包头地区1500m3高炉本体结构设计毕业设计论文
毕业论文:高炉炼铁系统设计-精品【范本模板】

莱芜职业技术学院毕业论文论文标题:高炉炼铁系统设计作者:凌宗峰学校名称:莱芜职业技术学院专业:冶金技术年级:07冶金技术指导教师:冯博楷日期:2010。
4。
1目录内容提要与关键词¨¨¨¨¨¨¨¨¨¨¨3手抄在论文本上,最后再根据内容补填目录,要求手写!正文¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨4参考文献¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨58摘要本设计要求建年产量为200万吨生铁的高炉系统。
高炉车间的七大系统:即高炉本体系统、上料系统、渣铁处理系统、喷吹系统、送风系统、除尘系统和冷却系统都做了较为详细的叙述。
高炉炼铁是获得生铁的主要手段,是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。
高炉是炼铁的主要设备,本着优质、高产、低耗和对环境污染小的方针,在预设计建造一座年产生铁200万吨的高炉炼铁系统,本设计说明书详细的对其进行了高炉设计,其中包括绪论、工艺计算(包括配料计算、物料平衡和热平衡)、高炉炉型设计、高炉各部位炉衬的选择、炉体冷却设备的选择、风口及出铁场的设计、原料系统、送风系统、煤气处理系统、渣铁处理系统、高炉喷吹系统等。
设计的同时还结合国内外相同炉容高炉的一些先进的生产操作经验和相关的数据,力争使该设计的高炉做到高度机械化、自动化和大型化,以期达到最佳的生产效益. 关键词:高炉;炼铁;设计;煤气处理;渣鉄处理;1绪论1。
1概述钢铁是重要的金属材料之一,被广泛应用于各个领域,钢铁生产水平是一个国家发展程度的标志。
高炉图纸毕业设计

高炉图纸毕业设计高炉图纸毕业设计在工程设计领域中,毕业设计是一个非常重要的环节。
对于学习机械工程的学生来说,毕业设计不仅是对所学知识的综合运用,更是对工程实践能力的一次考验。
本文将以高炉图纸毕业设计为主题,探讨设计过程中的一些关键要点。
首先,高炉图纸毕业设计的目标是什么?高炉是冶金工业中的重要设备,用于将铁矿石还原为铁。
因此,设计一个高炉图纸的目标是确保高炉能够正常运行,并满足生产需求。
在设计过程中,需要考虑高炉的结构、材料、热力学特性等各个方面。
在高炉图纸的设计过程中,需要进行详细的结构设计。
高炉通常由炉身、炉缸、炉喉、炉腹等部分组成。
炉身是高炉的主体,承受着高温和高压的作用。
因此,在设计炉身时,需要选择适当的材料和合理的结构,以确保其能够承受这些压力。
同时,还需要考虑高炉的内部结构,如炉缸的形状和尺寸,以及炉腹的结构等。
除了结构设计,高炉图纸的设计还需要考虑热力学特性。
高炉是一个复杂的热力学系统,其中包含了多个反应和传热过程。
在设计过程中,需要对这些过程进行分析和计算,以确定高炉的热力学参数,如温度、压力和流量等。
这些参数对高炉的正常运行和产品质量有着重要影响。
在进行高炉图纸毕业设计时,还需要考虑到工艺流程和操作要求。
高炉是一个连续运行的设备,需要进行不间断的供料和排渣。
因此,在设计过程中,需要合理安排进料口和排渣口的位置和尺寸,以便操作人员能够方便地进行操作。
同时,还需要考虑到高炉的维护和检修需求,确保设备能够方便地进行维修和更换。
除了以上要点,高炉图纸毕业设计还需要考虑到安全和环保要求。
高炉是一个高温和高压的设备,存在着一定的安全风险。
因此,在设计过程中,需要合理安排安全设施,如防爆门和防火设施等,以确保操作人员的安全。
同时,还需要考虑到高炉的环境影响,选择合适的排放措施,减少对环境的污染。
综上所述,高炉图纸毕业设计是一个综合性的工程设计项目,需要考虑到多个方面的要求。
