,高压熔丝又发生熔断,其他两相又通过绕租接地,所以,烧损相对地电压升高,另两相降低。

4、三相对地电压数值不断变化,最后达到一稳定值或一相降低另两相升高,或一相升高另两相降低(1)这是配电变压器烧损后又接地的典型特征某相绕组烧损而接地初期,该相对地电压降低,另两相对地电压升高,当烧损严重后,致使该相熔丝熔断或两相熔断,虽然切断故障电流,但未断相通过绕组而接地,又演变一相对地电压降低,另两相对低电压升高。

试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法10kV电力系统是电力系统中常见的一种电压等级,而单相接地故障是在电力系统中经常发生的故障之一。

接地故障的发生会对电力系统的安全稳定运行造成影响,因此对接地故障的分析和处理显得尤为重要。

本文将从10kV电力系统单相接地故障的原因、特点、分析方法以及处理方法进行论述,希望能给读者提供一定的参考和帮助。

一、10kV电力系统单相接地故障的原因:在10kV电力系统中,单相接地故障的原因可能有很多,主要包括以下几个方面:1.设备老化:电力系统中的设备如变压器、开关、断路器等随着使用时间的增加会逐渐老化,老化设备可能造成电气绝缘的减弱,导致接地故障的发生。

2.操作失误:操作人员在操作设备的过程中,如果操作不当或疏忽大意,可能会导致设备出现故障,进而引发接地故障。

3.外部环境影响:外部环境的影响也是引发单相接地故障的重要原因,比如雷击、动物触碰、植被生长等都可能导致接地故障的发生。

二、10kV电力系统单相接地故障的特点:1.电压波动:在接地故障发生后,电压波动较大,甚至可能导致电力系统的停电。

2.过流保护动作:接地故障引起的过电流可能会导致过流保护装置的动作,从而影响电力系统的正常运行。

3.设备振动和声响:接地故障造成的故障电流通过设备会产生振动和声响,这也是接地故障的一个特点。

4.绝缘破坏:接地故障可能导致电气设备的绝缘破坏,进而影响设备的正常运行和安全性。

三、10kV电力系统单相接地故障的分析方法:1.现场检查:一旦接地故障发生,首先需要进行现场检查,查找故障点的具体位置,可以通过巡视设备、检测电流及电压等方式进行检查。

2.故障特征分析:通过对接地故障特征的分析,比如电压波动、设备振动和声响等特点,可以初步确定接地故障的性质和范围。

3.设备运行参数分析:对相关设备的运行参数进行分析,比如电流、电压、功率因数等参数的变化,以确定接地故障的具体原因和影响。

4.数据记录分析:通过对电力系统运行数据的记录进行分析,可以找出故障点并确定故障原因,以便制定相应的处理方案。

10kV配电线路单相接地故障产生的主要原因与处理措施

10kV配电线路单相接地故障产生的主要原因与处理措施

10kV配电线路单相接地故障产生的主要原因与处理措施摘要:10 kV配电线路在我国的城镇和乡村应用的比较普遍,受到电网的负荷变化、天气环境变化以及设备老化等因素的影响,容易出现运行故障,给人们的安全、稳定用电产生了直接的影响。

其中,最主要的故障原因是受到单相接地因素的影响。

因此,文章针对10 kV配电线路单相接地故障发生的主要原因进行详细的分析,并提出相应有效的处理措施,最终确保我国10 kV配电线路能够安全、稳定运行。

关键词:10 kV配电线路;单相接地故障;原因;处理措施随着我国人民生活水平的不断提高,社会的用电量在不断的增加,给我国的10 kV配电网的安全稳定运行提出了更高的要求。

随着10 kV配电线路越来越广泛的应用在我国城市和农村的电网建设与改造工程中,其虽然提高了配电线路的绝缘性、增强了供电的可靠性、降低了配电线路的损耗率、减少了配电线路的跳闸次数,但是其在受到恶劣天气环境的影响下,容易出现单相接地故障,给变电设备与配电网的安全稳定运行带来十分严重的影响。

