九年级上册数学2020年5月九年级数学模拟测试参考答案
2019-2020年九年级数学模拟检测试题参考答案及评分意见

2019-2020年九年级数学模拟检测试题参考答案及评分意见一、选择题(本大题共12小题,每小题3分,共36分.)1.B 2.D 3.C 4.B 5.A 6.A 7.C 8.B 9.D 10.D 11.C 12.B二、填空题(本大题共4小题,每小题5分,共20分.)13. 14. 15.20 16.9三、解答题(本大题共5小题,共44分)17.解:6)1(30cos 3)2017(2201701-+--︒+---π6)1(233121+--⨯+-= …………………………… 4分 …………………………… 6分…………………………… 8分18.证明:∵ BE ⊥AC ,DF ⊥AC ,∴ BE ∥DF ,∠BEA =∠DFC =90°. ……………………………… 1分∵ 四边形ABCD 是平行四边形,∴ AB =CD , AB ∥CD. ……………………………………………… 2分∴ ∠BAE =∠DCF . ………………………………… 3分在△ABE 和△CDF 中,∵ ⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB DCF BAE DFC BEA ,∴ △ABE ≌△CDF . ……………………………………………… 5分 ∴ BE =DF . ………………………………… 6分又∵ BE ∥DF ,∴ 四边形BEDF 是平行四边形. ……………………………… 7分∴ DE =BF . ……………………………………………… 8分19.解:(1)40; ………………………………………………… 1分 补全统计图如图所示:………………………………… 3分(2)10,40,144 …………………………… 6分(3)设获A等级的小明用A表示,其他的三位同学用a、b、c表示,画树状图如下:…………………………… 8分共12种等可能的结果,其中小明参加市朗诵比赛的结果有6种,∴A等级的小明参加市朗诵比赛的概率为: P(小明参加市比赛)==.…………………………… 9分20. 解:(1)过点A作AH⊥PQ于点H.………………………… 1分∵斜坡AP的坡度为1:2.4,∴AH:PH=1:2.4.设米,则米. ………………………… 2分在Rt△APH中,由勾股定理得,即.解得.………………………… 3分∴AH=10米.答:坡顶A到地面PQ的距离为10米.………………………… 4分(2)延长BC交PQ于点D.∵ AH :PH =1:2.4,AH =10,∴ PH =24 . ………………………… 5分 ∵ BC ⊥AC ,∴ ∠ACB =∠ACD =90°,∵ AC ∥PQ ,∴ ∠BDP =∠ACB =90°,∴ 四边形AHDC 是矩形,∴ CD =AH =10,AC =DH . ………………………… 6分∵ ∠BPD =45°,∴ ∠PBD =45°=∠BPD.∴ PD =BD . ………………………… 7分 设BC =,则.∴. ………………………… 8分在Rt △ABC 中,︒=∠=76tan tan BAC ACBC ,即, 解得 .答:古塔BC 的高度约为19米. ………………………… 9分21. 解:(1)∵ 关于的一元二次方程有两个不相等的实数根,∴ ,且. ……………………………… 2分解得:且.∴ 的取值范围是且. ……………………………… 4分(2)∵ 原方程的两个实数根为、,∴ ,. ……………………………… 5分∵ 且,∴ ,,∴ ,. ……………………………… 6分∵ ,∴ ,即.∴ , ……………………………… 8分整理得 ,解得:,. ……………………………… 9分又∵ 且,∴ 不合题意,舍去.经检验,是方程的解.∴的值为. ……………………………… 10分B 卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分.)22.2 23.1 24. 25.23题:解法一(特殊值法,仅用于解选择填空题):考虑其特殊位置,PQ ∥BC 时,易知,,故.解法二(适用于解答题):当PQ ∥BC 时,易知;当PQ 与BC 不平行时,过点A 作BC 的平行线交PQ 于点E ,设PQ 交直线BC 于点F . 若F 在BC 延长线上,易证△BPF ∽△APE ,△CQF ∽△AQE ,于是有AECF AE DF BD AE CF AE BF AQ CQ AP BP n m ++=+=+=+11,又∵BD =CD ,∴AEDF AE CF CD DF AE CF AE DF CD n m 211=++=++=+,易证△DMF ∽△AME ,得,∴;若F 在CB 延长线上(如图2),同理可得. 综上,.图1 图224题解析:由2)4(25)3(25--=+++-m m n m m ,得 52)4()3(252-=-+++-m m n m m ,所以,则52)4()3(522-=-+++-m m n m m ,即,由非负数性质知:,∴ .25题解析:把A (4,0)代入,得,∴二次函数解析式为,其对称轴为直线,∵A (4,0)关于直线的对称点为O (0,0),∴PA =PO . 当点P 不在直线OC 上时,由三角形三边关系知,;当点P 在OC 上时,. 故当点P 在OC 上时,有最大值为OC . 易知直线OC 解析式为,当时,. ∴点P 的坐标为.五、解答题(本大题共3小题,每小题12分,共36分.)26.解:(1)10 ………………………………4分(2)连结AO .∵ AD :DB =1:3,,∴ 9364141=⨯==∆∆ABC ADC S S ,. …………………5分 ∵ CE :AE =1:2,,∴ 24363232=⨯==∆∆ABC ABE S S ,. …………………6分 设,,则,. 根据题意有,解得⎪⎪⎩⎪⎪⎨⎧==56527y x . …………………7分 ∴ . …………………8分(3)证明:连结DE 、DF ,过点D 作DG ⊥AE 于点G ,DH ⊥FC 于点H .∵ △ADE 与□ABCD 等底等高,∴ S □ABCD ,同理S □ABCD .∴ . ……………………………………10分又∵,.∴ .又∵ ,∴ .∴ PD 平分∠APC . ……………………………………12分27.(1)∵ A 在轴正半轴上,且OA =8,∴ A (8,0).设直线的解析式为,则⎪⎩⎪⎨⎧=+=+25308b k b k , ……………………………………2分 解得 ⎪⎩⎪⎨⎧=-=421b k .∴ 直线的解析式为:. ……………………………………4分(2)∵ 点P 在AB 上,横坐标为t ,∴ P (,). …………………………5分 设直线的解析式为,则,解得.直线的解析式为. ……………………………………6分 又∵ PQ ∥轴,∴ Q (,).点P 在线段AC 上时,434)421(65-=+--=t t t PQ ,(). …………7分 当EF 在AD 上时,,有.设正方形PQEF 与△ACD 重叠部分面积为S ,当时,,当时,S 有最大值为. ……………9分 当时,325)211(343234434)8)(434(22+--=-+-=--=t t t t t S . 当时,S 有最大值为. ……………………………………11分 ∵ ,∴ 正方形PQEF 与△ACD 重叠部分的面积的最大值为. …………………12分28.解:(1)∵ 在Rt △AOB 中,OA =1,,∴ OB =3OA =3. ……………………1分 ∵ △DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴ △DOC ≌△AOB .∴ OC =OB =3,OD =OA =1.∴ A 、B 、C 的坐标分别为(1,0),(0,3),(-3,0). …………………………2分 ∵ 抛物线经过点A 、B 、C ,∴ ⎪⎩⎪⎨⎧=+-==++03930c b a c c b a , 解得 ⎪⎩⎪⎨⎧=-=-=321c b a .∴ 抛物线的解析式为. …………………………………………4分(2)① ∵4)1(3222++-=+--=x x x y ,∴ 抛物线的对称轴为直线.∴ E (-1,0).∵ ∠ECF =∠OCD ,∠COD =90°, ∴ 当∠CEF =90°或∠CFE =90°时,△CEF 与△COD 相似. ……………………5分 当∠CEF =90°时,点P 在抛物线的对称轴上,即点P 为抛物线的顶点,∴ P (-1,4). ……………………6分 当∠CFE =90°时,过点P 作PM ⊥轴于点M ,则∠PME =∠CFE =90°,∴ ∠MPE +∠CEF =∠OCD +∠CEF =90°,∴ ∠MPE =∠OCD.又∵ ∠PME =∠COD =90°,∴ △PME ∽△COD .∴ ,∴ MP =3EM . ……………………………………7分 ∵ P 的横坐标为,且在抛物线上,∴ P (,).∵ P 在第二象限,∴ PM =,EM =.∴ .解得,(不合题意,舍去).∴ P (-2,3).∴ 当△CEF 与△COD 相似时,点P 的坐标为(-1,4)或(-2,3). …………8分 ②过点B 作BQ ⊥AB 交射线AP 于点Q ,作QH ⊥轴于点H .则∠BHQ =∠AOB =90°,∠ABQ =90°,∠AQB =∠BAP =45°.∴ BQ =AB . ……………………………………9分 ∵ ∠OAB +∠ABO =∠HBQ +∠ABO =90°,∴ ∠OAB =∠HBQ .∴ △BQH ≌△ABO .∴ HQ =BO =3,BH =AO =1.∴ OH =OB -BH =2.∴ Q (-3,2). ……………………10分 设直线AQ 的解析式为,由题意得 ,解得⎪⎪⎩⎪⎪⎨⎧=-=2121m k .∴ 直线AQ 的解析式为. …………………………………11分∵ P (,)在直线AQ 上,∴ .解得,(不合题意,舍去).∴ P (,).∴ 当∠BAP =45°时,点P 的坐标是(,). ……………………12分。
2023_2024学年广东省深圳市南山区九年级上册月考数学模拟测试卷(附答案)

2023_2024学年广东省深圳市南山区九年级上册月考数学模拟测试卷第一部分(选择题,共 30 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,每小题有四个选项,其中只有一个是正确的)一.选择题(共10小题,每题3分,共30分)1.2023的相反数是( )A .2023B .﹣C .﹣2023D .12023120232.观察下列图形,是中心对称图形的是( )A .B .C .D .3.深圳2022年上半年GDP 首为1.5亿元,同比增长3.0%,其中第一产业增加值为1.249×109元,数据1.249×109可以表示为( )A .1.249亿B .12.49亿C .124.9亿D .1249亿4.如图所示立体图形,下列选项中是图中几何体的主视图的是( )A .B .C .D .5.为切实落实“双减”,丰富课后服务活动形式,某校开展学生的绘画、书法、散文诗等艺术作品征集活动,从八年级7个班收集到的作品数量(单位:件)分别为50、45、42、46、50、44、52则这组数据的中位数和平均数是( )A .46,47B .45,47C .50,46D .42,466.下列运算正确的是( )A .a 5÷a 2=a 3B .a 5+a 5=2a 10C .(2a 2)3=2a 6D .(a 5)2=a 107.一副直角三角板如图放置(∠F =∠ACB =90°,∠E =45°,∠A =60°),如果点C 在FD 的延长线上,点B 在DE 上,且∠ACG=60°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°8.如图,在△ABC 中,AB =BC ,以B 为圆心,适当长为半径画弧交BA 于点M ,交BC 于点N ,分别以M ,N 为圆心,大于MN 的长为半径画弧,两弧相交于点D ,射线BD 交AC 于点E ,点F 为BC 的中点,连接EF ,若BE =AC =4,则△CEF 的周长是( )A .8B .2+2C .2+6D .2+29.下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是菱形B .边数大于3的正多边形的对角线长都相等C .相等的弦所对的弧相等D .正六边形的边长等于其外接圆的半径10.如图,在正方形ABCD 中,E ,F ,G 分别是AB ,BC ,CD 上的点,且AE =BF =CG ,连接BD 分别交EG ,EF 于点M ,N ,连接FG .下列结论:①△EBF ≌△FCG ;②EF ⊥FG ;③M 是BD 的中点;④若sin ∠BEF =,则MN =FN .其中正确322的有( )A.1个B.2个C.3个D.4个二填空题11.因式分解:a3﹣6a2= .12.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是 .13.如图,小刚要测量斜坡CD旁一棵树AB的高度,已知在坡脚C处测得树顶B的仰角为60°,在坡顶D测得树顶B的仰角为30°,若CD=10m,DE=5m,则树AB的高是14.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为 .14题15题15.如图,在正方形ABCD 中,AB =4,点O 是对角线AC 的中点,点Q 是线段OA 上的动点(点Q 不与点O ,A 重合),连接BQ ,并延长交边AD 于点E ,过点Q 作FQ ⊥BQ 交CD 于点F ,分别连接BF 与EF ,BF 交对角线AC 于点G .过点C 作CH ∥QF 交BE 于点H ,连接AH .求线段AH 的最小值为。
2020届九年级《新题速递·数学》5月第01期(考点10-12)

