多元函数求导经典例题

合集下载

导数的计算练习题及答案

导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。

解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。

f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。

化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。

2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。

多元函数求导练习题

多元函数求导练习题

求函数2222(,)2f x y x y x y =+-在区域(){}22,|4,0D x y xy y =+≤≥上的最大值和最小值.【分析】本题求二元函数在闭区域的最值. 先求出函数在区域内的驻点,然后比较驻点的函数值和边界上的极值,则最大者为最大值,最小者为最小值. 【详解】(1)求函数2222(,)2f x y x y x y =+-的驻点.因为22220420x y f x xy f y x y ⎧'=-=⎪⎨'=-=⎪⎩,所以0011x x x y y y ⎧⎧=⎧==⎪⎪⎨⎨⎨===-⎪⎪⎩⎩⎩,所以函数在区域(){}22,|4,0D x y xy y =+≤≥内的驻点为),()和()0,0.(2)求函数在边界线上的极值. 作拉格朗日函数如下 222222(,)2(4)L x y x y x y x y λ=+-++-, 则22222220422040L x xy x x L y x y y y L x y λλλ⎧∂=-+=⎪∂⎪∂⎪=-+=⎨∂⎪⎪∂=+-=⎪∂⎩,解之得02,201x x x y y y ⎧==±⎧⎧=⎪⎨⎨⎨=±==±⎪⎩⎩⎩. 于是条件驻点为),(),()0,2,()2,0±.而()2f =,()2f =,()0,00f =,()0,28f =,()2,04f ±=. 比较以上函数值,可得函数在区域(){}22,|4,0D x y xy y =+≤≥上的最大值为8,最小值为0.(2006)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] 【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠), 若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(2004)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.(2005)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xz e y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xz e y z xy , 则 z e y F xz x +=', yzx F y -=',x e y F xz z +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).。

多元复合函数的求导法

多元复合函数的求导法

多元复合函数的求导法在一元函数中,我们已经知道,复合函数的求导公式在求导法中所起的重要作用,对于多元函数来说也是如此。

下面我们来学习多元函数的复合函数的求导公式。

我们先以二元函数为例:多元复合函数的求导公式链导公式:设均在(x,y)处可导,函数z=F(u,v)在对应的(u,v)处有连续的一阶偏导数,那末,复合函数在(x,y)处可导,且有链导公式:例题:求函数的一阶偏导数解答:令由于而由链导公式可得:其中上述公式可以推广到多元,在此不详述。

一个多元复合函数,其一阶偏导数的个数取决于此复合函数自变量的个数。

在一阶偏导数的链导公式中,项数的多少取决于与此自变量有关的中间变量的个数。

全导数由二元函数z=f(u,v)和两个一元函数复合起来的函数是x的一元函数.这时复合函数的导数就是一个一元函数的导数,称为全导数.此时的链导公式为:例题:设z=u2v,u=cosx,v=sinx,求解答:由全导数的链导公式得:将u=cosx,v=sinx代入上式,得:关于全导数的问题全导数实际上是一元函数的导数,只是求导的过程是借助于偏导数来完成而已。

多元函数的极值在一元函数中我们看到,利用函数的导数可以求得函数的极值,从而可以解决一些最大、最小值的应用问题。

多元函数也有类似的问题,这里我们只学习二元函数的极值问题。

二元函数极值的定义如果在(x0,y0)的某一去心邻域内的一切点(x,y)恒有等式:f(x,y)≤f(x0,y0)成立,那末就称函数f(x,y)在点(x0,y0)处取得极大值f(x0,y0);如果恒有等式:f(x,y)≥f(x0,y0)成立,那末就称函数f(x,y)在点(x0,y0)处取得极小值f(x0,y0).极大值与极小值统称极值.使函数取得极值的点(x0,y0)称为极值点.二元可导函数在(x0,y0)取得极值的条件是:.注意:此条件只是取得极值的必要条件。