1 10 kV配电线路单相接地故障现象和种类1.1 10 kV配电线路单相接地故障现象通常情况下,10 kV配电线路出现单相接地故障时,主要有以下几种现象:①变电站中的绝缘监测装置会发出相应的接地报警信号。

②如果配电线路出现弧光接地现象,并且超过规定的电压,那么将会导致没有出现故障的电压升高,电压表的指针会指向表头,严重者将电压互感器熔断器烧断。

③出现接地故障时,相电压会降低或者为零值,并且两相电压会出现高于相电压或者接近线电压的现象。

如果接地相电压的指示针比较稳定,那么则证明线路处于稳定接地状态;如果电压表指针出现来回摆动的情况,那么则证明线路处于间接接地状态。

1.2 10 kV配电线路单相接地故障种类10 kV配电线路单相接地故障主要分为稳定接地和间歇性接地两个种类。

①稳定接地。

稳定接地主要包括完全接地和不完全接地两种。

所谓完全接地,指的是金属性接地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10kV线路单相接地故障处理方法
收藏此信息打印该信息添加:用户发布来源:未知
要:线路接地故障是配电网最频发的故障,也是配网运行面临的主要问题。

文章在工作实践的基础上通过分析和研究,提出了用2500V绝缘摇表进行10kV线路绝缘监控和接地故障查处的有效方法,具有很强的操作性。

关键词:10kV线路;接地故障;处理方法
0 引言
雷雨季节是10kV配网线路故障的多发期,所有故障中最突出的故障是线路接地故障,且查找和处理起来也比较困难。

如果线路长时间接地运行,可能烧毁变电站TV一次侧保险丝,引起值班人员拉闸停电,导致整条10kV馈路停电,更严重的是在接地运行中可能引发人身事故。

宝鸡供电局所属市东供电分局所辖42条10kV线路中有23条分布于黄土丘陵和秦岭山区,地形地貌复杂,属雷电多发区。

2001年前,市东供电分局每年线路接地障碍次数在30次左右,经过认真的统计分析和试验后,总结摸索出了利用绝缘摇表进行10kV线路绝缘监控,进而用于10kV配电线路接地故障查找的处理方法,效果显著。

1 传统处理方法
线路接地时,变电站运行人员在听到告警铃响后,会推拉确定具体的10kV接地馈路,然后电话通知供电站查线。

供电站传统的接地查线处理方法可分为2种:经验判断法和推拉法。

1.1 经验判断法
一般情况下,供电站在接到变电站查线通知后,有经验的运行人员会首先分析故障线路的基本情况:线路环境(有无存在未及时处理的树害)、历史运行情况(原先经常接地)等,判断可能引起的接地点,然后去现场进行确认。

但在不掌握线路情况或线路分段较少的情况下,一般直接将运行人员分组对线路进行逐杆逐设备全面巡视,直至发现接地点。

经验判断法的缺点:①对供电站的要求较高。

要求供电站线路日常巡视维护扎实到位,管理基础资料翔实准确,并且人员对情况非常熟悉,否则经验判断就无从谈起。

②在白天,由于接地现象表现不明显,带电巡视接地故障存在人身安全隐患;在夜晚,接地现象表现为弧光放电,有放电声音,较为明显,但由于需要照明灯具及交通车辆进行配合,增大了另一种安全隐患。