2020届九年级《新题速递·数学》考点10-12考点10四边形 P1 考点11圆 P13 考点12图形的变化 P33考点10 四边形 1.【2020年陕西省西安市益新中学中考数学二模试题】如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )B. 38C. 78D. 58【答案】C【解析】【分析】 如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB V ≌GED V,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG V 中依据勾股定理列方程求解即可.【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=Q ,AEB GED ∠∠=,AB GD 3==,AEB ∴V ≌GED V,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG V 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.2.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】33.【福建省漳州市双十学校2019_2020学年九年级线上教学阶段考试数学测试题】如图,平行四边形ABCD 的周长是22,△ABC 的周长是17,则AC 的长为___________.【答案】2【解析】【分析】根据平行四边形的性质,得出AD+DC=11,然后根据题意,即可得出AC 的长.【详解】解:∵平行四边形ABCD 的周长是22,∴AD+DC=11,∵△ABC 的周长是17,∴AC=17-11=6,故答案为:6.【点睛】本题主要考查了平行四边形的性质,关键是根据平行四边形的周长正确求出AD+DC 的长度.4.【2020年陕西省西安市益新中学中考数学二模试题】如图,已知正方形ABCD 的边长为8,点E 是正方形内部一点,连接BE ,CE ,且∠ABE =∠BCE ,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】4.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF∴EF=4,∴PD+PE的长度最小值为4,故答案为:4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.5.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,在正方形ABCD中,AB=4,E是BC边的中点,F是CD边上的一点,且DF=1.若M、N 分别是线段AD、AE上的动点,则MN+MF的最小值为________.【解析】【分析】作点F关于AD的对称点G,过点G作GN⊥AE于点N,交AD于点M,可证得MG=MF,△MDG ≌△MDF,DF=DG=1 ,可推出MN+MF=NG,根据垂线段最短,可知此时MN+MF的最小值就是NG的长;利用正方形的性质,可求出BE的长,同时可以推出∠B=∠ANM=∠FDM,∠AMN=∠BAE=∠FMD,再利用有两组对应角相等的三角形相似,可证得△ABE∽△MNA∽△FMD,然后利用相似三角形的性质及勾股定理就可求出MN,MG的长,由此看求出NG的长.【详解】作点F关于AD的对称点G,过点G作GN⊥AE于点N,交AD于点M,∴MG=MF ,△MDG ≌△MDF ,DF=DG=1∴∠GMD=∠DMF∴MN+MF=MN+MG=NG根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长.∵正方形BCD ,点E 是BC 的中点∴BE=12BC=12AB=2 ∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,∵∠AMN+∠MAN=90°,∴∠AMN=∠BAE ,∵∠AMN=∠DMG∴∠AMN=∠BAE=∠FMD∴△ABE ∽△MNA ∽△FMD ∴AB MD BE DF =即421MD = 解之:MD=2,∴AM=AD -MD=4-2=2 ∴2AB MN BE AN== 设AN=x ,则MN=2x∴AN 2+MN 2=AM 2,∴x 2+4x 2=4解之:∴;在Rt △MDG 中,=∴=故答案为:5. 【点睛】本题考查了轴对称−最短距离问题,相似三角形的判定和性质,正确的确定M ,N 的位置是解题的关键.6.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】7.【2020年河南省新乡市中考数学评价测试题】如图,在正方形ABCD 中,AB =E ,F 分别为BC ,AD 上的点,过点E ,F 的直线将正方形ABCD 的面积分为相等的两部分,过点A 作AG EF ⊥于点G ,连接DG ,则线段DG 的最小值为______.【答案】2【解析】【分析】连接AC ,BD 交于O ,得到EF 过点O ,推出点G 在以AO 为直径的半圆弧上,设AO 的中点为M ,连接DM 交半圆弧于G ,则此时,DG 最小,根据正方形的性质得到AC 8=,AC BD ⊥,根据勾股定理即可得到结论.【详解】解:连接AC ,BD 交于O ,Q 过点E 、F 的直线将正方形ABCD 的面积分为相等的两部分,EF ∴过点O ,AG EF ⊥Q ,AGO 90∠∴=︒,∴点G 在以AO 为直径的半圆弧上,则AM OM GM 2===设AO 的中点为M ,连接DM 交半圆弧于G ,则此时,DG 最小,Q四边形ABCD 是正方形,AB =AC 8∴=,AC BD ⊥,1AO OD AC 42∴===, 1AM OM AO 22∴===,DM ∴==,∴DG DM GM 2=-=故答案为:2.【点睛】本题考查了正方形的性质,勾股定理,圆周角定理,正确地作出辅助线是解题的关键. 8.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵BE =FC ,∴BC =EF ,在△ABC 和△DFE 中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.9.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.【答案】证明见解析【解析】【分析】由菱形的性质得出AD∥BC,AB=BC,得出∠A=∠CBF,证明△ABE≌△BCF(SAS),即可得出BE=CF.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠A=∠CBF.在△ABE和△BCF中,∵AE=BF,∠A=∠CBF,AB=BC,∴△ABE≌△BCF(SAS),∴BE=CF.点睛:本题考查了菱形的性质、平行线的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.10.【2020年陕西省西安市益新中学中考数学二模试题】如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.11.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:(1)△AEB≌△CFD;(2)当∠ABE= 度时,四边形BEDF是菱形.【解析】(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBA=∠FDC,又∵AD∥BC,∠A =∠C, AB=DC ∴△AEB≌△CFD;(2)当∠ABE=30°时,四边形BEDF是菱形. 12.【江苏省徐州市2020年中考模拟试卷数学试题A】【解析】13.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.【答案】(1)12;(2)9;(3)能实现;170(米).【解析】【分析】(1)当AD⊥BC时,△ABC的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m,另一边为6﹣m,可得S=m(6﹣m)=﹣(m ﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC=100,∠ADC=60°,即点D在优弧ADC上运动,当点D运动到优弧ADC的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD为等边三角形,计算出△ADC的面积和AD 的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=12×6×4=12.故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O为圆心,OA长为半径画⊙O,∵∠ADC=60°,∴点D在优弧ADC上运动,当点D是优弧ADC的中点时,四边形ABCD面积取得最大值,设D′是优弧ADC上任意一点,连接AD′,CD′,延长CD′到F,使得D′F=D′A,连接AF,则∠AFC=30°=12∠ADC,∴点F在D为圆心DA为半径的圆上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此时四边形ADCB的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中.考点11圆1.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A .4B .6C .8D .12解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD 是直径∴∠BAD=90°∴BD=2AB=8.故选:C .2.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图,半径为5的⊙O 中,CD 是⊙O 的直径,弦AB ⊥CD 于E ,AB =8,F 是»BD上一点,连接AF ,DF ,则tan ∠F 的值为( )A. 58B. 45C.D. 2【答案】D【解析】【分析】连接OB 、BD ,如图,根据垂径定理得到AE=BE=4,则利用勾股定理可计算出OE=3,接着在Rt△BDE 中根据正切的定义得到tan ∠DBE=2,然后根据圆周角定理即可得到tan ∠F 的值.【详解】连接OB 、BD ,如图,△CD 是△O 的直径,弦AB △CD ,△AE =BE =12AB =4,在Rt△OBE 中,OE 3,在Rt△BDE 中,tan△DBE =DE BE =354+=2, △△F =△ABD ,△tan△F =2.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和勾股定理.3.【2020年河南省新乡市中考数学评价测试题】如图,AC BC ⊥,8AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作»AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A. 203π-B. 203π+C. 203πD. 203π 【答案】A【解析】【分析】如图,连接CE .图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC=CE =8,∠ECB =60°,OE =,所以由扇形面积公式、三角形面积公式进行解答即可. 详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =8,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB , ∴∠ACB =90°,OB =OC =OD =4,BC =CE =8.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在Rt △OEC 中,OC =4,CE =8,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE −S 扇形BOD −S △OCE=2260811-4-436042ππ⨯⨯⨯⨯=203π故选:A .【点睛】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.4.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】D5.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A ,B 的任意一点,则∠APB=( )A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120°【答案】D【解析】【分析】利用垂径定理及已知可得到∠OAD=30°,再求出∠AOB的度数,再分情况讨论:当点P在优弧AB 上时,利用圆周角定理就可取出∠P的度数;当点P在劣弧上时,利用圆内接四边形的对角互补,就可求出∠AP1B的度数.【详解】连接OA,OB,∵弦AB垂直平分半径OC∴OD=12 OA,∴∠OAD=30°,∵OA=OB∴∠OAB=∠OBA=30°,∴∠AOB=180°-∠OAB-∠OBA=180°-30°-30°=120°;当点P在优弧AB上时∠APB=12∠AOB=12×120°=60°;当点P在劣弧上时,∠APB+∠AP1B=180°∴∠AP 1B=180°-60°=120°.∴∠APB=120°或60°.故答案为:D .【点睛】此题考查了垂径定理,以及圆周角定理,熟练掌握垂径定理是解本题的关键.6.【2020年陕西省西安市益新中学中考数学二模试题】如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B【解析】【分析】 先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可.【详解】连接OA ,∵o OBA 20∠=,OB OA =∴o OAB=OBA 20∠∠=∵AC OC =且OC OA =∴AOC ∆是等边三角形∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒∴=2=80BOC BAC ∠∠︒故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅∆是等边三角形是解本题的关键.助线证出AOC7.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】8.