凡是使的点(x,y)称为函数f(x,y)的驻点.可导函数的极值点必为驻点,但驻点却不一定是极值点。

高中数学导数经典例题

高中数学导数经典例题

高中数学导数经典例题好嘞,今天咱们聊聊高中数学里的导数,嘿,这可是个有趣又重要的话题哦。

咱们得知道,导数这个东西,就像是你开车的时候踩油门。

你踩得越狠,车速就越快,反之则慢。

而导数,就是用来描述一个函数在某一点的变化速率。

简单点说,它告诉你,某个东西的变化有多快,有多慢。

想象一下,你在海边玩水,浪一波接一波,导数就像是告诉你,浪的高度变化得快不快,冲得猛不猛。

拿个简单的例子,咱们可以看看函数 ( f(x) = x^2 )。

在这个函数里,假如你想知道在某个点,比如 ( x = 2 ) 的时候,函数的变化率如何。

哎呀,别着急,这时候就需要用到导数啦。

计算导数的方法就像做菜,得有点技巧。

你得先把 ( f'(x) ) 计算出来,得到的结果就是你在 ( x = 2 ) 时的变化率。

结果就是 ( f'(x) = 2x ),把 ( x ) 代进去,得 ( f'(2) = 4 )。

哦,听起来不错,意思就是在 ( x = 2 ) 的时候,函数的变化率是4,变化得挺快的,简直像火箭一样。

再想象一下,你在操场上追逐朋友,跑得飞快。

你能感受到自己每一秒的速度变化,这就是导数的意义。

继续深入一点,我们看看更复杂的函数,比如 ( f(x) = sin(x) )。

这玩意儿可不是简单的平方了。

这里的导数就是 ( f'(x) = cos(x) )。

你可别小看这个,( cos(x) ) 在不同的地方表现得可不一样。

就好像你在看朋友们跳舞,有的人慢悠悠,有的人则像风一样快。

你在不同的 ( x ) 值上,得到的速度也不一样,这就是数学的奇妙之处。

说到这里,咱们再聊聊切线。

切线这东西,就像你在山上滑雪,滑下来的时候,坡度就是切线的斜率。

想象你在某个点停下来,看看周围的风景。

切线就代表你此刻的方向,走得快慢尽在你的掌握。

拿 ( f(x) = x^3 ) 来说,导数是 ( f'(x) = 3x^2 )。

多元函数求导经典例题 (1)可修改文字

多元函数求导经典例题 (1)可修改文字
定义 一阶偏导数同时为零的点,均称为多元 函数的驻点.
注意 驻点
极值点
定理 2(充分条件)
设函数z f ( x, y)在点( x0 , y0 )的某邻域内连续,
有一阶及二阶连续偏导数,
又 f x ( x0 , y0 ) 0,
f y ( x0 , y0 ) 0 , 令
f xx ( x0 , y0 ) A, f xy ( x0 , y0 ) B , f yy ( x0 , y0 ) C ,
12.复合函数求导法则
定理 如果函数u (t) 及v (t) 都在点t 可
导,函数z f (u,v)在对应点(u,v)具有连续偏导
数,则复合函数 z f [ (t ), (t )] 在对应点t 可
导,且其导数可用下列公式计算:
dz z du z dv . dt u dt v dt
以上公式中的导数 dz 称为全导数.
y
z x
2z xy
fxy ( x, y),
z x y
2z yx
f yx ( x, y).
混合偏导
定义 二阶及二阶以上的偏导数统称为高阶偏 导数.
9.偏导数在经济上的应用:交叉弹性
设函数z f x, y在x, y处偏导数
存在,函数对x的相对改变量
xz z
f x x, y f x, y f x, y
多元函数习题课
一 学习要求
(1) 理解多元函数的概念,理解二元函数的 几何意义;
(2) 理解二元函数的极限与连续性的概念, 以及有界闭域上连续函数的性质;
极多 限元 及函 连数 续的
概 念
(3) 理解偏导数和全微分的概念,会求全微
分,了解全微分存在的必要和充分条件,了 解全微分形式不变性;