③对意外情况,故障经验法不适用。

1.2 推拉法
由线路运行人员对线路分断点的开关或断路器进行开断操作,并同时用电话与变电站进行联系,根据操作前后线路接地是否消失来确定接地点所在的范围。

下面以贾村变电站179贾桥线为例来说明,图1为179贾桥线接线图。

假设179贾桥线接地,首先由供电站操作人员拉开96号杆分路丝具,再用电话询问贾村变电站值班人员接地是否消失。

若接地消失,可判定接地点在96号杆以后;否则,可判定96号杆前段肯定有接地点(不能排除96号杆后段没有接地点)。

再拉开川道支线、扶托支线杆分路丝具,再询问接地是否消失。

然后再依次拉开干线41号杆、19号杆分路丝具,直至判定接地点在某一支线或干线某一段为止。

图1 贾村变电站179贾桥线接线图
推拉法也存在明显的不足:线路单相接地时,规程规定允许继续运行时间不超过2h。

受此限制,经常会出现接地原因尚未查清,查找工作仍在进行,但变电站就已经拉闸停电的情况。

此时会使接地查找工作变得复杂,停电时间延长。

如2001年5月,贾桥线单相接地后,持续停电28h,经查原因为直线杆针式绝缘子的绑扎线松开后,搭在了横担上所致。

2 绝缘摇测判断法
为了克服传统处理方法中的缺点,寻求科学有效的线路接地故障处理方法,从2000年开始,对配电线路接地故障的处理做了专题分析和研究,通过对连续几年的运行数据统计分析后发现:偶然原因引起的线路接地次数与绝缘子绝缘不良原因引起的接地次数比大致为1∶7。

如2000年全年发生线路接地故障29次,其中树害及外力破坏引起的只有4次,其余均为避雷器及绝缘子击穿或闪络引起。

因此,对10kV配电网线路接地故障的处理应重点考虑绝缘子绝缘不良方面的原因。

而如何快速有效地发现绝缘不良的绝缘子则成为此类线路接地故障查找的关键。

2.1 线路整体绝缘摇测法
线路整体绝缘摇测法比较适用于长度较短、配电变压器数量较少、没有交叉跨越其他10kV 及以上电压等级线路的10kV线路。

线路整体绝缘摇测法实施前应首先采取安全措施,确保无向试验线路倒送电的可能性,特别是在工作线路两端不能挂短路接地线的情况下保证人身安全。

在线路的最大分段点(能将线路分成前后长度最接近的断点)两侧,如图1中96号杆的断路丝具上、下桩头处分别摇测绝缘电阻值。

当然,也可以将符合以上条件的某一支线视作整体线路进行绝缘电阻摇测。

这种方法既适用于对线路进行绝缘水平监测,总体掌握线路绝缘情况,又适用于传统处理方法查找不出线路接地故障时的情况。

在用线路整体绝缘摇测法查找线路接地故障时,将摇测点两侧绝缘值进行比较,较低的一侧应为故障段。

在判断故障段的故障相前,应确保线路配电变压器和电容器均被可靠断开,否则,绝缘摇表分别摇测的三相绝缘值其实是三相相通时的绝缘值,比真正的单相绝缘值要小许多。

由于在正常情况下同一侧A、B、C三相的绝缘值大体相同,所以摇测后将所有摇测故障段的三相绝缘值进行比较,绝缘值最低的一相应为故障相。

按此法依次缩小范围查找故障段,直至找到故障点。

由于每次可将故障范围大致缩小1.2,故一般5次以内即可将故障范围缩小到线路总长的1.32长度,大致可以找到故障点。

在线路预防性试验中,晴天摇测绝缘电阻时经验值大于100MΩ为合格。

若在晴天摇测中配电变压器丝具没有被拉开,则经验值大于50MΩ即为合格。

对于具体的某条线路的某段,应在线路投运时测量并详细记录当时的绝缘电阻值及环境温度,建立完备的线路绝缘档案,这可为以后通过线路预防性试验进行绝缘数据的纵向和横向比较判定线路绝缘是否良好打下良好
的基础。