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为__________.60【答案】π9.【2020年江苏省常州市中考数学5月模拟试题】如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC.若∠A=36°,则∠C=______.【答案】27o【解析】【详解】解:设AC与⊙O的另一交点为D,连接BD,则∠DBC=90°,设∠C=x,则∠ABD=x,∠BDC=∠A+∠DBA=36°+x;∵∠CDB+∠C=90°,∴36°+x+x=90°,解得x=27°10.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,在半径为2,圆心角为90°的扇形ACB内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为(结果保留π).解:在Rt△ACB中,∵AC=BC=2,∴AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,∵CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故答案为:π﹣1.11.【2020年吉林省长春市中考第一次(5月)模拟数学试题】解:(1)如图,连结OD.∵⊙O 与边BC 相切于点D ,∴OD ⊥BC ,∴∠ODB =90°.∵∠C =90°,∴∠C =∠ODB =90°.∴OD ∥AC .∴∠CAD =∠ODA .∵OA =OD ,∴∠OAD =∠ODA .∴∠OAD =∠CAD . ∴AD 平分∠BAC .(2)如图,连结OF .∵AD 平分∠BAC ,且∠CAD =25°,∴50CAB ∠=︒∴∠EOF =100°.∴»EF 的长为10051809⨯π=π.12.【四川省巴中市2020届九年级5月模拟考试数学试题】【解析】13.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】如图,四边形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心, OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.【解析】(1)过点O作OG⊥DC垂足为G ∴AD∥BC, AE⊥BC于E ∴AO⊥AD,∴∠OAD=∠OGD=90O, △AOD和△ODG中, DF平分∠BDC,∠OAD=∠OGD, ∠ADO=∠GDO, OD=OD,∴△AEB≌△CFD,∴OA=OG, ∴CD与Oe相切.(2)如图所示:连接OF.∵OA⊥BC,∴BE=EF=12BF=12.在Rt△OEF中,OE=5,EF=12,∴.∴AE=OA+OE=13+5=18.∴tan∠ABC=AEBE=32.14.【福建省漳州市双十学校2019_2020学年九年级线上教学阶段考试数学测试题】如图,AB是⊙O的直径,C是⊙O上一点,D是»AC的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若DH=9,tan C=34,求直径AB的长.【答案】(1)AE是e O的切线.(2)AB=20.【解析】【分析】(1)根据题意可知OA=OC,然后根据三线合一,可得OE⊥AC,最后根据圆周角定理,进而作出证明即可.(2)根据锐角三角函数,求出HF的长,然后根据相似三角形的判定,证明△DFH∽△CFD,接着根据相似三角形的性质,可求出AF、CF的长,进而用勾股定理即可求解.【详解】(1)连接OC∵D是»AC的中点,∴∠AOD=∠COD∵OA=OC∴OE⊥AC∴∠AFE=90°∴∠E+∠EAF=90°∵∠AOE=2∠C,∠CAE=2∠C ∴∠CAE=∠AOE∴∠E+∠AOE=90°∴∠EAO=90°∴AE是e O的切线. (2)∵∠C=∠B∵OD=OB∴∠B=∠ODB∴∠ODB=∠C∴sinC=sin∠ODB=HF HF3== DH95∴HF=27 5由勾股定理得:DF=36 5∵∠C=∠FDH,∠DFH=∠CFD ∴△DFH∽△CFD∴DF FH= CF DF∴CF=48 5∴AF=CF=48 5设OA=OD=x∴OF=x-36 5∵AF2+OF2=OA2∴222 4836x=x 55⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭解得x=10∴OA=10∴AB=20.【点睛】本题主要考查了相似三角形的判定和性质以及锐角三角函数、圆的切线和基本性质,熟练掌握相关性质是解题的关键.15.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.【答案】(1)证明见解析;(2)325.【解析】【分析】(1)由弦切角等于同弧所对的圆周角得:∠C=∠ABD,再根据直角三角形两锐角互余得出结论;(2)作弦心距,由勾股定理得:OE=3,再证明△OEB∽△BDA,列比例式可以求AD的长.【详解】:(1)∵BD为⊙O的切线,∴∠C=∠ABD,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠C+∠BAD=90°,(2)连接OB,过O作OE⊥AB于E,∴AE=BE=12AB=4,由勾股定理得:OE3,∵BD为⊙O的切线,∴OB⊥BD,∴∠OBD=90°,∵∠ADB=90°,∴AD∥OB,∴∠DAB=∠ABO,∵∠D=∠OEB=90°,∴△OEB∽△BDA,∴BE OB AD AB=,∴458 AD=,∴AD=325;则线段AD的长为325.【点睛】本题考查了切线的性质和垂径定理、以及三角形的外接圆,是常考题型,熟练掌握切线的性质和垂径定理:圆的切线垂直于经过切点的半径.16.【2020年陕西省西安市益新中学中考数学二模试题】如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE,∴∠AOE=2∠ACE,∵∠B=2∠ACE,∴∠AOE=∠B,∵∠P=∠BAC,∴∠ACB=∠OEP,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OEP=90°,∴PE是⊙O的切线;(2)∵OA=OE,∴∠OAE=∠OEA,∵AE=EF,∴∠EAF=∠AFE,∴∠OAE=∠OEA=∠EAF=∠AFE,∴△AEF∽△AOE,∴AE AF OA AE,∵AF=2,AE=EF,∴OA=5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.17.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cos C=时,求⊙O的半径.解:(1)连结OM.∵BM平分∠ABC∴∠1=∠2 又OM=OB∴∠2=∠3∴OM∥BC∵AE是BC边上的高线∴AE⊥BC,∴AM⊥OM∴AM是⊙O的切线(2)∵AB=AC∴∠ABC=∠C,AE⊥BC,∴E是BC中点∴EC=BE=3∵cos C==∴AC=EC=∵OM∥BC,∠AOM=∠ABE ∴△AOM∽△ABE∴又∵∠ABC=∠C∴∠AOM=∠C在Rt△AOM中cos∠AOM=cos C=,∴∴AO=AB=+OB=而AB=AC=∴=∴OM=∴⊙O的半径是18.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E,与⊙O相交于点F,连接BF.(1)求证:BD=BE;(2)若DE=2,BD=AE的长.【答案】(1)见解析;(2)AE=18.【解析】【分析】(1)利用圆周角定理得到∠ACB=90°,再根据切线的性质得∠ABD=90°,则∠BAD+∠D=90°,然后利用等量代换证明∠BED=∠D,从而判断BD=BE;(2)利用圆周角定理得到∠AFB=90°,则根据等腰三角形的性质DF=EF=12DE=1,再证明△DFB∽△DBA,利用相似比求出AD的长,然后计算AD-DE即可.【详解】(1)证明:△AB是△O的直径,△△ACB=90°,△△CAE+△CEA=90°,而△BED=△CEA,△△CAE+△BED=90°,△BD是△O切线,△BD△AB,△△ABD=90°,△△BAD+△D=90°,又△AF平分△CAB,△△CAE=△BAD,△△BED=△D,△BD=BE;(2)解:△AB为直径,△△AFB=90°,且BE=BD,△DF=EF=12DE=1,△△FDB=△BDA,△△DFB△△DBA,△BDDA=DFBD,△DA=20,△AE=AD﹣DE=20﹣2=18.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理、等腰三角形的判定与性质、相似三角形的判定与性质,熟练掌握切线的性质、相似三角形的判定与性质是解答本题的关键.19.【2020年河南省新乡市中考数学评价测试题】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O于点D,AC与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为52,BG的长为154,求tan∠CAB.【答案】(1)见解析;(2)见解析;(3)tan∠CAB=34.【解析】【分析】(1)由∠OEB=∠ACD,∠ACD=∠ABD知∠OEB=∠ABD,由OF⊥BD知∠BFE=90°,即∠OEB +∠EBF=90°,从而得∠ABD+∠EBF=90°,据此即可得证;(2)连接AD,证△DCG∽△ACD即可得;(3)先证△CDF∽△GCF得GF CGCF CD=,再证△DCG∽△ABG得CG BGCD AB=,据此知GF BGCF AB=,由r=52,BG=154知AB=2r=5,根据tan∠CAB=tan∠ACO=GF BGCF AB=可得答案.【详解】(1)∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)连接AD,∵OF⊥BD,∴»»CD BC=,∴∠DAC=∠CDB,∵∠DCG=∠ACD,∴△DCG∽△ACD,∴CD CG AC CD=,∴CD2=AC•CG;(3)∵OA=OB,∴∠CAO=∠ACO,∵∠CDB=∠CAO,∴∠ACO=∠CDB,而∠CFD=∠GFC,∴△CDF∽△GCF,∴GF CG CF CD=,又∵∠CDB=∠CAB,∠DCA=∠DBA,∴△DCG∽△ABG,∴CG BG CD AB=,∴GF BG CF AB=,∵r=52,BG=154,∴AB=2r=5,∴tan∠CAB=tan∠ACO=GF BGCF AB==34.【点睛】本题是圆的综合问题,解题的关键是掌握圆的有关性质、相似三角形的判定与性质、圆的切线的判定等知识点.考点12 图形的变化1.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图是某个几何体的表面展开图,则这个几何体是( )A. 长方体B. 三棱柱C. 三棱锥D. 四棱锥【答案】B【解析】【分析】 侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】观察图形可知,展开图是由三个全等的矩形,和两个全等的三角形构成,符合三棱柱的展开图特征,△这个几何体三棱柱.故选:B .【点睛】本题考查的是三棱柱的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.【2020年福建省福州市一中中考数学一模试卷(5月)】如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是( )A .B .C .D .解:从上面看,下面一行第1列只有1个正方形,上面一行横排3个正方形.是故选:C.3.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】C4.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.等腰直角三角形 D.正六边形【答案】D5.【2020年江苏省常州市中考数学5月模拟试题】下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C【解析】【详解】A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.考点:中心对称图形;轴对称图形.6.【2020年吉林省长春市中考第一次(5月)模拟数学试题】【答案】D7.【2020年河南省新乡市中考数学评价测试题】如图是某几何体的三视图,则该几何体的全面积等于()A. 112B. 136C. 124D. 84【答案】B【解析】试题解析:该几何体是三棱柱.如图:3=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.8.【2020年河南省新乡市中考数学评价测试题】如图,在▱ABCO中,A(1,2),B(5,2),将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,则点B′的坐标是()A. (﹣2,4)B. (﹣2,5)C. (﹣1,5)D. (﹣1,4)【答案】B【解析】【分析】根据旋转的性质证明△BOD≌△B’OD’得到OD=OD’,BD=B’D’即可求出B’坐标.【详解】∵将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,∴∠BOB’=90°∴∠BOD’+∠B’OD’=90°又∠BOD’+∠BOD=90°∴∠BOD=∠B’OD’作BD⊥x轴,B’D’⊥y轴,∴∠BDO=∠B’ D’O=90°又BO=B’O∴△BOD≌△B’OD’∴OD=OD’=5,BD=B’D’=2∴点B′的坐标是:(﹣2,5).故选:B.【点睛】此题主要考查了旋转的性质,正确掌握平全等三角形的判定是解题关键.9.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】A10.【江苏省徐州市2020年中考模拟试卷数学试题A】【答案】11.【江苏省盐城市建湖县2020届九年级第一次模拟考试数学试题】【答案】12.