多元函数的微分学典型例题

多元函数的微分学典型例题

多元函数的微分学典型例题例 1 设 2 2 y xy x z + - = .求它在点 ) 1 , 1 ( 处沿方向v = ) sin , cos ( a a 的方向导 数,并指出:(1) 沿哪个方向的方向导数最大? (2) 沿哪个方向的方向导数最小? (3) 沿哪个方向的方向导数为零?解 1 ) 1 , 1 ( = x z , 1 ) 1 , 1 ( = y z . ) 1 , 1 (v z¶ ¶ a a sin cos + = .因此(1) 函数 a a a j sin cos ) ( + = 在 4pa = 取最大值,即沿方向 ) 1 , 1 ( 的方向导数最大.(2) 函数 a a a j sin cos ) ( + = 在 4 pa - = 取最小值,即沿方向 ) 1 , 1 ( - - 的方向导数最小.(3) 43pa - = 是函数 a a a j sin cos ) ( + = 的零点,即沿方向 ) 1 , 1 (- 的方向导数为零.例 2 如果函数 ) , ( y x f 在点 ) 2 , 1 ( 处可微, 且从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 方向的方向 导数为2,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 方向的方向导数为 2 - .求 (1) 该函数在点 ) 2 , 1 ( 处的梯度;(2) 该函数在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向导数. 解 (1) 设 x f 和 y f 分别表示函数 ) , ( y x f 在点 ) 2 , 1 ( 处关于x 和 y 的偏导 数,从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 的方向为 1 l ,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 的方向为 2 l ,则 1 l 和 2 l 的方向余弦分别为 ) 0 , 1 ( 和 ) 1 , 0 ( - ,于是就有x f l f = ¶ ¶ 12 0 1 = × + × y f ,故 2 = x f ; 2 1 0 2 - = × - × = ¶ ¶ y x f f l f ,故 2 = y f . 因此 ) 2 , 2 ( ) 2 , 1 ( = gragf .(2) 在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向余弦为 ÷ ø öç è æ 5 4,5 3 ,设该方向为l ,则 l f ¶ ¶ ) 2 , 1 ( 5145 4 2 5 3 2 = ´ + ´ = .例 3 验证函数) , ( y x f ïî ï í ì = + ¹ + + = . 0 ,0 , 0 , 2 2 22 22 y x y x yx xy 在原点 ) 0 , 0 ( 连续且可偏导,但它在该点不可微.验证 注意不等式 | | 2 2 xy y x ³ + ,就有0 | | 0 2 2 22 2 2 22 ® + = + + £ + £y x y x y x y x xy , ) , ( y x ® ) 0 , 0 ( .故而 0 ) , ( lim)0 , 0 ( ) , ( = ® y x f y x f = ) 0 , 0 ( .因此, ) , ( y xf 在原点 ) 0 , 0 ( 连续. x f ) 0 , 0 ( = 0lim® x 0 )0 , 0 ( ) 0 , ( = - xf x f ,由变量对称性得 y f ) 0 , 0 ( 0 = .即该函数在原点 ) 0 , 0 ( 可偏导.假如 ) , ( y x f 在原点 ) 0 , 0 ( 可微,就应有) , ( y x f = - ) 0 , 0 ( f x f ) 0 , 0 ( + x y f ) 0 , 0 ( ) ( 2 2 y x y + +o ,即 ) , ( y x f = ) ( 2 2 y x + o .但这是不可能的,因为沿路径 ) 0 ( ¹ = k kx y ,就有= + ® 2 2 )0 , 0 ( ) , ( ), ( limyx y x f kx x = + ® 2 2 ) 0 , 0 ( ) , ( lim y x xykx x 0 1 lim 2 2 2 2 2 0 ¹ + = + ® k k x k x kx x .可见, ) , ( y x f ¹ ) ( 2 2 y x + o .因此, ) , ( y x f 在原点 ) 0 , 0 ( 不可微. 例 4 验证函数) , ( y x f ï îï íì = + ¹ + + + = . 0 , 0 , 0 , 1 sin ) ( 2 2 22 22 2 2 y x y x y x y x 的偏导函数 ) , ( y x f x 和 ) , ( y x f y 在原点 ) 0 , 0 ( 不连续,但它却在该点可微.验证x f ) 0 , 0 ( = 0lim® x 0 1sin lim ) 0 , 0 ( ) 0 , ( 2 0 = = - ® xx x f x f x ; ) , ( y x ¹ ) 0 , 0 ( 时,) , ( y x f x 22 2222222121 2sin()cos () x x x y x y x y x yæö =++- ç÷ +++ èø 2 2 2 2 2 2 1cos2 1 sin2 y x y x x y x x + + - + = .因此, ) , ( y x f x ï î ï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x x y x x 由变量对称,得) , ( y x f y ï îï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x y y x y ) , ( y x f x 在点 ) 0 , 0 ( 不连续.事实上,沿路径 x y = , ® ) , ( x x ) 0 , 0 ( 时,2 2 2 2 1 cos 2 2 2 1 sin2 ) , ( x x x x x x x f x - = 中,第一项趋于零,而第二项 22 1cos 1 x x - 的极限不存在(比如取 pk x k 2 1=, +¥ ® k 时有 0 ® k x ,而2 2 1cos 1 kk x x -¥ ® ).可见, x y x f ) 0 , 0 ( ) , ( lim ® ) , ( y x 不存在,因此 ) , ( y xf x 在点 ) 0 , 0 ( 不连续.同理可证 ) , ( y x f y 在点 ) 0 , 0 ( 不连续. 但由于0 1sin ) , ( 0 2 2 22 2 2 22 ® + £ + + =+ £y x y x y x y x y x f ,® ) , ( y x ) 0 , 0 ( ,就有 0 ) , ( 22® + yx y x f ,于是就有0 ) , ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2222® + =+ - - - yx y x f yx yf x f f y x f y x , ® ) , ( y x ) 0 , 0 ( ,即 ) ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2 2 y x y f x f f y x f y x + + + = - o . 可见 f 在点 ) 0 , 0 ( 可微. 例 5 证明函数) , ( y x f ï îïí ì = + ¹ + + = . 0 , 0 , 0 , 2 22 22 42 2 y x y x y x xy 在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在,但它在该点不连续,因此不可 微.证 设 ) sin , cos ( a a = l 则= - = ¶ ¶ ® tf t t f l f t )0 , 0 ( ) sin , cos ( lim 0 a a 32 2244 0 2cos sin lim ( cos sin )t t t t t a a a a ® = +3 0 , , , 22 2tan sin , , . 22p p a p p a a a ì= ï ï = íï ¹ ï î 可见在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在.但沿路径 2y x = ,有 = ® ) , ( lim )0 , 0 ( ) , ( 2y x f y y f y y y y y ¹ = + ® 1 2 lim 4 4 22 0 ) 0 , 0 ( 可见 f 在 原点 ) 0 , 0 ( 并不连续,因此不可微. 例 6 计算下列函数的高阶导数或高阶微分: (1) x yz arctan = ,求 2 2 x z ¶ ¶ , y x z ¶ ¶ ¶ 2 22 y z ¶ ¶ ;解 x z ¶ ¶ 2 2 2 2 2 1 y x y x y x y + - = + -= , y z ¶ ¶ 22 22 1 1 y x x xy x + = + =. 2 2 x z ¶ ¶ 2 2 2 ) ( 2 y x xy + = , y x z ¶ ¶ ¶ 2 2 2 2 2 2 ) ( y x x y + - = , 2 2 y z ¶ ¶ = 22 2 )( 2 y x xy+ - . (2) xyxe z = ,求 y x z ¶ ¶ ¶ 2 3 和 23 y x z¶ ¶ ¶ .解 x z ¶ ¶ = ) 1 ( xy e xye e xyxy xy + = + , 2 2 x z ¶ ¶ ) 2 ( ) 1 ( xy ye y e xy ye xy xy xy + = + + = ;yx z¶ ¶ ¶ 2 ) 2 ( ) 1 ( xy xe xe xy xe xy xy xy + = + + = . y x z ¶ ¶ ¶ 2 3 = = ¶ ¶ ¶¶ x y x z 3 = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ y x z x 2 xyxy xy xy e xy xye xye xy e ) 2 3 ( ) 2 ( + = + + + ;2 3 y x z ¶ ¶ ¶ = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ = y x z y 2 ( )= + + xy xy xe xy xe x ) 2 ( xye y x x x ) 3 ( 2 + . (3) ) ln(xy x z = ,求 z d 2 ; 解 x z 1 ) ln( ) ln( + = + = xy xy xy xy, xy z y xy x 1 = = , x xy y z xx 1= = ;y z y x xy x = = 2 , yy z 2 yx- = .2222222 2 12 xx xy yy d z dx dy z z dx z dxdy z dy x y x dx dxdy dy x y yæö¶¶ =+=++ ç÷ ¶¶ èø =+- .