在设计过程中,需要进行详细的结构设计,考虑热力学特性,满足工艺流程和操作要求,同时兼顾安全和环保要求。
高炉本体毕业设计完整版

内蒙古科技大学本科生毕业设计说明书题目:内蒙古包头地区条件下2500m³高炉炉体系统设计学生姓名:张瑜学号:1176803442专业:冶金工程班级:4班指导教师:宋萍包头地区条件下2500m³高炉炉体系统设计摘要高炉炼铁的历史悠久,炼铁技术日益成熟,是当今主要的炼铁方式,随着炼铁技术的不断发展,高炉一代炉役寿命的不断提高,长寿高炉技术应用越来越广泛。
它是降低炼铁成本,提高钢铁企业经济效益的重要手段。
在大型高炉设计中,通过优化炉型、采用合理炉缸内衬结构、铜冷却壁、软水密闭循环冷却系统、薄壁内衬等技术为高炉长寿创造条件,提出了长寿高炉的基本设计思想。
为了适应这一发展趋势,.在本次长寿高炉设计中,对高炉合理内型、合理内衬结构和不同部位耐火材料的选择、冷却方式和冷却系统(包括冷却器的结构、材质与水质等)及其它有关方面作了综合考虑。
关键词:高炉长寿高炉内衬炉体冷却Design of Long Life BFABSTRACTHas a long history of BF ironmaking, is the main way of ironmaking,BF campaign life is continuously increased as unceasing development of iron making technology.It is being used more and more abroad. The long campaign technologies of blast furnace is one of the most important measures which reduce the iron making production cost and improve the economic profits of Iron and Steel Company. In the design of large BF,the technologies like optimized BF profile,reasonable hearth lining,copper stave,soft water closed circulating cooling system and thin-walled lining etc. were applied to prolong BF campaign life. The basic concept of designing long campaign blast furnace was put forward.In order to adapt to the trend,during designing long campaign blast furnace,the rational; furnace profile,rational furnace lining structure and selection of different refractories for various areas,cooling method and system (including cooler structure and material,cooling water and so on) and concerned aspects must be comprehensively considered.Key Words:Blast furnace life .Blast furnace lining. Furnace cooling目录摘要 (II)ABSTRACT (III)第一章文献综述 (1)1.1我国高炉炼铁发展现状 (1)1.2高炉概述 (2)1.2.1高炉本体概括 (1)1.2.2高炉冶炼用的原料 (2)1.2.3高炉本体及附属设备 (2)1.2.4高炉炉型的发展现状 (3)1.3高炉炉底、炉缸对高炉长寿的影响 (4)1.3.1高炉长寿概述 (4)1.3.2 炉缸、炉底侵蚀的特征及原因 (4)1.3.3 炉腹、炉腰侵蚀的原因 (5)1.3.4 减少炉缸炉底侵蚀措施 (5)1.3.5 减少炉腹炉身侵蚀措施 (6)1.3.6陶瓷杯与热压小炭块的比较 (7)1.4高炉冷却设备对高炉长寿的影响 (7)1. 4. 1高炉冷却 (7)第二章高炉物料平衡计算 (10)2.1.原料条件 (11)2.2 矿石成分的补齐计算 (14)2.2.1烧结矿中成分的补齐计算 (14)2.2.2 球团矿中成分的补齐计算 (14)2.2.3 生矿成分的补齐计算 (15)2.3 矿石成分的平衡计算 (16)2.3.1 烧结矿平衡计算 (16)2.3.2 球团矿平衡计算 (17)2.3.3 生矿平衡计算 (18)2.4 配料计算 (19)2.4.2 使用熔剂时的配料计算 (20)2.5物料平衡计算 (24)2.5.1 鼓风量的计算 (24)2.5.2 煤气组分及煤气量的计算 (25)2.5.3煤气中水量计算 (27)2.5.4考虑炉料的机械损失后的实际入炉量 (27)2.6 高炉热平横计算 (28)2.6.1全炉热平衡计算(第二种) (28)2.6.2 高温区热平衡 (32)2.7 炼铁焦比计算 (34)第三章2500m3高炉炉体设计 (37)3.1 高炉内型设计 (37)3.1.1炉形设计 (38)3.1.2炉容校核,高径比校核Hu/D及h4/Hu (40)3.2高炉耐火材料 (42)3.2.1 高炉各部位耐火材料的选择 (42)3.3 高炉炉体设备设计 (43)3.3.1 炉体冷却设备设计 (43)3.3.1.1 高炉炉底及炉缸 (43)3.3.1.2 炉腹至炉身中下部 (43)3.3.1.3 炉身中上部 (44)3.3.2高炉冷却水设计 (46)3.3.3风口、铁口及炉底冷却设备的设计 (49)3.3.3.1风口设计 (49)3.3.3.3 炉底冷却设备 (51)3.4 炉壳设计 (51)3.5 高炉附属设备 (54)参考文献 (59)附表 (60)致谢 (68)第一章文献综述1.1我国高炉炼铁发展现状在经济发展的“新常态”下,钢铁行业正处于适应新常态之中转型升级、提质增效的重要阶段,技术创新对产业发展的支撑和引领作用日益突出。
毕业设计—高炉炉型设计

目录中文摘要 (I)英文摘要..................................................................... n1绪论 (4)1.1砖壁合一薄壁高炉炉型的发展和现状 (4)1.2砖壁合一薄壁高炉炉型的应用 (4)2高炉能量利用计算 (6)2.1高炉能量利用指标与分析方法 (6)22直接还原度选择 (7)2.3配料计算 (8)2.4物料平衡 (13)2.5热平衡 (17)3高炉炉型设计 (23)3.1炉型设计要求 (23)3.2 炉型设计方法 (24)3.3炉型设计与计算 (24)4高炉炉体结构 (28)4.1高炉炉衬结构 (28)4.2高炉内型结构 (29)4.3炉体冷却 (30)4.4炉体钢结构 (31)4.5风口、渣口及铁口设计 (31)5砖壁合一的薄壁炉衬设计 (33)5.1砖壁合一的薄壁炉衬结构的布置形式 (33)5.2砖壁合一的薄壁炉衬高炉的内型 (33)5.3砖壁合一的薄壁炉衬高炉的内衬 (34)5.4薄壁高炉的炉衬结构和冷却形式 (34)6结束语 (36)参考文献 (37)近年来,炼铁技术迅猛发展,总的发展趋势是建立精料基础,扩大高炉容积,减少高炉数目,延长高炉寿命,提高生产效率,控制环境污染,持续稳定地生产廉价优质生铁,增加钢铁工业的竞争力。