【2020年江苏省常州市中考数学5月模拟试题】如图,在ABC V 中,5,6AB AC BC ===,将ABC V 绕点B 逆时针旋转60︒得到',A BC 'V 连接'A C ,则'A C 的长为_______.【答案】4+【解析】【分析】连结CC′,A′C 交BC 于O 点,如图,利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,则可判断△BCC′为等边三角形,接着利用线段垂直平分线定理的逆定理说明A′C 垂直平分BC',则1'32BO BC ==,然后利用勾股定理计算出A′O ,CO ,即可求解. 【详解】解:连结','CC A C 交BC 于点,如图ABC ∆Q 绕点B 逆时针旋转60︒得到'''A B C ∆'6BC BC ∴==,'60CBC ︒∠=,''5,A B AB AC A C ===='BCC ∴∆为等边三角形,'CB CB ∴=而''',A B A C ='A C ∴垂直平分',B C1'32BO BC ∴== 在'Rt A OB ∆中,'4A O ==在Rt OBC ∆中,sin sin 60OC t CBO BC ︒∠==Q62OC ∴=⨯=''4A C A O OC ∴=+=+故答案为:4+【点睛】此题考查旋转的性质,等边三角形的性质,解题的关键是证明△BCC′为等边三角形和A′C ⊥BC′.13.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又不重叠的四边形EFGH ,若EH =4,EF =5,那么线段AD 与AB 的比等于_____.【答案】4140. 【解析】【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,由“AAS”可证Rt△AHE≌Rt△CFG,可得AH=CF=FN,再由勾股定理及直角三角形的面积公式求出AD,AB的长,即可求解.【详解】如图:由折叠的性质可得:△1=△2,△3=△4,AE=EM=BE,DH=HN,CF=FN,△△2+△3=90°,△△HEF=90°,同理四边形EFGH的其它内角都是90°,△四边形EFGH是矩形.△EH=FG;又△△1+△4=90°,△4+△5=90°,△△1=△5,同理△5=△7=△8,△△1=△8,△Rt△AHE△Rt△CFG(AAS),△AH=CF=FN,又△HD=HN,△AD=HF,在Rt△HEF中,EH=4,EF=5,根据勾股定理得HF AD,△S△EFH=12×EF×EH=12×HF×EM,△EM=41,△AB=2AE=2EM=41,△AD:AB=41:40=41 40,故答案为:41 40.【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.14.【2020年江苏省常州市中考数学5月模拟试题】图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD (点C、D在小正方形的顶点上),使得四边形ABCD是中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF (点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据中心对称图形和轴对称图形的性质画出即可;(2)tan∠FAB=3只需把∠FAB放到直角三角形中,再根据中心对称图形的性质画出即可.【详解】(1)如图1所示:(2)如图2所示:考点:中心对称图形、轴对称图形、三角函数.。
2020年浙江省绍兴市九年级毕业班数学仿真模拟试卷 参考答案

2020年浙江省绍兴市九年级毕业班数学仿真模拟试卷参考答案一.选择题(共10小题,满分40分,每小题4分)1.解:2的相反数为:﹣2.故选:B.2.解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.故选:C.3.解:47.24亿=4724 000 000=4.724×109.故选:B.4.解:∵袋子装有3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是故选:D.5.解:∵一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,∴y1=3,y2=﹣3.∵3>﹣3,∴y1>y2.故选:A.6.解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.7.解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x ﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.8.解:连接OB,OC.∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.9.解:如图,连接EG,交BD于点O,∵四边形ABCD是矩形∴AD=BC=12,∠A=90°,AD∥BC∴BD==13∵四边形EFGH是正方形∴EO=OG,EG⊥FH∵AD∥BC∴∴DO=BO=∵∠A=∠EOD=90°,∠ADB=∠EDO∴△ABD∽△OED∴即∴DE=∴AE=AD﹣DE=故选:B.10.解:设三角形最长边长为x,则30根火柴棒组成的三角形的最长边长存在以下关系,10≤x≤14.当x=10,剩余边长总和20,只有10,10,10一种可能当x=11,剩余边长总和19,有9,10,11或8,11,11两种可能当x=12,剩余边长总和18,有9,9,12或8,10,12或7,11,12或6,12,12共四种可能.当x=13,剩余边长总和17,有8,9,13或7,10,13或6,11,13或5,12,13或4,13,13共五种可能.当x=14,剩余边长总和16,有8,8,14或7,9,14或6,10,14或5,11,14或4,12,14或3,13,14或2,14,14共7种可能.综上,共有1+2+4+5+7=19个不同的三角形.故选:D.二.填空题(共6小题,满分30分,每小题5分)11.解:原式=a(a2﹣25)=a(a+5)(a﹣5).故答案为:a(a+5)(a﹣5).12.解:7﹣5x≤2,移项得:﹣5x≤2﹣7,则﹣5x≤﹣5.所以x≥1,故答案是:x≥1.13.解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第3列第三个数为:15﹣8﹣5=2,∴m=15﹣2﹣7=6.故答案为:6.14.解:AE=4.理由如下:∵AB=AC,∴∠B=∠C,又∵∠1=∠C,∴△ADE∽△ACD.∴△ADE∽△ACD,∴=,∴AD2=AE•AB=4×10=40,即AD=2.作AG⊥BC于G,∵AB=AC=10,设∠ADE=∠B=α,cosα=,∵BC=16,∴CG=BC=8,∴AG=6,∴DG===2,∴CD=CG+DG=8+2=10,∴AB=CD,在△ABD与△DCE中,,∴△ABD≌△DCE(ASA).故答案是:4.15.解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴E(2a,),∵△BDE的面积为1,∴•a•(﹣)=1,解得k=4.故答案为4.16.解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.三.解答题(共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.解:(1)原式=2﹣2×+|1﹣|+1=2﹣+﹣1+1=2;(2)4x2+12x=x2﹣9,4x2+12x﹣x2+9=0,3x2+12x+9=0,x2+4x+3=0,(x+1)(x+3)=0,则x+1=0或x+3=0,解得x1=﹣1,x2=﹣3.18.解:(1)a==7,乙的成绩按照从小到大排列是:3,4,6,7,7,8,8,8,9,10,则b=(7+8)÷2=7.5,c=8,乙组的平均数为:(3+4+6+7+7+8+8+8+9+10)÷10=7,方差d==4.2,故答案为:7,7.5,8;(2)若选派其中一名参赛,应选乙队员参赛,理由:由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,虽然乙的方差大于甲,但乙的成绩呈上升趋势,故应选乙队员参赛.19.解:(1)300÷10=30(元/千克)根据题意得y甲=18x+60,设y乙=k2x,根据题意得,10k2=300,解答k2=30,∴y乙=30x;(2)当y甲<y乙,即18x+180<30x,解得x>15,所以当采摘量大于15千克时,到甲家草莓采摘园更划算;当y甲=y乙,即18x+180=30x,解得x=15,所以当采摘量为15千克时,到两家草莓采摘园所需总费用一样;当y甲>y乙,即、18x+180>30x,解得x<15,所以当采摘量小于15千克时,到家乙莓采摘园更划算.20.解:(1)如图1,由折叠可得DC'=DC=6,∵∠BC'E=∠C=90°,BC=8,∴Rt△BCD中,BD=10,∴BC′=10﹣6=4.在Rt△BC'E中,BE=BC﹣CE=8﹣C'E,根据勾股定理得,BE2﹣C'E2=BC'2,即:(8﹣C'E)2﹣C'E2=16,∴C'E=3,即:CE=C'E=3;故答案为3;(2)如图2,连接CC′,∵点C′在AB的垂直平分线上,∴点C′在DC的垂直平分线上,∴CC′=DC′,由折叠知,∠C'DE=∠CDE,DC'=DC,∴CC'=DC'=DC∴△DC′C是等边三角形,∴∠CDE=∠CDC'=30°设CE=x,易得DE=2x,由勾股定理得:(2x)2﹣x2=62,解得:x=2,即CE的长为2;(3)如图3,作AD的垂直平分线,交AD于点M,交BC于点N,∵点C′在AD的垂直平分线上,∴DM=4,由折叠知,DC′=DC=6,在Rt△C'DM中,根据勾股定理得:MC′=2,∴NC′=6﹣2,设EC=a,则C′E=a,NE=4﹣a,故NC′2+NE2=C′E2,即(6﹣2)2+(4﹣a)2=a2,解得:a=9﹣3,即CE=9﹣3;21.解:(1)由题意得销售量y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.22.解:(1)连接PQ,设经过ts后,P、Q两点的距离为5cm,ts后,PC=7﹣2tcm,CQ=5tcm,根据勾股定理可知PC2+CQ2=PQ2,代入数据(7﹣2t)2+(5t)2=(5)2;解得t=1或t=﹣(不合题意舍去);(2)设经过ts后,S△PCQ的面积为15cm2ts后,PC=7﹣2tcm,CQ=5tcm,S△PCQ=×PC×CQ=×(7﹣2t)×5t=15解得t1=2,t2=1.5,经过2或1.5s后,S△PCQ的面积为15cm2.(3)设经过ts后,△PCQ的面积最大,ts后,PC=7﹣2tcm,CQ=5tcm,S△PCQ=×PC×CQ=×(7﹣2t)×5t=×(﹣2t2+7t).=﹣5.∴当t=s时,△PCQ的面积最大,最大值为cm2.23.解:(1)∵CD=6,∴点P与点C重合,∴点P坐标为(3,4).(2)①当点P在边AD上时,∵直线AD的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得m=﹣,∴P(﹣,4)根据对称性可知,P(,4)也满足条件.②如图2中,当点P在AB上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4).24.解:(1)延长AD至E,使DE=AD,连接BE,如图①所示,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)结论:AB2+AC2=4AD2.理由:延长AD至E,使DE=AD,连接BE,如图②所示,由(1)可知:△BDE≌△CDA,∴BA=AC,∠E=∠CAD,∵∠BAC=90°,∴∠E+∠BAE=∠BAE+∠CAD=∠BAC=90°,∴∠ABE=90°,∴AB2+BE2=AE2,∴AB2+AC2=4AD2.(3)如图,延长ND到E,使得DN=DE,连接BE、EM.∵BD=DC,∠BDE=∠CDN,DE=DN,∴△BDE≌△CDN,∴BE=CM.∠EBD=∠C,∵∠ABC+∠C=90°,∴∠ABD+∠DBE=90°,∵MD⊥EN,DE=DN,∴ME=MN=5,在Rt△BEM中,BE==3,∴CN=BE=3,∵AC=6,∴AN=NC,∵∠BAC=90°,BD=DC,∴AD=DC=BD,∴DN⊥AC,在Rt△AMN中,AM==4,∴AM=BM,∵DA=DB,∴DM⊥AB,∴∠AMD=∠AND=∠MAN=90°,∴四边形AMDN是矩形,∴AD=MN=5.。
2020年春学期九年级数学中考模拟测试卷【含答案解析】