(4) ) ( sin 2 by ax z + = ,求 z d 3 .解 x z ) ( 2 sin by ax a + = , xx z ) ( 2 cos 2 2 by ax a + = , = 3x z ) ( 2 sin 4 3 by ax a + - ,) ( 2 sin 4 2 axby b a z xxy - = ; y z ) ( 2 sin by ax b + = , ) ( 2 cos 2 2 by ax b z yy + = ,= = yyx xyy z z ) ( 2 sin 4 2 by ax ab + - . = 3 y z ) ( 2 sin 4 3 by ax b + - .z d 3 = = ÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ z y dy x dx 33223322333 x x y xy y z dx z dx dy z dxdy z dy +++ ) ( 2 sin 12 ) ( 2 sin 4 2 3 by ax b a by ax a + - + - = ) ( 2 sin 12 2 by ax ab + - 3 4sin 2()b ax by -+ ) ( 2 sin ) ( 4 3 by ax b a + + - = .例 7 利用链式规则求偏导数 :(1) ÷ ÷ øö ç ç è æ = , y x xy f u .求 x u¶ ¶ , y u ¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 y u ¶ ¶ .解 设 xy t = , yxs = .x u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = x s s f x t t f s f y t f y ¶ ¶ + ¶ ¶ 1 , y u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = y s s f y t t f sfy x t f x ¶ ¶ - ¶ ¶ 2 ;y x u ¶ ¶ ¶ 2 ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ = y s s t f y t t f y t f 2 2 2 22 22 11 f f t f s y s y s t y s y æö¶¶¶¶¶ -++ ç÷ ¶¶¶¶¶¶ èø = ÷ ÷ øö ç ç è æ ¶ ¶ ¶ - ¶ ¶ + ¶ ¶ s t f y x t f x y t f 2 2 2 2 22 222 11 f f x f x y s y s t y s æö¶¶¶ -+- ç÷ ¶¶¶¶ èø 2 2 t f xy ¶ ¶ = s t f y x ¶ ¶ ¶ - 2 3 s fy t f ¶ ¶ - ¶ ¶ + 2 1 .2 2 y u ¶ ¶ ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ = y u y 2 f x f x y t y s æö ¶¶¶ =- ç÷ ¶¶¶èø 23 2 2 2 2 y xs f y x y s s t f y t t f x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = = ÷ ÷ øöç ç è æ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ ¶ y s s f y t t s f 2 2 2 23 2 2 2 2 2 y xs f y x s t f y x tf x x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ - ¶ ¶ = = ÷ ÷ ø ö ç ç è æ ¶ ¶ - ¶ ¶ ¶ 2 2 2 2 s f y x t sf x s f y x s f y x s t f y x t f x ¶¶ +¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 3 2 2 2 2 2 2 2 2 2 22 2 . (2) ) ( 222z y x f u + + = .求 x u ¶ ¶ , y u ¶ ¶ , z u¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 xu ¶ ¶ .解 设 2 2 2 z y x t + + = .x u ¶ ¶ ( 2 ) ( f x x tt f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + , y u ¶ ¶ ( 2 ) ( f y yt t f ¢ = ¶ ¶ ¢= ) 2 2 2 z y x + + , z u ¶ ¶ ( 2 ) ( f z zt t f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + ;y x u ¶ ¶ ¶ 2 = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ( )= + + ¢ ¶ ¶) ( 2 2 2 2 z y x f x y 4( xyf ¢¢ ) 2 2 2 z y x + + ; 22 xu ¶ ¶ = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u x ( ) 222 2() xf x y z x ¶¢ ++ ¶ 2( f ¢ = ) 2 2 2 z y x + + 2 4x + ( f ¢¢ ) 2 2 2 z y x + + . 例 8 设函数 ) , ( y x f z = 具有二阶连续导数.写出 2 2 x z ¶ ¶ 2 2 y z ¶ ¶ + 在坐标变换2 2 y x u - = , xy v 2 = 下的表达式.解x z ¶ ¶ = u z ¶ ¶ x u ¶ ¶ + v z ¶ ¶ x v ¶ ¶ x 2 = u z ¶ ¶ + y 2 vz¶ ¶ ,2 2 x z ¶ ¶ 2 = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + x v v u z x u u z x 2 2 2 2 22 2 2 z u z v y v u x v x æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø 2 2 24 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 222 4 v z y ¶ ¶ + 2 + u z ¶ ¶ .y z ¶ ¶ = u z ¶ ¶ y u ¶ ¶ + v z ¶ ¶ y v ¶ ¶ y 2 - = u z ¶ ¶ + x 2 vz¶ ¶ ,2 2 y z ¶ ¶ 2 - = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ - y v v u z y u u z y 2 2 2 2 22 2 2 z u z v x v u y v y æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø u z vz x v u z xy u z y ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 2 4 8 4 222 2 2 2 2. 则2 2 x z ¶ ¶ 22 y z ¶ ¶ + 2 2 2 4 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 2 22 4 v z y ¶ ¶ + 2 + u z ¶ ¶ = ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ + u z v z x v u z xy u z y 2 4 8 4 2 2 2 2 2 2 2÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ + 2 2 2 22 2 ) ( 4 v z u z y x . 例 9 (1)写出函数 ) , ( y x f 9 8 6 2 23 2 2 3 3 + - - - - + = y x xy y x y x 在点 ) 2 , 1 ( 的Taylor 展开式.解= ) 2 , 1 ( f 16 - , = ) 2 , 1 ( x f 13 - , = ) 2 , 1 ( y f 6 - ; = ) 2 , 1 ( xx f 10, = ) 2 , 1 ( xy f 12 - , = ) 2 , 1 ( yy f 8;= ) 2 , 1 ( 3 x f 18, = ) 2 , 1 ( xxy f 4 - , 4 ) 2 , 1 ( - = xyy f , 6 ) 2 , 1 ( 3 = y f .更高阶的导数全为零 .因此, ) , ( y x f = + ) 2 , 1 ( f + - ) 1 )( 2 , 1 ( x f x ( 1 , 2 )(2)y f y - + - + 2 ) 1 )( 2 , 1 ( x f xx + - - ) 2 )( 1 )( 2 , 1 ( 2 y x f xy 2( 1 , 2 )(2) yy f y - 3 3 ( 1 , 2 )(1) x f x +- 3 ) 2 ( ) 1 )( 2 , 1 ( 3 2 + - - + y x f xxy 2) 2 )( 1 )( 2 , 1 ( - - y x f xyy 3 3 ( 1 , 2 )(2)y f y +- 22 1613(1)6(2)5(1)12(1)(2)4(2)x y x x y y =-----+----+- 3 2 2 3 ) 2 ( ) 2 )( 1 ( 2 ) 2 ( ) 1 ( 2 ) 1 ( 3 - + - - - - - - - + y y x y x x .