现代高炉的冶炼特征是,低渣量, 大喷煤,低焦比,高利用系数;高炉结构的特征是,采用软水冷却、全冷却壁、薄壁炉衬、操作炉型的薄壁高炉。
高炉采用大喷煤、高利用系数冶炼,要求改善高炉的料柱透气性和延长高炉寿命高炉精料、布料、耐火材料、冷却等技术的进步,不断促进长寿的薄壁高炉发展。
高炉的炉型随着高炉精料性能、冶炼工艺、高炉容积、炉衬结构、冷却形式的发展而演变,高炉设计的理念也随着科学技术的进步和生产实践的进展而更新。
薄壁高炉的设计炉型就是高炉的操作炉型,在生产中几乎始终保持稳定,消除了畸形炉型。
毕业设计—高炉炉型设计

目录中文摘要 (Ⅰ)英文摘要 (Ⅱ)1 绪论 (4)1.1砖壁合一薄壁高炉炉型的发展和现状 (4)1.2砖壁合一薄壁高炉炉型的应用 (4)2 高炉能量利用计算 (6)2.1高炉能量利用指标与分析方法 (6)2.2直接还原度选择 (7)2.3配料计算 (8)2.4物料平衡 (13)2.5 热平衡 (17)3 高炉炉型设计 (23)3.1 炉型设计要求 (23)3.2 炉型设计方法 (24)3.3炉型设计与计算 (24)4 高炉炉体结构 (28)4.1 高炉炉衬结构 (28)4.2高炉内型结构 (29)4.3 炉体冷却 (30)4.4 炉体钢结构 (31)4.5风口、渣口及铁口设计 (31)5砖壁合一的薄壁炉衬设计 (33)5.1砖壁合一的薄壁炉衬结构的布置形式 (33)5.2砖壁合一的薄壁炉衬高炉的内型 (33)5.3砖壁合一的薄壁炉衬高炉的内衬 (34)5.4薄壁高炉的炉衬结构和冷却形式 (34)6结束语 (36)参考文献 (37)摘要近年来, 炼铁技术迅猛发展, 总的发展趋势是建立精料基础, 扩大高炉容积, 减少高炉数目, 延长高炉寿命, 提高生产效率,控制环境污染, 持续稳定地生产廉价优质生铁, 增加钢铁工业的竞争力。
现代高炉的冶炼特征是, 低渣量, 大喷煤, 低焦比, 高利用系数;高炉结构的特征是,采用软水冷却、全冷却壁、薄壁炉衬、操作炉型的薄壁高炉。
高炉采用大喷煤、高利用系数冶炼, 要求改善高炉的料柱透气性和延长高炉寿命高炉精料、布料、耐火材料、冷却等技术的进步,不断促进长寿的薄壁高炉发展。
高炉的炉型随着高炉精料性能、冶炼工艺、高炉容积、炉衬结构、冷却形式的发展而演变, 高炉设计的理念也随着科学技术的进步和生产实践的进展而更新。
薄壁高炉的设计炉型就是高炉的操作炉型, 在生产中几乎始终保持稳定, 消除了畸形炉型。
长期稳定而平滑的炉型, 有利于高炉生产的稳定和高效长寿。
高炉操作炉型的显著特征是, 炉腰直径扩大, 高径比减小, 炉腹有、炉身角缩小。
高炉车间系统设计毕业论文

高炉车间系统设计毕业论文第一部分:高炉车间设计第一章:概述1.1 高炉炼铁生产工艺剂(焦炭、煤等)在高温下将铁矿石或含铁原料还原成液态流程。
高炉炼铁是用还原生铁的过程。
高炉本体是冶炼生铁的主体设备,它是由耐火材料砌筑的竖立式圆筒形炉体,最外层是由钢板制成的炉壳,在炉壳和耐火材料之间有冷却设备。
要完成高炉炼铁生产,除高炉本体外,还必须有其它附属系统的配合,它们是:(1)供料系统:包括贮矿槽、贮焦槽、称量与筛分等一系列设备,主要任务是及时、准确、稳定的将合格原料送入高炉。
(2)送风系统:包括鼓风机、热风炉及一系列管道和阀门等,主要任务是连续可靠地供给高炉冶炼所需热风。
(3)煤气除尘系统:包括煤气管道、重力除尘器、洗涤塔、文氏管等,主要任务是回收高炉煤气,使其含尘量降至10mg/m3以下,以满足用户对煤气质量地要求。
(4)渣铁处理系统:包括出铁场、开铁口机、堵渣口机、炉前吊车、铁水罐车及水冲渣设备等,主要任务是及时处理高炉排放出的渣、铁,保证高炉生产正常进行。