2020年春学期九年级数学中考模拟测试卷一、选择题(每小题3分,共30分下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1.(3分)下列各组数中,互为倒数的是()A.2和B.3和C.|﹣3|和﹣D.﹣4和42.(3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×1073.(3分)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.4.(3分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3 5.(3分)不等式组的最大整数解是()A.﹣1B.0C.1D.26.(3分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学参加了此次竞赛,他们的得分情况如下表所示:人数25131073成绩(分)5060708090100则全班40名同学的成绩的中位数和众数分别是()A.75,70B.70,70C.80,80D.75,807.(3分)将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果∠1=130°,那么∠2的度数是()A.105°B.100°C.110°D.115°8.(3分)如图,△P AB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD 的面积之和为10,则△P AB与△PCD的面积之差为()A.5B.10C.l5D.209.(3分)如图,将抛物线y=﹣x2+x+5的图象x轴上方的部分沿x轴折到x轴下方,图象的其余部分不变,得到一个新图象.则新图象与直线y=﹣5的交点个数为()A.1B.2C.3D.410.(3分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.二、填空题(每小题3分,共15分)11.(3分)化简:=.12.(3分)用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为.13.(3分)关于x的一元二次方程(2﹣a)x2﹣2x+1=0有两个不相等的实数根,则整数a 的最小值是.14.(3分)如图,在边长为2的正方形ABCD中,以点D为圆心、AD的长为半径画弧,再以BC为直径画平圆.若阴影部分①的面积为S1,阴影部分②的面积为S2,则S2﹣S1的值为.15.(3分)如图,已知直线l∥AB,lAB之间的距离为2,C、D是直线l两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为.三、解答题(本大题共8小题,计75分)16.(8分)先化简,再求值•﹣,其中x是方程x2+x﹣3=0的解.17.(9分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类):种类A B C D E F上学方式电动车私家车公共交通自行车步行其他并将调查结果绘制成如下不完整的统计图:根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类的人数有人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图中C对应的直条.(3)若将A,C,D,E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.18.(9分)如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O 于另一点D,连接P A、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP的长是时,以A,O,P,C为顶点的四边形是正方形;②当的长度是时,以A,D,O,P为顶点的四边形是菱形.19.(9分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为2米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米)(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)20.(9分)如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,﹣4),反比例﹣函数y=(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD 的面积,求点P的坐标.21.(10分)振华书店准备购进甲、乙两种图书进行销售,若购进40本甲种图书和30本乙种图书共需1700元:若购进60本甲种图书和20本乙种图书共需1800元,(1)求甲、乙两种图书每本进价各多少元;(2)该书店购进甲、乙两种图书共120本进行销售,且每本甲种图书的售价为25元,每本乙种图书的售价为40元,如果使本次购进图书全部售出后所得利润不低于950元,那么该书店至少需要购进乙种图书多少本?22.(10分)已知:△ABC是等边三角形,点D是△ABC(包含边界)平面内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点P.(1)观察填空:当点D在图1所示的位置时,填空:①与△ACD全等的三角形是.②∠APB的度数为.(2)猜想证明:在图1中,猜想线段PD,PE,PC之间有什么数量关系?并证明你的猜想.(3)拓展应用:如图2,当△ABC边长为4,AD=2时,请直接写出线段CE的最大值.23.(11分)如图,已知抛物线y=ax2+4x+c与x轴交于点M,与y轴交于点N,抛物线的对称轴与x轴交于点P,OM=1,ON=5.(1)求抛物线的表达式;(2)点A是y轴正半轴上一动点,点B是抛物线对称轴上的任意一点,连接AB、AM、BM,且AB⊥AM.①AO为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM中有一边的长等于MP时,请直接写出点A的坐标.2020年春学期九年级数学中考模拟测试卷一、选择题(每小题3分,共30分下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1.(3分)下列各组数中,互为倒数的是()A.2和B.3和C.|﹣3|和﹣D.﹣4和4解:A、2和不是倒数关系,故此选项错误;B、3和是倒数关系,故此选项正确;C、|﹣3|=3,3和﹣不是倒数关系,故此选项错误;D、﹣4和4不是倒数关系,故此选项错误;故选:B.2.(3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×107解:510000000=5.1×108,故选:B.3.(3分)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.解:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底在同一侧,故选项错误;D、是四棱锥的展开图,故选项错误.故选:B.4.(3分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.5.(3分)不等式组的最大整数解是()A.﹣1B.0C.1D.2解:解不等式①得:x≤2,解不等式②得:x>﹣1,所以不等式组的解集为﹣1<x≤2.最大整数解为2.故选:D.6.(3分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学参加了此次竞赛,他们的得分情况如下表所示:人数25131073成绩(分)5060708090100则全班40名同学的成绩的中位数和众数分别是()A.75,70B.70,70C.80,80D.75,80解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:=75;70出现了13次,出现的次数最多,则众数是70;故选:A.7.(3分)将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果∠1=130°,那么∠2的度数是()A.105°B.100°C.110°D.115°解:如图所示,∵AB∥CD,∴∠1=∠BEG=130°,由折叠可得,∠BEF=∠GEF=∠BEG=65°,∵BE∥DF,∴∠2=180°﹣∠BEF=115°,故选:D.8.(3分)如图,△P AB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD 的面积之和为10,则△P AB与△PCD的面积之差为()A.5B.10C.l5D.20解:依题意∵△P AB与△PCD均为等腰直角三角形∴PB=PB,PC=PD∴S△P AB﹣S△PCD=PD2﹣P A2=(P A+PD)(P A﹣PD)=(PB﹣PC)(P A+PD)=BC(P A+PD),又∵S△ABC+S△BCD=BC•P A+BC•PD=BC•(P A+PD)=10∴S△P AB﹣S△PCD=10故选:B.9.(3分)如图,将抛物线y=﹣x2+x+5的图象x轴上方的部分沿x轴折到x轴下方,图象的其余部分不变,得到一个新图象.则新图象与直线y=﹣5的交点个数为()A.1B.2C.3D.4解:如图,∵y=﹣x2+x+5中,当x=0时,y=5,∴抛物线y=﹣x2+x+5与y轴的解得为(0,5),∵将抛物线y=﹣x2+x+5图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,∴新图象与y轴的交点坐标为(0,﹣5),∴新图象与直线y=﹣5的交点个数是4个,故选:D.10.(3分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.解:当t=5时,点P到达A处,即AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=CD,当s=40时,点P到达点D处,则S=CD•BC=(2AB)•BC=5×BC=40,则BC=8,AD=AC==,故选:B.二、填空题(每小题3分,共15分)11.(3分)化简:=2.解:原式=1+2﹣1=2.故答案为2.12.(3分)用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为.解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432;∴排出的数是偶数的概率为:=.故答案为:.13.(3分)关于x的一元二次方程(2﹣a)x2﹣2x+1=0有两个不相等的实数根,则整数a 的最小值是3.解:根据题意得2﹣a≠0且△=(﹣2)2﹣4(2﹣a)×1>0,解得a>1且a≠2,所以整数a的最小值为3.故答案为3.14.(3分)如图,在边长为2的正方形ABCD中,以点D为圆心、AD的长为半径画弧,再以BC为直径画平圆.若阴影部分①的面积为S1,阴影部分②的面积为S2,则S2﹣S1的值为﹣4.解:由图形可知,扇形ADC的面积+半圆BC的面积+阴影部分①的面积﹣正方形ABCD 的面积=阴影部分②的面积,∴S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积=+π×12﹣22=﹣4,故答案为:﹣4.15.(3分)如图,已知直线l∥AB,lAB之间的距离为2,C、D是直线l两个动点(点C 在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3或7.解:设矩形的边长分别为a和b.①当∠CBD=90°时,如图1所示,∵四边形ABDC是平行四边形,∴∠BCA=90°.∴S△A′CB=S△ABC=×2×5=5.∴S矩形A′CBD=10,即ab=10.又BA′=BA=5,∴a2+b2=25.∴(a+b)2=a2+b2+2ab=45,∴a+b=;②当∠BCD=90°时,如图2所示,因为四边形ABDC是平行四边形,所以∠CBA=90°,所以BC=2,而CD=5,∴a+b=7.故答案为3或7.三、解答题(本大题共8小题,计75分)16.(8分)先化简,再求值•﹣,其中x是方程x2+x﹣3=0的解.解:•﹣=====,由方程x2+x﹣3=0,得x2+x=3,∴原式=.17.(9分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类):种类A B C D E F上学方式电动车私家车公共交通自行车步行其他并将调查结果绘制成如下不完整的统计图:根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有450人,其中选择B类的人数有63人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图中C对应的直条.(3)若将A,C,D,E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.解:(1)参与本次问卷调查的学生162÷36%=450(人),选择B类的人数450×14%=63(人),故答案为450,63;(2)E类对应的扇形圆心角α的度数:360°×(1﹣36%﹣14%﹣20%﹣16%﹣4%)=36°,C对应人数:450×20%=90(人),补全如下(3)估计该校每天“绿色出行”的学生人数:3000×(1﹣14%﹣4%)=2460(人),答:估计该校每天“绿色出行”的学生人数2460人.18.(9分)如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O 于另一点D,连接P A、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP的长是2时,以A,O,P,C为顶点的四边形是正方形;②当的长度是π或π时,以A,D,O,P为顶点的四边形是菱形.(1)证明:∵PC切⊙O于点P,∴OP⊥PC,∵AC⊥PC,∴AC∥OP,∴∠1=∠3,∵OP=OA,∴∠2=∠3,∴∠1=∠2,∴AP平分∠CAB;(2)解:①当∠AOP=90°,四边形AOPC为矩形,而OA=OP,此时矩形AOPC为正方形,AP=OP=2;②当AD=AP=OP=OD时,四边形ADOP为菱形,△AOP和△AOD为等边三角形,则∠AOP=60°,的长度==π.当AD=DP=PO=OA时,四边形ADPO为菱形,△AOD和△DOP为等边三角形,则∠AOP=120°,的长度==π.故答案为2,π或π.19.(9分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为2米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米)(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)解:(1)过B作BF⊥AD于F.在Rt△ABF中,°∵sin∠BAF=,∴BF=AB sin∠BAF=2sin37°≈=1.2.∴真空管上端B到AD的距离约为1.2米.(2)在Rt△ABF中,∵cos∠BAF=,∴AF=AB cos∠BAF=2cos37°≈1.6,∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD,∵EC=0.5米,∴DE=CD﹣CE=0.7米,在Rt△EAD中,∵tan∠EAD=,∴=,∴AD=1.75米,∴BC=DF=AD﹣AF=1.75﹣1.6=0.15≈0.2∴安装热水器的铁架水平横管BC的长度约为0.2米.20.