(2) 求函数 ) , ( y x f y x e + = 在点 ) 0 , 0 ( 的n 阶Taylor 展开式,并写出余项.解x f ¶ ¶ y x e + = , y f ¶ ¶ yx e + = ,一般地,有 k h k h yx f ¶ ¶ ¶ + y x e + = ,则 1 ) 0 , 0 ( 00 = = ¶ ¶ ¶ + + e yx f kh k h . 因此, ) , ( y x f 在点 ) 0 , 0 ( 的n 阶Taylor 展开式为) , ( y x f å = + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ = n k kf y y x x k 0 ) 0 , 0 ( ! 1 )! 1 ( 1 + n 1( , )n x y f x y x y q q + æö ¶¶ + ç÷ ¶¶ èø å = + + = nk k y x k 0 ) ( ! 1 )! 1 ( 1 + n yx n e y y x x 1q q + + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ , ) 1 0 ( < <q .例 10 求下列方程所确定的隐函数的导数或偏导数:(1) 0 arctan = - + a y a y x ,求 dx dy 和 2 2 dxy d ;解 0 1 1 2 = ¢ - ÷ øöç è æ + + ¢+ a y a y x a y ,即 a y y x a y a ¢ = + + ¢ + 2 2 ) ( ) 1 ( ,即 dx dy 22 ) ( y x a + = . 由 2 2 ) ( y x y a + ¢ = ,再求导 0 ) 1 )( ( 2 ) ( 2 = ¢ + + ¢ + + ¢ ¢ y y x y y x y ,解得 2 ) ( ) 1 )( ( 2 y x y y x y y + ¢ + + ¢ - = ¢ ¢ ,代入 = ¢ y 22)( y x a + ,得 2 2 dx y d 22 23 () () x y a a x y ++ = + . (2) 0 = -xyz e z,求 x z ¶ ¶ 、 y z ¶ ¶、 2 2 xz ¶ ¶ 和 y x z ¶ ¶ ¶ 2 ;解 方程 0 = -xyz e z 两端对x 求导,得 0 = - - x z x xyz yz e z , x z ¶ ¶ xye yzz - = ;方程 0 = -xyz e z 两端对y 求导,得 0 = - - z z y xyz xz e z , y z ¶ ¶ xye xzz - = .0 = - - x z x xyz yz e z 再对x 求导,得 0 2 = - - - - + xx x x zx z xx xyz yz xz z e z e z ,解得2 2 x z ¶ ¶ xy e e z z y x z z zx x - - + + = 2 ) ( 32 2 2 2 ) ( ) ( xy e e z y xy e z y ze zzz z - - - + = . 同理得y x z ¶ ¶ ¶ 2 32 2 2 2 )( ) ( xy e e z x xy e z x ze zzz z - - - + = . (3) 0 ) , , ( = + + + x z z y y x f ,求 x z ¶ ¶ 和 yz ¶ ¶.解 设 y x u + = , z y v + = , x z w + = ,方程 0 ) , , ( = + + + x z z y y x f 两端对x 求导,得 = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x w w f x v v f x u u f 0 1 = ÷ ø ö ç è æ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ x z w f x z v f u f,解得 x z¶ ¶ w v u w f f f f + + - = ;同理得 y z ¶ ¶ wv v u f f f f + + - = .例 11 求下列方程组所确定的隐函数的导数或偏导数 :(1) ï î ï í ì = + + = - - . 4 32 ,0 22 2 2 22 a z y x y x z 求 dx dy , dx dz , 2 2 dx y d 和 2 2 dx z d ; 解 方程对x 求导,注意 y 和z 是x 的函数,就有 î íì = ¢ + ¢ + = ¢ - - ¢ . 0 6 4 2 , 0 2 2 z z y y x y yx z *) 解得 dx dy ) 3 1 ( 2 6 z y xz x + + - = , dx dzzx z y xy 3 1 ) 3 1 ( 2 2 + = + = .方程 *)在对x 求导,有 ï î ï íì = ¢ + ¢ ¢ + ¢ + ¢ ¢ + = ¢ - ¢ ¢ - - ¢ ¢ . 0 6 6 4 4 , 0 2 2 2 2 2 2 z z z y y yx y y y z 解得 2 2 dx yd ) 3 1 ( 4 12 6 ) 3 1 ( 4 2 2 z y z z z y x + + ¢ + + ¢ + - = , 2 2 dxz d ) 3 1 ( 2 6 ) 1 ( 4 4 2 2 z y z y xy y y y + ¢ - - + ¢ + = ;代入 dx dy 和 dxdz的表达式,即得2 2 dx y d 2 22 3 ) 3 1 ( 2 3 ) 3 1 ( 4 ) 6 1 ( 4 ) 3 1 ( 4 12 z y x z y z x z y z x + -+ + - + + - = , 2 2 dx z d 222 3 ) 3 1 ( 3 ) 3 1 ( 2 ) 6 )( 1 ( ) 4 (2 1 z x z y xz x y x + - + + + + - = . (2) î í ì - = + = . ) , (, ) , , ( 2y v x u g v y v x u f u 求 x u ¶ ¶ 和 y v ¶ ¶ . 解 设 y v s + = , x u t - = , y v r 2 = ,方程对x 求导,注意u 和v 是x 的函 数,就有î íì + = + + = . ) , ( ) , (, ) , , ( ) , , ( ) , , (2 x r x t x x s x x u x r r t g t y v t g v s s x u f s x u f u s x u f u 即î íì + - = + + = . 2 ) , ( ) 1 )( , (, ) , , ( ) , , ( ) , , ( x r x t x x s x x u x yvv r t g u r t g v v s x u f s x u f u s x uf u 解得x u¶ ¶ ), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( r t g s x u f r t yvg s x u f r t g s x u f r t yvg s x u f t s r u t s r x - - - + - - = ; 方程对 y 求导,注意u 和v 是x 的函数,就有ï îï í ì + + = + + = . ) 2 )( , ( ) , ( , 1) )( , , ( ) , , ( 2 v yvv r t g u r t g v v s x u f u s x u f u y r y t y y s y u y 解得y v ¶ ¶), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( 2 r t g s x u f r t yvg s x u f r t g s x u f v r t yvg s x u f t s r u r s r s - - - - - -= . 例 12 设函数 ) , ( y x f z = 具有二阶连续偏导数. 在极坐标 q cos r x = , q sin r y = 变换下,求 + ¶ ¶ 2 2 x f 2 2 yf¶ ¶ 关于极坐标的表达式.解2 2 y x r + = , xy arctan = q .所以= ¶ ¶ x f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x f x r r f q q 2 2 2 2 y x y f y x x r f + ¶ ¶ - + ¶ ¶ q qq q ¶ ¶ - ¶ ¶ = f r r f sin cos , = ¶ ¶ y f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ y f y r r f q q 2 2 2 2 y x x f y x y r f + ¶ ¶ + + ¶ ¶ q q q q ¶ ¶ + ¶ ¶ = f r r f cos sin ; 2 2 x f ¶ ¶ ÷ ø ö ç è æ ¶ ¶ - ¶ ¶ ¶¶ = q q q f r r f x sin cos r ¶ ¶ = q cos sin cos f f r r q q q ¶¶ æö - ç÷ ¶¶ èø q q ¶ ¶ -r sin sin cos f f r r q q q ¶¶ æö- ç÷¶¶ èør fr f rf r r f r csos r f ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = q q q q q q q q q q 2 22 2 2 2 2 2 2 2sin cos sin 2 sin sin 2 cos ; 类似有22 yf ¶ ¶ r f r f r f r r f r csos r f ¶ ¶ + ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ + ¶ ¶ = q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2cos cos sin 2 cos sin 2 sin . 