(5)喷吹燃料系统:包括原煤的储存、运输、煤粉的制备、收集及煤粉喷吹等系统,主要任务是均匀稳定的向高炉喷吹大量煤粉,以煤代焦,降低焦炭消耗。
1.2主要技术经济指标(1)高炉有效容积利用系数(ηv):高炉有效容积利用系数是指每昼夜生铁的产量P与高炉有效容积V有之比,即每昼夜,每1m³高炉有效容积的生铁产量。
ηv是高炉冶炼的一个重要指标,ηv俞大,高炉生产率俞大。
目前,一般大型高炉超过2.0 t / m3·d,一些先进高炉可达2.2~2.3 t / m3·d 。
小型高炉的ηv更高,100~300 m3高炉的利用系数为2.8~3.2t / m3·d。
本设计ηv =2.15 t / m3 ·d 。
(2)焦比(K):焦比即每昼夜焦碳消耗量Q K与每昼夜生铁产量P之比,即冶炼每吨生铁消耗的焦碳量。
K=Q K/P焦炭消耗量约占生铁成本的30%~40%,欲降低生铁成本必须降低焦比。
内蒙古科技大学毕业设计手册

本科生毕业设计手册
题目:3200m3高炉炉体及渣铁处理系统设计
学生:闫潇
学号:0877145136
专业:稀土工程
班级:稀土08-1
指导教师:樊文军 教授
手 册目录
毕业设计(论文)任务及指导书
题 目
3200m3高炉炉体及渣铁处理系统设计
题 目 来 源
□实际工程项目□科研课题□教学模拟题目□其它
论文或说明书完整、有条理、文字通顺、图表清楚、论述基本正确、基本符合技术用语要求、版面工整
0—5分
5
综合能力
能综合运用所学知识和技能解决设计〔论文〕中的实际问题,对某些问题的分析有独立见解,有一定的创新内容
能运用所学的知识和技能解决设计〔论文〕中的实际问题
0—5分
合 计
0—25分
评语:
评阅教师:
年 月 日
摘要及外文资料翻译基本正确,文字通顺,基本符合规定内容及字数要求;文献调研基本满足要求。
0—3分
完成质量
立论科学合理,论证、计算、分析和实验正确、严密,结论合理,图纸完备、整洁、正确
立论、论证、计算、分析和实验基本正确;结论合理,图纸完备,基本正确
0—7分
撰写标准
论文或说明书结构完整、条理清晰、文字通顺、图表清楚、论述严谨、符合技术用语要求、符号统一、编号齐全、版面工整
题 目 类 型
□工程设计型□科学研究型□调研综述型□其它类型
一、毕业设计〔论文〕任务〔包括对工程图纸的具体要求〕及设计参数
1.高炉炉体设计
2.高炉渣铁处理系统设计
3.CAD绘制一号图纸2张
二、专题部分要求
结合设计题目进行文献调研,进行设计题目的参数选择和相关计算
毕业设计2000立方米高炉设计

第一章绪论 (4)1概述 (4)1.2 高炉生产主要经济技术指标 (4)1.3高炉冶炼现状及其发展 (5)1.4本设计采用的新技术。
(5)第二章高炉车间设计 (5)2.1厂址的选择 (5)2.2 高炉炼铁车间平面布置应遵循的原则 (6)2.3 车间布置形式 (6)第三章高炉本体设计 (7)3.1高炉数目及总容积的确定 (7)3.2 炉型设计 (7)3.3参数 (9)3.4炉衬设计 (9)3.4.1炉底炉缸的炉衬设计 (9)3.4.2炉腹,炉腰和炉身下部的炉衬设计 (10)3.4.3炉身上部和炉喉砌筑 (10)3.5高炉冷却 (10)3.5.1高炉冷却设备的作用及冷却介质 (10)3.5.2高炉冷却设备设计 (11)3.5.3冷却设备工作制度 (11)3.6高炉钢结构及高炉基础 (11)3.6.1高炉钢结构 (11)3.6.2高炉基础 (12)第4章高炉车间原料系统 (12)4.1贮矿槽及贮焦槽的设计 (13)4.1.1贮矿槽的设计 (13)4.1.2副矿槽 (13)4.1.3贮焦槽设计 (13)4.1.4矿槽的结构形式 (13)4.2给料器,槽下筛分与称量设计 (14)4.2.1给料器 (14)4.2.2槽下筛分 (14)4.2.3槽下称量 (14)4.3胶带机的设计 (15)4.4炉顶装料设备 (15)4.5探料装置 (16)第5章高炉送风系统 (16)5.1高炉鼓风机 (16)5.1.1高炉冶炼对鼓风机的要求: (16)15.1.2鼓风机出口风量的计算 (17)5.1.3鼓风机出口风压的计算 (17)5.1.4鼓风机的选择 (17)5.2高炉热风炉设计 (18)5.2.1热风炉基本结构形式 (18)5.3燃烧器及阀门 (20)5.3.1燃烧器 (20)5.3.2热风炉阀门 (20)5.4提高风温途径 (20)5.5余热回收装置 (20)第6章高炉喷煤系统 (20)6.1煤粉的制备 (21)6.1.1原煤的贮存 (21)6.1.2煤的干燥 (21)6.1.3磨煤机 (21)6.1.4粗粉分离器 (22)6.1.5旋风分离器 (22)6.1.6锁气器 (22)6.1.7布袋收集器 (22)6.2煤粉喷吹系统 (22)6.2.1喷吹设备的确定 (23)6.3安全措施 (23)6.3.1煤粉爆炸条件 (24)6.3.2采取的安全措施 (24)第7章高炉煤气除尘系统 (24)7.1概述 (24)7.1.1高炉煤气除尘的目的 (24)7.1.2评价煤气除尘装置的主要指标 (24)7.2高炉煤气除尘设备 (25)7.2.1荒煤气管道 (25)7.3重力除尘器 (26)7.3.1重力除尘器原理: (26)7.3.2主要尺寸—圆筒部分直径和高度 (26)7.4文氏管 (26)7.4.1文氏管除尘原理: (26)7.4.2半精细除尘设计 (26)7.4.3精细除尘设计 (27)7.5布袋除尘 (27)7.6煤气除尘系统附属设备 (27)7.6.1煤气遮断阀 (27)7.6.2煤气放散阀 (27)7.6.3煤气切断阀 (27)7.6.4调压阀组 (28)7.7炉顶余压发电 (28)2第8章渣铁处理系统 (28)8.1 概述 (28)8.2 风口平台和出铁场 (28)8.2.1 风口平台 (28)8.2.2 出铁场 (29)8.3 渣铁沟和撇渣器 (29)8.3.1 主铁沟 (29)8.3.2 撇渣器 (29)8.3.3 支铁沟和支沟 (29)8.3.4 摆动流嘴 (30)8.4 炉前主要设备 (30)8.4.1 开铁口机 (30)8.4.2 堵铁口泥炮 (30)8.4.4 堵渣口机 (30)8.5 铁水处理设备 (30)8.5.1 铁水罐车 (31)8.5.2 铸铁机 (31)8.6 炉渣处理 (31)3第一章绪论1概述高炉冶炼是获得生铁的主要手段,它以铁矿石(天然富矿,烧结矿,球团矿)为原料,焦碳,煤粉,重油,天然气等为燃料和还原剂,以石灰石等为溶剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非氧化物造渣等一系列复杂的物理化学过程,获得生铁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
包头地区1500m3高炉本体结构设计毕业设计论文第一章文献综述绪论高炉本体包括高炉基础、钢结构、炉衬、冷却设备以及高炉炉型设汁等。
高炉的大小以高炉有效容积表示,高炉有效容积和高炉座数表明高炉车间在欧洲高炉的发展过程中,有两的规模,高炉炉型设计是高炉本体设计的基础。
近代高炉炉型向着大型横向发展,目前,世界高炉有效容积最大的是5580m³,高径比 2.0左右。
高炉本体结构设计的先进、合理是实现优质、低耗、高产、长寿的先决条件,也是高炉辅助系统设计和选型的依据。
1.1高炉发展史两种基本炉型相互竞争,一种是矮炉腹型高炉,和一种是高陡面炉腹型高炉。
1750年,英国的工业革命开始了。
在燃烧上用焦炭代替木炭,这种转变使炼铁业突破了束缚,不再为木炭的短缺而陷入困境。