(9分)如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,﹣4),反比例﹣函数y=(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD 的面积,求点P的坐标.解:(1)∵点A的坐标为(0,3),点B的坐标为(0,﹣4),∴AB=7,∵四边形ABCD为正方形,∴点C的坐标为(7,﹣4),代入y=,得k=﹣28,)∴反比例函数的解析式为y=﹣;(2)设点P到BC的距离为h.∵△PBC的面积等于正方形ABCD的面积,∴×7×h=72,解得h=14,∵点P在第二象限,y P=h﹣4=10,此时,x P=﹣=﹣,)∴点P的坐标为(﹣,10).21.(10分)振华书店准备购进甲、乙两种图书进行销售,若购进40本甲种图书和30本乙种图书共需1700元:若购进60本甲种图书和20本乙种图书共需1800元,(1)求甲、乙两种图书每本进价各多少元;(2)该书店购进甲、乙两种图书共120本进行销售,且每本甲种图书的售价为25元,每本乙种图书的售价为40元,如果使本次购进图书全部售出后所得利润不低于950元,那么该书店至少需要购进乙种图书多少本?(1)解:设每本甲种图书的进价为x元,每本乙种图书的进价为y元根据题意得.解得.答:每本甲种图书的进价为20元,每本乙种图书的进价为30元.(2)解:设该书店购进乙种图书a本,购进甲种图书(120﹣a)本,根据题意得(25﹣20)(120﹣a)+(40﹣30)a≥950.解得a≥70.答:该书店至少购进70本.22.(10分)已知:△ABC是等边三角形,点D是△ABC(包含边界)平面内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点P.(1)观察填空:当点D在图1所示的位置时,填空:①与△ACD全等的三角形是△BCE.②∠APB的度数为60°.(2)猜想证明:在图1中,猜想线段PD,PE,PC之间有什么数量关系?并证明你的猜想.(3)拓展应用:如图2,当△ABC边长为4,AD=2时,请直接写出线段CE的最大值.解:(1)①如图1中,∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,∵将线段CD绕C顺时针旋转60°得到线段CE,∴CE=CD,∠DCE=60°,∴△DCE是等边三角形,∴∠DCE═60°,∵∠ACD+∠DCB=60°,∠BCE+∠DCB=60°,∴△ACD≌△BCE(SAS).故答案为:△BCE.②如图1中,∵△ACD≌△BCE,∴∠EBC=∠DAC,∵∠DAC+∠BAD=∠BAC=60°,∴∠PBC+∠BAD=60°,∴∠APB=180°﹣∠ABC+∠PBC+∠BAP=180°﹣60°﹣60°=60°;故答案为60°.(2)结论:PD+PE=PC.理由:如图1中在PC上取一点H,使得EP=EH,∵∠APB=60°,∴∠DPE=120°,∴∠DPE+∠DCE=180°,∴C,D,P,E四点共圆,∴∠CPE=∠CDE=60°,∵EP=EH,∴△EPH是等边三角形,∴PH=EP=EH,∠PEH=∠DEC=60°,∵EP=EH,ED=EC,∴△PED≌△HEC(SAS),∴PD=CH,∴PC=PH+CH=PE+PD.(3)如图2中,∵AC=4,AD=2,∴4﹣2≤CD≤4+2,∴2≤CD≤6.由(1)可知,EC=CD,∴EC的最大值为6.即当点D在CA的延长线上时,CE取最大值为6.23.(11分)如图,已知抛物线y=ax2+4x+c与x轴交于点M,与y轴交于点N,抛物线的对称轴与x轴交于点P,OM=1,ON=5.(1)求抛物线的表达式;(2)点A是y轴正半轴上一动点,点B是抛物线对称轴上的任意一点,连接AB、AM、BM,且AB⊥AM.①AO为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM中有一边的长等于MP时,请直接写出点A的坐标.解:(1)∵OM=1,ON=5,∴M(﹣1,0),N(0,5),将M(﹣1,0),N(0,5)代入y=ax2+4x+c,,a=﹣1,c=5,抛物线的表达式为y=﹣x2+4x+5;(2)①AO为10时,△ABM∽△OMN.理由如下:设A(0,m),则OA=m,AM=,∵k AM=m,AB⊥AM,∴k AB=﹣,∴直线AB表达式:y=,∵抛物线y=﹣x2+4x+5对称轴:直线x=2,∴B(2,),∴AB=∵△ABM∽△OMN,∴,=,化简,得m4﹣99m2﹣100=0,(m2﹣100)(m2+1)=0,∵m2+1≠0,∴m2﹣100=0,∴m=10或﹣10(舍去)AO=10,即AO为10时,△ABM∽△OMN.②A的坐标为(0,)或(0,)或(0,).∵M(﹣1,0),P(2,0),∴MP=2﹣(﹣1)=3Ⅰ.当AB=MP=3时,AB==3,解得m=或(舍去)Ⅱ.当AM=MP=3时,AM==3,解得m=或(舍去)Ⅲ.当BM=MP=3时,BM==3m=或﹣(舍去),故求得符合条件的A的坐标为(0,)或(0,)或(0,).。
2020年度中考初三数学一模试卷(含答案解析)

2020年初三数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.-3的绝对值是 A .-13B .-3C .13D .32.函数中y =x2-x 自变量x 的取值范围是A .x ≥2B .x ≤2C .x ≠2D .x >23.在下列四个图形中,是中心对称图形的是A .B .C .D .4.下列运算正确的是 A .2a 2+a 2=3a 4B .(-2a 2)3=8a 6C .a 3÷a 2=aD .(a -b )2=a 2-b 25.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的 A .最高分B .方差C .中位数D .平均数6.下列图形中,主视图为①的是A .BC .D .7.已知a -b =2,则a 2-b 2-4b 的值为 A .2B .4C .6D .88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形9.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数y =k x的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = A .-20B .-16C .-12D .-810.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B ′DE ,若B ′D ,B ′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是 A .△ADF ≌△CGEB .△B ′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB ′F 的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分) 11.16的平方根是 .12.某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 . 13.若3m =5,3n =8,则32m +n= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 . 15.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB = . 16.如图,△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的O 和AB ,BC 均相切,则⊙O 的半径为 .(第16题图)(第15题图)ABCDFGB′O(第10题图)(第9题图)(第6题图①)17.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (-1,0),点B在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .18.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A 旋转,当∠ABF 最大时,S △ADE = .三、解答题(共84分) 19.(本题满分8分)(1)计算:(π-3)0+2sin45°-⎝ ⎛⎭⎪⎫18-1 (2)解不等式组:⎩⎨⎧1-2x <3x +13<220.(本题满分8分)解方程: (1)x 2-8x +1=0 (2)3x -2-1-x2-x=121.(本题满分8分)如图,□ABCD 中,E 为AD 的中点,直线BE ,CD 相交于点F .连接AF ,BD . (1)求证:AB =DF ;(2)若AB =BD ,求证:四边形ABDF 是菱形.ABCDEF(第18题图)(第17题图)22.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有________人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在________组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?调查测试成绩扇形统计图ADFEBC23.(本题满分8分)有甲,乙两把不同的锁和A,B,C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(本题满分8分)如图,△ABC中,⊙O经过A,B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.y/千克)26.(本题满分8分)如图,线段OB 放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA ,使tan ∠AOB 的值分别为1,2,3.27.(本题满分10分)已知,二次函数y =ax 2+2ax -3a (a >0)图象的顶点为C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),点C ,B 关于过点A 的直线l 对称,直线l 与y 轴交于D . (1)求A ,B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E ,连接OE 交直线l 于点F ,求EFOF的最大值.BO图3B O图2B O图128.(本题满分10分)如图,矩形ABCD ,AB =2,BC =10,点E 为AD 上一点,且AE =AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰Rt △BFG ,以BG ,BF 为邻边作□BFHG ,连接AG .设点F 的运动时间为t 秒,(1)试说明:△ABG ∽△EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出HC 的最小值.图2AB CDE图1ABC DFEG H9.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC ﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B 在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是﹣4≤x≤﹣1 .【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.22.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在B组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?【分析】(1)根据E组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得B组和C组所占的百分比.根据本次调查的总人数和B组所占的百分比可以求得B组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率(请用“画树状图”或“列表”等方法给出分析过程)【分析】首先根据题意列表,得所有等可能的结果,可求得打开一把锁的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.25.某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.【分析】本题是通过构建函数模型解答销售利润的问题.(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a,解得m即可(2)可先求出y与销售单价x之间的函数关系为:y=﹣5x+130,再根据销售利润=销售量×(售价﹣进价),列出销售利润w与销售价x之间的函数关系式,即可求最大利润(3)设扣除捐赠后利润为s,则s=﹣5x2+(5p+200)x﹣130(p+14),再根据对称轴的位置及增减性进行判断即可.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤4【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.26.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..【点评】此题主要考查了应用与设计作图以及锐角三角函数关系、勾股定理等知识,正确构造直角三角形是解题关键.27.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.28.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H 在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。
2019-2020年九年级数学5月模拟试题答案