于是得 + ¶ ¶ 2 2 x f 2 2 yf ¶ ¶ = r fr f r r f ¶ ¶ + ¶ ¶ + ¶ ¶ 1 1 2 2 2 2 2 q .例 13 证明:通过线性变换 y x u l + = , y x v m + = ,可以北将方程A 2 2 x f ¶ ¶B 2 + y x f ¶ ¶ ¶ 2C + 0 2 2 = ¶ ¶ yf,( 0 2 < - B AC )化简为 0 2 = ¶ ¶ ¶ v u f.并说明此时l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根.证 由 y x u l + = 和 y x v m + = 得x f ¶ ¶ v f u f ¶ ¶ + ¶ ¶ = , y u ¶ ¶ vfu f ¶ ¶ + ¶ ¶ = m l . 2 2 x f ¶ ¶ + ¶ ¶ = 2 2 u f + ¶ ¶ ¶ v u f 2 2 2 v f ¶ ¶ , 2 2 y f ¶ ¶ lm l 2 2 2 2 + ¶ ¶ = u f + ¶ ¶ ¶ v u f 2 222 v f ¶ ¶ m , = ¶ ¶ ¶ v u f 2 ) ( 2 2 m l l + + ¶ ¶ u f + ¶ ¶ ¶ v u f 2 2 22 vf ¶ ¶ m . 代入A 2 2 x f ¶ ¶ B 2 + y x f ¶ ¶ ¶ 2 C + 0 2 2 = ¶ ¶ yf ,化简得) 2 ( 2l l C B A + + 2 2 u f ¶ ¶ + ) 2 ( 2 m m C B A + + 2 2 vf ¶ ¶] 2 ) ( 2 2 [ lm m l C B A + + + + 0 2 = ¶ ¶ ¶ vu f.可见,当且仅当l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根时,方 程就化成 0 2 = ¶ ¶ ¶ vu f.例 14 求椭球面 498 3 2 2 2 2 = + + z y x 的平行于平面 7 5 3 = + + z y x 的切平面.解 所求切平面的法向量为 ) 6 , 4 , 2 ( z y x ,应有 56 3 4 1 2 z y x = = k 令== ,就有 2 k x = , k y 4 3 = , k z 6 5 = ,代入方程 498 3 2 2 2 2 = + + z y x ,有 498 2483 2 = k ,得12 ± = k . 在点M ) 10 , 9 , 6 ( 和N ) 10 , 9 , 6 ( - - - 的切平面与平面 7 5 3 = + + z y x 平 行.在点M ) 10 , 9 , 6 ( 的法向量为 ) 60 , 36 , 12 ( ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = - + - + - z y x ,即 0 83 5 3 = - + + z y x ;在点N ) 10 , 9 , 6 ( - - - 的法向量为 ) 60 , 36 , 12 ( - - - ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = + - + - + - z y x ,即 0 83 5 3 = + + + z y x .综上,椭球面 498 3 2 2 2 2 = + + z y x 上,平行于平面 7 5 3 = + + z y x 的切平面 有两块,它们是 0 83 5 3 = ± + + z y x .例15 证明曲面 a z y x = + + ) 0 ( > a 上任一点的切平面在各坐标轴上的 截距之和等于a .证 设M ) , , ( 0 0 0 z y x 为曲面 a z y x = + + 上任的一点,曲面在该点的切面为0 2 2 2 00 00 00 = - + - + - z z z y y y x x x ,即0 ) ( 0 0 0 0 00 = + + - + + z y x z z y y x x , 亦即0 0 0 0 = - + + a z z y y x x .化为截距式即为 1 0 0 0= + + az zay y ax x . 可见在各坐标轴上的截距之和为a az ay ax = + + 0 0 0 = + + ) ( 0 0 0 z y x a .例 16 在 ] 1 , 0 [ 上用怎样的直线 b ax + = x 来代替曲线 2 x y = ,才能使它在平方 误差的积分 = ) , ( b a J ò - 10 2 ) ( dx y x 为极小意义下的最佳近似.解 = ) , ( b a J = - - ò 10 22) ( dx b ax x 51 32 23 2 2 + - - + + b a ab b a .现求其中极小值.ï ï îï ï íì- + = - + = .3 2 2 ,2 1 3 2 a b J b a J b a 解得有唯一驻点M ÷ ø ö ç èæ- 6 1 , 1 .0 3 1 1 2 3 2 | ) ( > = - ´ = - M ab bb aa J J J ,又 0 32| > = Maa J ,因此, ) , ( b a J 在点 M ÷ ø ö ç è æ- 6 1 , 1 取极小值.因为 ) , ( b a J 在R 2 中仅有唯一的极小值,可见该极小值还是最小值.因此,在 ] 1 , 0 [ 上用直线 61- = x x 来代替曲线 2 x y = ,才能使它在平方误差的积分为极小的意义下是最佳的近似.例 17 要做一圆柱形帐篷,并给它加一个圆锥形的顶.问在体积为定值时,圆柱的半径R ,高H 及圆锥的高h 满足什么关系时,所用的布料最省?解 设体积为定值V ,则 ÷ ø ö ç èæ+ = h H R V 3 1 2 p ,得 h R V H 3 1 2 - = p .帐篷的全面积为2 2 2 2 322 2 ) , ( h R R Rh R V h R R RH h R S + + - =+ + = p p p p , 0 > R , 0 > H . R S 0 3 2 2 2 2 2 22 2 = + + + + - - = hR R h R h R V p p p ,(*)0 3 2 2 2 = + + - = hR RhR S h p p .(**)由(**)式的得 h h R 232 2 = + ,代入(*)式,有R S 0 6 4 5 12 242 2 = + + - = h R R h R Vh p p ,由 0 6 2 > h R ,应有 0 12 5 4 2 2 2 = - + Vh h R R p p . 这就是驻点出应满足的关系式.由于该问题在于有最小值,这也是帐篷的全面 积 ) , ( h R S 取最小值时,圆柱的半径R 与圆锥的高h 所应满足的关系式. 例 18 抛物面 2 2 y x z + = 被平面 1 = + + z y x 截成一椭圆.求原点到这个椭圆的 最长距离与最短距离.解 这是求函数 2 2 2 ) , , ( z y x z y x d + + = 在约束条件 0 2 2 = - - y x z 与0 1= - + + z y x 之下的条件极值问题 .构造 Lagrange 函数= ) , , , , ( m l z y x L l - + + 2 2 2 z y x m + - - ) ( 2 2 y x z ) 1 ( - + + z y x .(5) . 0 1 (4) , 0 (3) , 0 2) 2 ( , 0 2 2 ) 1 ( , 0 2 2 2 2 ï ï ï î ïï ïí ì = - + + = = - + = = + - = = + + = = + + = z y x Lz y x L z L y y Lx x L z y x m l m l m l m l 由(1)和(2)有 0 ) 1 )( ( 2 = + - l y x ,由于 1 - ¹ l (否则由(1)得 0 = m ,据(3)得 2 1 - = z ,代入(4) ,导致 0 212 2 = + + y x 无解),得 y x = .把 y x = 代入(4)和(5) ,解得 2 3 1 2 , 1 ± - =x , 231 2, 1 ± - = y , 3 2 2 1 m = - = x z .即得两个 驻点A ÷ ÷ ø ö ç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 和B ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 . 而该 问题必有最大值和最小值,因此,点A 和B 就是最大和最小值点.由于d ÷ ÷ ø öç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 3 5 9- = ; d ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 3 5 9+ = . 可见点A 和B 分别是最小和最大值点.即原点到这个椭圆的最长距离为 3 5 9+ ,最短距离为 3 5 9- .例 19 求椭圆 12 3 2 2 = + y x 的内接等腰三角形,其底边平行于椭圆的长轴,而使面积最大.解 所指内接等腰三角形的一半(如图) 是 ABC D ,设C 的坐标为(,) x y ,则三角(0,2)A yx(0,)B y o(,)C x y形 ABC D 面积为 ) 2 ( y x - 之半,于是所求内接等腰三角形的面积为 ) 2 ( y x - .问题是求函数 ) 2 ( ) , ( y x y x S - = 在约束条件 12 3 2 2 = + y x 之下的条件极值. 设Lagrange 函数为) 12 3 ( ) 2 ( ) , , ( 2 2 - + + - = y x y x y x L l l ,( 0 > x , 2 2 < < - y ),则ï î ïí ì = - + = = + -= = + - = (3) . 0 12 3 (2) , 0 6 ) 1 ( , 0 22 2 2 y x L y x L x y L y x ll l 从方程(1)和(2)中消去l ,得 y y x 6 3 2 2 - = ,代入(3) ,得 0 2 2 = - - y y ,解得 231± = y . 2 = y 时, 0 ) 2 , ( = x S .因此,得唯一的驻点 ) 1 , 3 ( - .该问题有最大值,当底边右端点的坐标为 ) 1 , 3 ( - 时,所得内接等腰三角形的面 积最大.。