因为不仅民用燃烧需要大量木料,而且为了提高农业产量也在大量砍伐森林。
因此,对于人口密度高的国家,要靠木炭来增加铁的产量是不易的。
到18世纪末,煤和蒸汽机已使英国的炼铁业彻底改革,铁的年产量从公元1720年的2.05×10000吨/年(大多是木炭铁)增加到1806年2.5×100000吨/年(几乎全是焦炭铁)。
估计,每生产一吨焦炭需煤3.3吨左右。
但是,高炉烧焦炭势必增加碳含量,以致早期的焦炭生铁含碳在1.0%以上,全部成为灰口铁即石墨铁。
高炉的尺寸在18世纪内一直在增大。
从公元1650年约7米,到1794年俄国的涅夫扬斯克高炉已增高到13.5米。
因为焦炭的强度大,足以承担加入的炉料的重量。
大多数的炼炉采用炉缸、炉腹和炉身三部分按比例构成。
19世纪末,平滑的炉衬公认为标准的炉衬,这基本上已经是现在的炉型。
炉底直径约10米,炉高约30米。
全部高炉都设有两只以上的风嘴。
另一个巨大的进步就是采用热风。
20世纪后,现代钢铁业就蓬勃发展起来。
1.2高炉炉型及展过程高炉是竖炉,高炉内部工作空间剖面的形状称为高炉炉型或高炉内型。
高炉冶炼的质是上升的煤气流和下降的炉料之间进行传热传质的过程,因此必须提供燃料燃烧的空间,提供高温煤气流与炉料进行传热传质的空问。
高炉炉型要适应原燃料条件的要求,保证冶炼过程的顺利。
图1—1现代高炉剖面图主要受当时的技术条件和原燃料条件的限制。
随着原燃料条件的改善以及鼓风能力的提高,高炉炉型也在不断地演变和发展,炉型演变过程大体可分为3个阶段。
(1)无型阶段——又称生吹法。
在土坡挖洞,四周砌行块,以木炭冶炼,这是原始的方法。
(2)大腰阶段——炉腰尺寸过大的炉型。
由于工业不发达,高炉冶炼以人力、蓄力、风力、水力鼓风,鼓风能力很弱,为了保证整个炉缸截面获得高温,炉缸直径很小,冶炼以木炭或无烟煤为燃料,机械强度很低,为了避免高炉下部燃料被压碎,从而影响料柱透气性,故有效高度很低;为了人工装料方便并能够将炉料装到炉喉中心.炉喉直径也很小,而大的炉腰直径减小了烟气流速度,延长了烟气在炉内停留时间,起到焖住炉内热量的作用。
因此,炉缸和炉喉直径小,有效高度低,而炉腰直径很大。
这类高炉生产率很低,一座28m3高炉日产量只有1.5 t左右。
19世纪末,由于蒸汽鼓风机和焦炭的使用、炉顶装料设备逐步实现机械化,高炉内型趋向于扩大炉缸和炉喉直径,并向高度方向发展,逐渐形成近代五段式高炉炉型。
最初的五段式炉型,基本上是瘦长型,由于冶炼效果并不理想,相对高度又逐渐降低。
(3) 近代高炉,由于鼓风机能力进一步提高.原燃料处理更加精细,高炉炉型向着“大型横向”发展。
高炉内型合理与否对高炉冶炼过程有很大影响。
炉型设计合理是获得良好技术经济指标,保证高炉操作顺行的基础[1]。
1.3高炉用耐火材料在侵蚀性因素联合作用下引起高炉炉衬损毁,这些因素包括:炉渣、碱类物质、铁水、气体介质、炉料磨损、热应力等。
高炉每个部位使用条件的不同,要求区别对待炉衬每个区段用相应耐火材料的选择。
大体上假定将高炉分为两部分:上部—风口区以上部分;下部—风口区以下部分。
同样地上部分还可分为若干小区段—非冷却炉身的上部、冷却炉身的下部、炉腹、炉腰和风口区。
目前这些小区段均采用牌号IUII 1-39及IuII1-41的粘土质耐火材料砌筑。
对损毁因素影响条件不同的各区段炉衬采取如此笼统地对待方法不会得到有效的结果。
炉衬的个别区段过早损毁。
为了在炉子有节秦工作和最佳操作制度下组织其稳定的作业,必须将非冷却炉身的上部分砌为两层炉衬:第一层(工作层)由VIII 及-41粘土质耐火材料砌筑,第二层由MKPII-340纤维板砌筑。
该纤维板是由含50 % A1203的莫来石硅质纤维制造的。
由两层材料组成的复合炉衬可以抵抗炉料的摩擦作用,而且可以减少透过炉壳的热量损失。