20题图C45°60°北BAP 19题图2019-2020年九年级数学5月模拟试题答案一、选择题(本大题10小题,每小题3分,共30分)第二卷(非选择题,90分)二、填空题 (本大题6小题,每小题4分,共24分) 11、 12、115 13、 14、(4,0) 15、2 16、 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、解:原式===6……………4分 ……5分 …6分 18、解:原式=)2()2(3)2)(2()223(--+=-+⨯+--x x xx x x x x x =…………4分 当x =3时,原式=2×3+8=14.………………………6分 19、解:(1)如图,∠ABC 的平分线如图所示.…………3分 (作图正确得2分,结论得1分)(2)∵AB =AC ,∴∠ABC =∠C =70°,∴∠A =180°﹣70°﹣70°=40°,…5分 ∵BD 平分∠ABC ,∴∠ABD =∠ABC =35°,…………6分 ∴∠BDC =∠ABD +∠A =35°+40°=75°.………………7分 四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解:过点P 作PC ⊥AB 于C ,则∠ACP =∠BCP =90°,∠APC =30°,∠BPC =45°.…………1分 在Rt △ACP 中,∵∠ACP =90°,∠APC =30°,∴AC =AP =50,PC =AC =50.………………3分在Rt △BPC 中,∵∠BCP =90°,∠BPC =45°,∴BC =PC =50.……………………5分∴AB =AC +BC =(50+50)(米).答:景点A 与B 之间的距离为(50+50)米.………7分21、解:(1)画树形图如下:,………………2分所以共有12种等可能出现的结果;………………………………3分 (2)这些线段能够成三角形(记为事件A )的结果有4种:(5,4,6);(5,4,7);(5,9,6)(5,9,7),……………………………5分 所以P (A )==.…………………7分22、解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x , 则950(1+x )2=1862,……………………2分 解得,x 1=0.4,x 2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;…………4分 (2)由题意可得,1862(1+40%)=2606.8,…………5分 ∵2606.8>2400,∴xx 年我市能完成计划目标,即如果xx 年仍保持相同的年平均增长率,xx 年我市能完成计划目标.…………7分 五、解答题(三)(本大题3小题,每小题9分,共27分) 23、解:(1)过点C 作CE ⊥x 轴于点E 则△OCE ∽△OAB ∴…………1分 ∵OB =6,,∴OE =4∴点C 的横坐标为4…………2分(2)∵OB =6,AD =,∴设点D 的坐标为(6,m )(m >0), 则点A 的坐标为(6,m +),……………………3分 ∵ ∴ ∴点C 的坐标为(4,).……………4分 ∵点C 、D 均在反比例函数的函数图象上,∴⎪⎩⎪⎨⎧==+km k m 63208,解得:.∴反比例函数的解析式为.…………6分如图(2)FA如图(1)FA(3))∵m =2,∴点C 的坐标为(4,3),点D 的坐标为(6,2).…………7分 设经过点C 、D 的一次函数的解析式为∴,解得:⎪⎩⎪⎨⎧=-=521b a .∴经过C 、D 两点的一次函数解析式为……9分五、解答题(本大题3小题,每小题9分,共27分) 24、证明:(1)连结OC∵DC 切⊙O 于点C ∴OC ⊥DF ∴∠DCO =90° ∵DE ⊥AB ∴∠DEO =90°∵∠D +∠DEO +∠EOC +∠DCO =360° ∴∠EOC +∠D =180° ∵∠EOC +∠COB =180° ∴∠D =∠COB ……………………1分 ∵OA =OC ∴∠A =∠OCA∴∠COB =2∠A ∴∠D =2∠A ……………………2分 (2)∵OE =OA ,OA =OH ∴OE =OH∵∠HEO =90° ∴ ∴∠EOH =60°……3分∵OH ∥BC ∴∠CBO =60° ∵OC =OB ∴△OBC 是等边三角形 由(1)知,∠D =∠BOC ∴∠D =60°∵AB 是⊙O 的直径 ∴∠ACB =90° ∴∠OCB +∠ACO =90°∵∠DCG +∠ACO =90° ∴∠DCG =∠OCB =60° ∴∠D =∠DCG =60° ∴GD =GC ∴△DCG 是等边三角形………………5分 解:(3)连结BC∵∠OCB +∠BCF =90°,∠OBC +∠A =90° 又∵OB =OC ∴∠OCB =∠OBC ∴∠A =∠BCF ∵∠F =∠F ∴△FCB ∽△FAC ∴∵CF =2 ∴AF =4 ∴AB =AF-BF =3 ∴………………7分在Rt △ABC 中, ∴ ∴∵∠D =∠BOC ,∠DCG =∠OCB ∴△DCG ∽△OCBH GFEN 图(2)lMPD CABEN 图(1)lMPDCABJIH G FEN 图(2)lMPDCA BIJ CPMBDAl 图(3)NEFG∴ ∵CD =2CF ∴CD =4∴432=∴CG =…………9分 25、(1)证明:∵l ⊥AD ,BC ⊥AD ∴l ∥BC ∴ ∵AB =AC , ∴AM =AN∵∠BAC =90° ∴ME =NE ∴MN =2AE =2t …………1分 ∵BP =2 t ∴MN = BP∴四边形MBPN 为平行四边形………………3分(2)解:∵四边形MFGN 是正方形,∴FG =MN =MF =2AE =2t ∵EH =MF =2 t ∴DH =AD -AH =10-3t …………4分 ∴112(103)22PFGS FG DH t t ∆=⋅=⨯⨯- ∵ ∴当………………6分(3)解:存在,当或或时,△PFG 为等腰三角形说明:前面二个答对每个得1分,共2分;后面二个答对共得1分,若只答对1个也得1分。
2020宝山区初三一模九年级数学试卷(含答案)

2020学年第一学期期末考试九年级数学试卷考生注意:1.本试卷共25题.2.试卷满分150分.考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. 如果C 是线段AB 延长线上一点,且AC : BC =3:1,那么AB : BC 等于( ▲ ) (A )2 : 1;(B )1 : 2;(C )4 : 1;(D )1:4.2. 在ABC △Rt 中,∠C =90°,AB =5,BC =3,那么A sin 的值为( ▲ ) (A )53;(B )43; (C )54; (D )34. 3. 如图,AB ∥DE ,BC ∥DF ,已知n m FB AF ::=,a BC =,那么CE 等于( ▲ )(A )n am; (B )m an; (C )nm am+;(D )nm an+.4. 已知点M 是线段AB 的中点,那么下列结论中,正确的是( ▲ ) (A )BM AM =; (B )AB AM 21=; (C )AB BM 21=; (D )0=+BM AM .5. 将抛物线2x y =先向右平移1个单位长度,再向上平移2个单位长度,两次平移后得到的抛物线的表达式为( ▲ ) (A )()212--=x y ;(B )()212-+=x y ;(C )()212+-=x y ;(D )()212++=x y 6. 如图所示是二次函数()02≠++=a c bx ax y 图像的一部分, 那么下列说法中不正确...的是( ▲ ) (A )0<ac ;(B )抛物线的对称轴为直线1=x ;(C )0=+-c b a ;(D )点(-2,1y )和(2,2y )在抛物线上,则21y y >.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7. 如果y x 32=,那么=+yyx ▲ . 8. 已知线段2a =厘米,8c =厘米,那么线段a 和c 的比例中项b 的长度为 ▲ 厘米. 9. 如果线段AB 的长为2,点P 是线段AB 的黄金分割点,那么较短的线段AP = ▲ . 10. 计算:()()=+--b a b a 23 ▲ .11. 已知等腰梯形上底为5,高为4,底角的余弦值为53,那么其周长为 ▲ . 12. 某厂七月份的产值是10万元,设第三季度每个月产值的增长率相同,都为()0>x x ,九月份的产值为y 万元,那么y 关于x 的函数解析式为 ▲ .(不要求写定义域) 13. 如果抛物线()m x m y ++=21(m 是常数)的顶点坐标在第二象限,那么它的开口方向 ▲ .14. 已知一条抛物线具有以下特征:(1)经过原点;(2)在y 轴左侧的部分,图像上升,在y 轴右侧的部分,图像下降.试写出一个符合要求的抛物线的表达式: ▲ .15. 如图,已知△ABC 中,EF ∥AB ,21=FC AF ,如果四边形ABEF 的面积为25,那么△ABC 的面积为 ▲ .16. 在一块直角三角形铁皮上截一块正方形铁皮. 如图,已有的铁皮是Rt △ABC ,∠C =90°,要截得的正方形EFGD 的边FG 在AB 上,顶点E 、D 分别在边CA 、CB 上.如果AF=4,GB=9,那么正方形铁皮的边长为 ▲ .17. 如图,某堤坝的坝高为12米,如果迎水坡的坡度为1:0.75,那么该大坝迎水坡AB 的长度为 ▲ 米.18. 等腰△ABC 中,BC AC =,∠ACB=90°,点E 、F 分别是边CA 、CB 的中点. 已知点P 在线段EF 上,联结AP , 将线段AP 绕点P 逆时针旋转90°得到线段DP . 如果点 P 、D 、C 在同一直线上,那么tan CAP ∠= ▲ .三、解答题:(本大题共7题,满分78分)19. (本题满分10分)计算:21cos 45cot 30sin 60tan30-︒︒+︒⋅︒.20. (本题满分10分)如图1,已知ABC △中,DE ∥BC ,且DE 经过ABC △的重心点G ,a BD =,b BC =.(1)试用向量a 、b 表示向量BE ; (2)求作向量()b a -332.(不要求写作法,但要指出图中表示结论的向量)21. (本题满分10分,每小题满分各5分)已知二次函数()02≠-=a ax ax y 的图像经过点()21,-.(1)求该二次函数的解析式和顶点坐标;(2)能否通过所求得的抛物线的平移得到抛物线2132++=x x y ?如果能,请说明怎样平移;如果不能,请说明理由.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图2,点O 是菱形ABCD 的对角线BD 上一点,联结AO 并延长,交CD 于点E ,交BC 的延长线于点F .(1)求证:BF DE AB ⋅=2; (2)如果1=OE ,2=EF ,求BFCF的值.23.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)某校数学活动课上,开展测量学校教学大楼(AB )高度的实践活动,三个小组设计了不课题测量教学大楼(AB )的高度 测量工具 测量角度的仪器,皮尺等测量小组第一组 第二组 第三组 测量方案示意图说明点C 、D 在点B 的正东方向. GH 是教学大楼旁的居民住宅楼.EF 是教学大楼正南方向的“校训石”,借助EF 进行测量,使P 、E 、A 三点在一条直线上,点P 、F 在点B 的正南方向. 测量数据从点C 处测得A 点的仰角为37°,从点D 处测得A 点的仰角为45°,12=CD 米.从点G 处测得A 点的仰角为37°,测得点B 的俯角为45°.9=EF 米,从点P 处测得A 点的仰角为37°,从点F 处测得A 点的仰角为45°.(1)根据测量方案和所得数据,第 ▲ 组的数据无法算出大楼高度? (2)请选择其中一个可行方案及其测量数据,求出教学大楼的高度. 参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.24.(本题满分12分,每小题满分各4分)已知抛物线)(02≠+=a bx ax y 经过A (4,0)、B (1-,3)两点,抛物线的对称轴与x 轴交于点C ,点D 与点B 关于抛物线的对称轴对称,联结BC 、BD . (1)求该抛物线的表达式以及对称轴;(2)点E 在线段BC 上,当∠CED =∠OBD 时,求点E 的坐标;(3)点M 在对称轴上,点N 在抛物线上,当以点O 、A 、M 、N 为顶点的四边形是平行四边形时,求这个平行四边形的面积.25.(本题满分14分,第(1)小题满分4分,第(2)(3)小题满分各5分)如图3,已知Rt △ABC 中,∠ACB = 90°,AC = BC ,点D 、E 在边AB 上,∠DCE =45°,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD. (1)求证:DE BE CE ⋅=2;(2)当AC = 3, AD =2 BD 时,求DE 的长; (3)过点M 作射线CD 的垂线,垂足为点F . 设x BCBD=,y FMD =∠tan ,求y 关于x 的函数关系式,并写出定义域.2020学年第一学期期末考试九年级数学试卷评分参考一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.A ; 3.D ; 4.B ; 5.C ; 6. B . 二、填空题:(本大题共12题,每题4分,满分48分)7.25; 8. 4; 9.53- ; 10. b a 45-; 11. 26; 12. 2)1(10x y += ; 13. 向上; 14. 2x y -=(答案不唯一) ; 15. 45; 16. 6 ; 17. 15; 18.12-.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式332332212⋅+⎪⎪⎭⎫⎝⎛-=………………………………………………………………4分213211+-=………………………………………………………………4分 11132-=……………………………………………………… ……2分20. (本题满分10分) 解:(1)a 32+; ……………………………………………………………………………5分 (2)所求作向量为EA (图略).…………………………………………………………5分21.