多元函数的微分学:复合函数的求导法则

多元函数的微分学:复合函数的求导法则

课程小结
本讲介绍了复合函数的的求导法则---中间变 量为一元函数的形式,在计算的过程中,先画函 数结构图,根据结构图写出全导公式,最后结果 改写成自变量的函数.
思考题
设 z f (e3t ,t 2 ) ,f 具有一阶连续 偏导数,求 dz .
dt
THANKS
谢谢观看
4e2t
典型例题讲解
例3

z
uv
Байду номын сангаас
sin
t,u
et,v
cost,求全导数
dz dt
.
分析: 依题意,先画出函数结构图,根据图形写出公式

z
u
dz z du z dv f
t v解:dt u dt v dt t
vet u sin t cost
v
et (cos t sin t) cos t
2e2u3v 2t 3e2u3v cost
e2t23sint 4t 3cost
典型例题讲解
例2 已知函数 u x2 y2 z2,x et cost,y et sin t,z et,求 du .
dt
分析:依题意,先画出函数结构图,根据图形写出公式

x
u
y
t
z
du u dx u dy u dz 解: dt x dt y dt z dt
u
z
t
dz z du z dv dt u dt v dt
v
注:(1)公式中的导数 dz 称为全导数.
dt
(2)上述公式可以推广到多个中间变量的情形.这个
法则也称为链式求导法则.
求导法则
以下总假定所遇到的一元函数具有连续的导数,多元函数具有连续的

多元函数微分学例题

多元函数微分学例题

(i) 当A = −2a > 0, 即 a < 0时, f (x, y)有极小值;
(ii) 当 a > 0时, f (x, y)有极大值.
例9. 设 f ( x, y) = 3 x + 4 y − ax2 − 2ay2 − 2bxy, 试问参数 a, b满足什么条件时, f (x, y)有唯一极大值? f (x, y)有唯
m
xi
i =1
⎞⎟⎠dx = −
0 −1
⎛⎜⎝
1− xn 1− x

x(1 − 1−
xm x
) ⎞⎟⎠ dx
∫0
=− −1
x(1
− xn )(1 − (1 − x)2
xm
)
dx
∑∑ 例1. 求lim m→+∞ n→+∞
m i =1
n j =1
(−1)i+ i+ j
Байду номын сангаас
j
.
∑∑ ∫ Sm,n
=
m i =1
n (−1)i+ j j=1 i + j
=−
0 −1
x(1
− xn )(1 − (1 − x)2
xm
)
dx
∫ ∫ ∫ 0
=− −1
x (1 − x)2
dx
+
0 −1
x m+1 (1 − x)2
dx
+
0 −1
x
n+1 − (1 −
x n+m+1 x)2
dx
∫ 对于 lim l →+∞
0 −1
(1
x −
y x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x , x , , x , y y f x , x D为 函 数
在D上 ) 的 图 形 ( 或 图 像 。 y f x( )
1 2 n
3.多元函数的极限
定 义 设 函 数 z f ( x, y) 的 定 义 域 为 D , P0 ( x 0 , y 0 ) 是其内点或边界点, 如果对于任意 ,使得对于适合不 给定的正数 ,总存在正数 2 2 等式 0 | PP0 | ( x x 0 ) ( y y 0 ) 的一 切点,都有| f ( x , y ) A | 成立,则称 A 为函 数 z f ( x , y ) 当 x x 0 , y y 0 时的极限, lim f ( x , y ) A 记为 x x (或 f ( x , y ) A ( 0) 这里 | PP0 | ).
多元函数 连续的概念
偏导数在 经济上的应用
全微分 概念
全微分 的应用 高阶偏导数
复合函数 求导法则
全微分形式 的不变性
偏导数 概念
多元函数的极值
隐函数 求导法则
1.区域
(1)邻域
设 P0 ( x 0 , y 0 ) 是 xoy 平面上的一个点, 是某 一正数,与点P0 ( x 0 , y 0 ) 距离小于 的点P ( x , y ) 邻域,记为U ( P0 , ) , 的全体,称为点P0 的
7.偏导数概念
定义 设函数 z f ( x , y ) 在点 ( x0 , y0 ) 的某一邻 x 在x0 处有增量 域内有定义,当y 固定在y0 而 x 时,相应地函数有增量 f ( x 0 x , y0 ) f ( x 0 , y0 ) ,
f ( x 0 x , y0 ) f ( x 0 , y0 ) 如果 lim 存在,则称 x 0 x x 的 此极限为函数 z f ( x , y ) 在点( x0 , y0 ) 处对
设函数 z f x , y 在 x , y 处 偏 导 数 存 在,函 数 对 x的 相 对 改 变 量
x z f x x , y f x , y z f x, y
x 与自变量 x的 相 对 改 变 量 之 比 x
xz z x x
称为函数 f x, y 对x从x到x x两点间的弹性 .
dz z du z dv . dt u dt v dt
dz 以上公式中的导数 称为全导数. dt
( x, y) 如果u ( x , y ) 及v ( x , y ) 都在点
具有对x 和y 的偏导数,且函数 z f ( u, v ) 在对应 点( u, v ) 具有连续偏导数,则复合函数
U ( P0 , ) P | PP0 |
( x , y ) | ( x x0 )2 ( y y0 )2 .