在晴天线路接地故障查找中测得的绝缘值,统计经验是低于40MΩ为不合格,若测试中配电变压器丝具没有被拉开,则低于30MΩ即为不合格。

对于具体的某条线路的某段,应与最近一次预防性试验的绝缘值进行纵向比较,若绝缘值有较大幅度的下降(下降幅度在40%以上),则可确定为绝缘损坏。

对于线路分断点较少的线路,可在线路中间解开耐张杆引流线,将悬式绝缘子两侧视作开断点,分别在两侧摇测绝缘来判断接地故障点。

2.2 线路绝缘抽查摇测法
对于存在交叉跨越或邻近有其他带电线路,不挂短路接地线无法保证工作人员安全的线路,宜用抽查摇测法进行绝缘测量。

根据线路运行的时间长短和事故分析结果,对可能出现故
障的线路的绝缘子应及时进行一定数目的绝缘抽样摇测检查,即将可疑段的绝缘子分批抽样,现场更换下来后就地进行绝缘测量,以评价该条线路的绝缘状况。

绝缘抽查摇测的重点是避雷器和针式瓷瓶。

悬式瓷瓶由于在设计中采取了最少两片、降低电压使用的双保险方案,若其外观良好,绝缘故障的机率极少。

现场绝缘摇测的具体方法是:将避雷器及针式瓷瓶拆下,放在潮湿的沙地上,针式瓷瓶要倒放,将瓷裙埋入沙地最少2cm,用绝缘摇表线的L端接避雷器或针式瓷瓶的金属端,将E端插入沙地,根据需要接屏蔽端G后,即可测试。

应注意的是沙地必须潮湿,针式瓷瓶要倒放,否则,摇表电流引线只能采集到瓷件泄露电流的一部分,会使测量的绝缘电阻值比实际的高许多。

用抽查摇测法既可以对单个绝缘子进行测量,也可以对一批绝缘子进行测量,可大大提高检测效率。

但是在对一批绝缘子进行测量时,若发现绝缘值偏低,仍然需逐个判断,一直到找出低值绝缘子为止。

准确判断出支线的绝缘状况后,可综合评价整条线路的绝缘状况,以便及时采取更换瓷件等措施,提高线路绝缘水平,确保线路安全运行。

3 绝缘摇测法应用实例
宝鸡供电局市东供电分局在2001年处理贾桥线接地时,由于事发前刚下过小雨,故使用传统办法判断查找故障有较大的困难。

在经过12h的查找故障仍未查清的情况下,采取了整体绝缘摇测法。

采取安全措施后,在96号杆分路丝具两端摇测线路绝缘。

由于96号杆前段线路较长,且支线多,整体摇测的绝缘电阻值应该比后段低,可摇测的结果是前后段基本一致。

由于贾桥线无历史资料进行纵向比较,根据经验判断故障点在96号杆后段。

当时对变电站进行汇报后,拉开96号杆分路丝具,96号杆前段试送电,接地消失,前段送电成功。

96号杆后段干支线总共有120基杆、6台配电变压器,人均巡线不过10基,经分组巡视,终于发现接地故障南湾支线7号杆(直线杆)针式绝缘子绑扎线松开搭在横担上引起的。

同时还发现刘家沟中心变压器台区的1970年产的高角针式绝缘子有整体绝缘下降的缺陷。

经过分析,判定南湾支线7号杆缺陷为本次接地的直接原因。

现场处理完毕后,96号杆后段送电成功。

在接地处理过程中,由于缺陷隐蔽,外界环境复杂,用传统方法24h也没有查找到的接地缺陷用绝缘摇测法不到4h就找到了,并且还查找出了其他隐性缺陷。

2002年,使用绝缘摇测法指导潘溪供电站查清了潘公线上河支线景家崖九组变压器的避雷器缺陷,此后长期困扰潘公线的每年3次以上的不明原因接地故障再没有发生过。

据此可以判定潘公线2001年3次、2002年2次不明原因的接地故障都是由避雷器缺陷引起。

2004年,在对贾潘线预防性试验中采用绝缘摇测法也收到预期的效果。

相关文档
最新文档