(本题满分10分,每小题满分各5分) 解:(1)由二次函数图像经过点(-1,2) 得a +a =2,a =1 …………………………2分∴ 二次函数解析式为x x y -=2……………………………………………………1分∵221124y x x x ⎛⎫=-=-- ⎪⎝⎭ ……………………………………………… …1分∴顶点坐标为)41,21(-…………………………………………………………1分(2)∵472321322-⎪⎭⎫ ⎝⎛+=++=x x x y ………………………………………………1分∴ 该抛物线顶点坐标为)47,23(--………………………………………………2分 ∴ 原抛物线可通过向左平移2个单位,再向下平移23个单位得到抛物线2132++=x x y …………………………………………………………2分22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)解:(1)由菱形ABCD 可得∠ADE=∠ABF ,AD =AB ,AD ∥BC ,……………………1分 ∴∠DAE=∠BF A ;∴FBA ADE ∽△△;……………………………………………………………1分∴ABDEBF AD =. ……………………………………………………………………1分∴BF DE AB ⋅=2 . ………………………………………………………………1分(2)联结OC由2,1==EF OE 得3=OF ,………………………………………………………1分 由菱形ABCD ,可得DCO DAO △△≅ ∴∠DAO=∠DCO ∵AD ∥BC , ∴∠DAO=∠F . ∴∠DCO=∠F ∵∠EOC=∠COF ,∴COF EOC ∆∆∽.……………………………………………………………………1分∴3312=⨯=⋅=OF OE CO ,…………………………………………………………1分∴3==AO CO .………………………………………………………………………1分 ∵AB ∥CD ,∴FAFEBF CF =.………………………………………………… …………1分 ∴333-=BF CF . ………………………………………………………………… ……1分23.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)解:⑴根据测量方案和所得数据,第 二 组的数据无法算出大楼的高度.…………4分⑵第一组:在Rt △ABD 中,AB ⊥BC ,由︒=∠45ADB , 得BD AB =.…………………………………1分 设x BD AB ==,则x BC +=12.…………1分 在Rt △ABC 中,由︒=∠37C ,……………1分BC ABC =∠tan ,……………………1分 得.4312x x =+………………………2分 解得36=x . ………………………1分 答:教学大楼的高度是36米.…………1分第三组:在Rt △ABF 中,AB ⊥BP ,由︒=∠45AFB ,得BF AB =.…………………………………………………………………………… 1分 在Rt △PEF 中,由EF = 9,︒=∠37P , …………………………………………1分 得12=PF .…………………………………………………………………………… 1分 设x BF AB ==,则x BP +=12. ………………………………………………1分 在Rt △P AB 中,由︒=∠37P ,BPABP =∠tan ,………………………………… 1分 得4312x x =+.……………………………………………………………………… 1分解得36=x . ……………………………………………………………………… 1分 答:教学大楼的高度是36米.…………………………………………………………1分24.(本题满分12分,每小题满分各4分)解:(1)∵)a (bx ax y 02≠+=经过A (4,0)、B (1-,3)由题意得⎩⎨⎧=-=+.b a b a 30416,解得⎪⎩⎪⎨⎧-==.b ,a 51253…………………………………………2分∴ 二次函数解析式为x x y 512532-=,……………………………………………1分∴抛物线的对称轴为直线2=x . ……………………………………………………1分(2)由抛物线的对称轴与x 轴交于点C ,点D 与点B 关于抛物线的对称轴对称可得BD ∥OA ,且C (2,0)、D (5,3). ∴∠DBC =∠BCO ,∠DBO +∠BOC = 180°.∵B (1-,3),∴23=BC .………………………………………………………1分 ∵∠CED =∠OBD , ∴∠BOC =∠DEB.∴△EBD ∽ △OCB.…………………………………………………………………1分 ∴BC BDOC BE =,即2362=BE . ∴22=BE ,2=CE .……………………………………………………………1分过点E 作EF ⊥OA ,垂足为点F ,在Rt △OEF 中,由∠EFC = 90°可得EF =FC =1 .∴点E 的坐标为(1,1)………………………………………1分 (3)以点O 、A 、M 、N 为顶点的四边形是平行四边形时,分类讨论:ⅰ)OA 为对角线,MN 与OA 互相垂直且平分,可得)512(2,-N ,)512(2,M . ∴54821S =⋅⋅=MN OA ONAM 平行四边形.……………………2分ⅱ)OA 为边,MN 与OA 互相平行且相等. 可得)536(2,M ,)536(6,N 或)536(-2,N . ∴5144S =⋅=ME OA OANM 平行四边形 .……………………2分 25.(本题满分14分,第(1)小题满分4分,第(2)(3)小题满分各5分)解:(1)∵Rt △ABC 中,∠ACB =90°,AC = BC ,∠DCE =45°,∴ ∠B =∠DCE = 45°. ……………………………1分又∵∠BEC =∠CED ,∴△BEC ∽ △CED . ……………………………1分∴ CEDE BE CE =, ……………………………………1分 ∴DE BE CE ⋅=2. …………………………… 1分(2)∵∠ACD = 45°+∠ACE =∠BEC∠B =∠BAC∴△BEC ∽ △ACD .…………… 2分 ∴ACBE AD BC =. …………………… 1分 又AC = BC =3 ,∠ACB =90°, ∴23=AB .∵ AD =2 BD ,∴2=BD ,22=AD . 可得429=BE ,………………………… 1分 ∴425=DE …………………………… 1分(3)延长BC 交MA 延长线于点G.∵MA ⊥AB ,∠B = 45°,可得∠G =∠B= ∠DCE.又∵∠MCB =∠B +∠BCD ,∠MCB =∠G +∠GMC ,∴∠GMC =∠BCD.∴△BCD ∽△GMC . ……………1分∴CMCD CG BD =,∴CM CG CD BD =. ∵∠B =∠DCM = 45°,∴△BCD ∽△CMD .………………1分∵ MF ⊥FC ,∴CF CM 2=. ∴x CFCD CM CD BC BD ===2,∴x CF CD 2=.………………………………………………………………………………1分 ∴tan ∠FMD =x CF FD 21-=,…………………………………………………………1分 ∴)(22021<<-=x x y .………………………………………………………1分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年5月九年级教学质量抽测参考答案
(数学)
一、选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C A C C A C A C D C
二、填空题:13. 6 14. -2 15. 1:4
9
16. 7 17. 2006 18. 3
19.解:原式=
3分
---------------
=----------------5分
=2.---------------6分
20. 证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,---------------------2分
∴在:△ABE与△CDF中,
-----------------------5分
∴△ABE≌△CDF(ASA)-----------------------6分
21.解:(1)m=40;--------------------------1分
(2)“其他”类所占的百分比为15%;---------------2分
(3)画树状图,如图所示:
--------------4分
所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
∴P(丙和乙)==.------------6分
22. 解:(1)根据关于x 轴对称点的坐标特点可知:A 1(2,﹣4);------------1分 如图下图:连接A 1、B 1、C 1即可得到△A 1B 1C 1.
-----------------2分
(2)如图:
---------------4分
(3)由两点间的距离公式可知:BC= -------------5分
∴点C 旋转到C 2点的路径长=
. ----------------8分
23.解:(1)依题意,则AN=4+2=6,-----------1分 ∴N (6,2), -------------2分 把N (6,2
)代入y=得:
∴k=212; --------------------4分
(2)∵M 点横坐标为2, ∴M 点纵坐标为,
262
2
12
∴M (2,26),
∴由图象知,≥ax+b 的解集为:
0<x≤2或x≥6. --------------------8分
24.解:(1)设A种型号服装每件x元,B种型号服装每件y元.-----------1分
依题意可得
-------------------2分
解得
-----------------3分
答:A种型号服装每件90元,B种型号服装每件100元.-----------4分
(2)设B型服装购进m件,则A型服装购进(2m+4)件.---------5分
根据题意得
------------6分
解不等式得9≤m≤12------------7分
因为m这是正整数
所以m=10,11,12
2m+4=24,26,28
答:有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A型服装购进26件;B型服装购进12件,A型服装购进28件.-------------------8分
25.(1)证明:连接OB.
∵BC∥OP,
∴∠BCO=∠POA,∠CBO=∠POB,
∴∠POA=∠POB,-------------------1分
又∵PO=PO,OB=OA,
∴△POB≌△POA.----------------------2分
∴∠PBO=∠PAO=90°.
∴PB是⊙O的切线--------------------3分
(2)解:2PO=3BC.(写PO=BC亦可)----------------4分
证明:∵△POB≌△POA,∴PB=PA.
∵BD=2PA,∴BD=2PB.
∵BC∥PO,∴△DBC∽△DPO.-------------------------5分
∴,
∴2PO=3BC.-------------------------------------6分
(3)解:∵CB∥OP,
∴△DBC∽△DPO,
∴,
即DC=OD.
∴OC=OD,
∴DC=2OC.------------------------------------------------7分
设OA=x,PA=y.则OD=3x,OB=x,BD=2y.
在Rt△OBD中,由勾股定理得(3x)2=x2+(2y)2,即2x2=y2.----------------8分
∵x>0,y>0,
∴y=x,OP==x.---------------------------9分
∴sin∠OPA====.----------------------------10分
26. 解:(1)在y=﹣3x+3中,令y=0,可求得x=1,令x=0,可求得y=3,
∴A(1,0),B(0,3),-------------------------------------------------2分
分别代入y=a(x﹣2)2+k,可得,解得,
即a为1,k为﹣1;---------------------------------------------4分
(2)由(1)可知抛物线解析式为y=(x﹣2)2﹣1,
令y=0,可求得x=1或x=3,
∴C(3,0),
∴AC=3﹣1=2,AB=,
过B作平行x轴的直线,在B点两侧分别截取线段BQ1=BQ2=AC=2,如图1,
∵B(0,3),
∴Q1(﹣2,3),Q2(2,3);
过C作AB的平行线,在C点分别两侧截取CQ3=CQ4=AB=,如图2,
∵B(0,3),
∴Q3、Q4到x轴的距离都等于B点到x轴的距离也为3,且到直线x=3的距离为1,
∴Q3(2,3)、Q4(4,﹣3);
综上可知满足条件的Q点的坐标为(﹣2,3)或(2,3)或(4,﹣3);----------------------7分
(3)由条件可知对称轴方程为x=2,连接BC交对称轴于点M,连接MA,如图3,
∵A、C两点关于对称轴对称,
∴AM=MC,
∴BM+AM最小,------------------------------8分
∴△ABM周长最小,
∵B(0,3),C(3,0),
∴可设直线BC解析式为y=mx+3,
把C点坐标代入可求得m=﹣1,
∴直线BC解析式为y=﹣x+3,
当x=2时,可得y=1,
∴M(2,1);---------------------------------------9分
∴存在满足条件的M点,
此时BC=3,且AB=,
∴△ABM的周长的最小值为3+;-------------------------10分
(4)由条件可设N点坐标为(2,n),
则NB2=22+(n﹣3)2=n2﹣6n+13,NA2=(2﹣1)2+n2=1+n2,且AB2=10,
当△ABN为以AB为斜边的直角三角形时,由勾股定理可得NB2+NA2=AB2,
∴n2﹣6n+13+1+n2=10,解得n=1或n=2,
即N点坐标为(2,1)或(2,2),
综上可知存在满足条件的N点,其坐标为(2,1)或(2,2).-----------------12分。