P0
(2)区域
连通的开集称为区域或开区域.
(3)n维空间
设 n 为取定的一个自然数,我们称 n 元数 n 组 ( x1 , x 2 , , x n ) 的全体为n 维空间,而每个 元数组 ( x 1 , x 2 , , x n ) 称为n 维空间中的一个 点,数 x i 称为该点的第 i 个坐标.
dy Fx . dx Fy
隐函数的求导公式
( 2) F ( x , y , z ) 0
yz
10.全微分概念
如果函数z f ( x , y ) 在点( x , y ) 的全增量 z f ( x x , y y ) f ( x , y ) 可以表示为 z Ax By o( ) ,其中 A,B 不依赖于 x , y 而仅与 x , y 有关, ( x )2 ( y )2 , 则称函数z f ( x , y ) 在点( x , y ) 可微分, Ax By 称为函数z f ( x , y ) 在点 ( x, y) 的 全微分,记为dz ,即 dz = Ax By .
当x 0时,
的极限称为 f x , y 在 x , y 处对x的弹性 , 记作
xz z x x
xz Ez z x z x lim . x E x x 0 x z x
Ez x或 , 即 Ex
类似地可定义 f x, y 在 x, y 处对y的弹性
偏导数,记为
z f , ,z x x0 x x0 x x x y y y y
0 0
x x0 或 y y0
f x ( x 0 , y0 ) .
y 同理可定义函数z f ( x , y ) 在点( x0 , y0 ) 处对 的偏导数, 为
f ( x 0 , y0 y ) f ( x 0 , y0 ) lim y 0 y z f 记为 , , z y x x0 或 f y ( x 0 , y 0 ) . y y0 y x x 0 y x x 0
y 的偏导 同理可以定义函数z f ( x , y ) 对自变量
z f z y 或 f y ( x, y) . 数,记作 , , y y
8.高阶偏导数
函数 z f ( x , y ) 的二阶偏导数为
z 2 z z 2 z 2 f yy ( x , y ), 2 f xx ( x , y ), x x x y y y
2.多元函数概念 定义
设D是R n的 一 个 非 空 子 集 , 从 D到 实 数 集 R 的任一映射 f称 为 定 义 在 D上 的 一 个 n元 ( 实 或y f x f x1 , x 2 , , x n , x D 其 中x1 , x 2 , , x n 称 为 自 变 量 , y称 为 因 变 量 , D称 为 函 数 f的 定 义 域 , f D f x x D 称为函数 f的 值 域 , 并 且 称 R n 1中 的 子 集 值)函数,记作 f : D Rn R
y y0
0
说明:
(1)定义中 P P0 的方式是任意的; (2)二元函数的极限也叫二重极限 lim f ( x , y );
x x0 y y0
(3)二元函数的极限运算法则与一元函数类似.
4.极限的运算
设 P P0 时, f ( P ) A, f ( P ) B , 则 (1). f ( P ) g( P ) A B; ( 2). f ( P ) g( P ) A B; ( 3). f ( P ) g( P ) A B ( B 0).
5.多元函பைடு நூலகம்的连续性
定义 设 函 数 f ( x, y) 的 定 义 域 为 点 集
D , P0 ( x0 , y0 ) 是D 的内点或边界点且P0 D , P0 f ( P ) f ( P0 ) 则称函数 f ( x , y ) 在点 如果 lim PP
0
处连续. 如果 f ( x , y ) 在点 P0 ( x 0 , y0 ) 处不连续, 则称
(8) 理解二重积分的概念,了解二重积分的 性质; (9) 掌握二重积分(直角坐标,极坐标)的计 算方法; (10) 了解广义二重积分的概念和计算方 法.
偏 导 数 的 应 用 多 元 函 数 积 分 学
二、主要内容
平面点集 和区域
极 限 运 算 多元连续函数 的性质 多元函数概念
多元函数 的极限
多元函数连续、可导、可微的关系 函数连续 函数可导
函数可微 偏导数连续
11.全微分的应用
主要方面:近似计算与误差估计.
当 x , y 很小时, 有
Z dz f x ( x, y )x f y ( x, y )y,
f ( x x , y y ) f ( x , y ) f x ( x , y ) x f y ( x , y ) y.
Ez z y z y lim . y E y y 0 y z y
特别地 , 如 果z f x , y 中z表 示 需 求 量 , x表 示 价 格 , y表 示 消 费 者 收 入 , 则 x 表 示 需求对价格的弹性 , y 表 示 需 求 对 收 入 的 弹 . 性
(4) 掌握复合函数的一阶和二阶偏导数的 求法; (5) 会求隐函数的偏导数;
(6) 掌握高阶偏导数与高阶微分的概念,
掌握二阶偏导数的计算
多 元 函 数 的 偏 导 数 及 全 微 分
(7) 正确理解多元函数极值的概念,极值存 在的必要条件和判断极值的充分条件;会 求一般函数的极值,会利用拉格朗日乘数 法求多元函数的条件极值.
P0 是函数 f ( x , y ) 的间断点.
6.闭区域上连续函数的性质
(1)有界性定理 有界闭区域D上的多元连续函数是D上的 有界函数. (2)最大值和最小值定理
在有界闭区域D上的多元连续函数,在D 上一定有最大值和最小值.
(3)介值定理 在有界闭区域D上的多元连续函数,如果 在D上取得两个不同的函数值,则它在D上取 得介于这两值之间的任何值至少一次.
z f [ ( x , y ), ( x , y )]在对应点( x , y ) 的两个偏
导数存在,且可用下列公式计算
z z u z v , x u x v x z z u z v . y u y v y
13.全微分形式不变性
无论 z是自变量 u、v的函数或中间变量 u、v 的函数,它的全微分形式是一样的.
多元函数习题课
一 学习要求
(1) 理解多元函数的概念,理解二元函数的 几何意义; (2) 理解二元函数的极限与连续性的概念, 以及有界闭域上连续函数的性质; 极多 限元 及函 连数 续的 概 念
(3) 理解偏导数和全微分的概念,会求全微 分,了解全微分存在的必要和充分条件,了 解全微分形式不变性;
相关文档
最新文档