对于炉身的冷却部分来说,近10年来国外广泛采用氮化硅结合、氧氮化硅结合和自结合碳化硅质耐火材料,其使用效果良好。
我们推荐在炉身下部采用双层炉衬,即工作部分由IUII八-41粘土质耐火材料砌筑,第二层由氮化硅结合的碳化硅质耐火材料砌筑。
推荐的复合炉衬可以保证达到更强化而均匀的冷却。
对炉腰也推荐采用类似的炉衬,而炉腹则采用碳化硅质耐火材料砌筑。
风口区下部的炉衬则推荐采用ILI17八-42粘土质耐火材料和刚玉碳化硅质耐火材料砌筑。
对于炉缸的上部来说,推荐采用刚玉碳化硅质耐火材料。
此种耐火材料由电熔刚玉及共同细粉碎混合物组成。
共同细粉碎混合物中包括30 % Sic, 10 % Si及下列氧化物中的任何一种:MgO,A12O3及ZrO2。
含有氮化物结合剂的刚玉耐火材料对熔融炉渣及金属液的作用具有较高的抵抗性。
耐火材料的开口气孔率介于14%一17%之间,体积密度2.83g/cm3一2.97g/cm3,耐压强度124MPa--187MPa。
此类耐火材料中的结合剂为氮化硅、氧氮化硅及赛隆。
为了砌筑高炉炉身内衬,采用碳化硅质耐材料,后者对化学因素及物理机械因素具有较高的抵抗性。
碳化硅质耐火材料应用于炉身下部、炉腰、炉腹和炉缸上部。
炉缸下部及炉底内衬的结构.其左侧为目前采用的结构,右侧为推荐的采用新型耐火材料的结构。
内衬使用的持续时间在很大程度上受到膨胀缝放置的位置正确与否及用于充填该类缝的碳素泥料质量的高低等因素制约。
由于沿着直径及高度方向炉衬受到的加热温度的不同,要求单独地区别对待每一个温度区和分区砌筑的砌体结构,并要考虑在加热及冷却时炉衬的体积变化。
在操作过程中出现的热应力应使之分散。
在整个砌体内要预留应力释放处,这便是膨胀缝。
热导率为10w/(m.·K)一15W/(m·K)的碳素泥料便能满足此类要求。
在一些钢铁厂中到目前为止一直沿用以粘土熟料、生粘土、焦炭和沥青为原料的水调的炮泥。
此类炮泥的使用寿命较低,收缩率较高及附着强度低。
乌克兰耐火材料科学研究院研制成功无水炮泥并在克里沃罗格钢铁公司进行推广应用。
该炮泥由焦炭、煤焦油、煤沥青、生粘土及粘土熟料组成,其性能如下:体积膨胀率2. 5 %——3 %;耐压强度镇9MPa;被铁水冲刷速度低〔1.0mg/( cm2·min)——1. 3 mg/ ( cm2·min)。
因此,炮泥的耗量下降50%一65%,泥套用泥的耗量下降90%以上。
采用此种炮泥后,保证出铁口及出渣口封堵可靠,允许高炉每次出铁水1000吨以上及出渣400吨,而且未降低鼓风压力,并消除了出铁水时夹带焦炭的现象[2]。
1.3.1高炉用耐火材料的演变炼铁技术的发展带动了高炉用耐火材料的进步。
不过高炉炉衬的更新换代是十分缓慢的。
由于近几十年高炉的大型化及其广泛采用强化冶炼的高炉操作,相应地高炉用耐火材料也出现了重大变化。
在炉身上部这个区域温度较低,目前用耐火材料有:高铝砖、粘土砖、浸渍磷酸盐粘土砖、最上部紧靠钢砖部位国外也有用SiC砖的。
这个部位并不是影响高炉寿命的决定因素,耐火材料基本都是Al2O3-SiO2系,没有发生太大变化。
高炉中段用耐火材料,在50年代以前,全世界的高炉基本上都是Al2O3-SiO2系耐火制品。
进入六十年代中后期,工业先进国家重点研究解决高炉中段用耐火材料重要进行了以下两个方面的工作:1)优质高纯高铝制品,包括刚玉砖、刚玉-莫来石砖和铬刚玉砖等;2)优质碳化硅制品,主要为自结合和氮化硅结合的碳化硅砖。
进入80年代中期至今,研究开发了Sialon结合碳化硅砖和Sialon结合刚玉砖。
探索范围是从优质高纯高铝制品开始的。
构思渊源是在传统粘土砖和高铝砖的基础上提高纯度和密度。
工艺措施是采用高纯刚玉砂、合成莫来石和氧化铬原料、高压成型和高温烧成。
这些制品气孔率低,高温强度较高,耐磨性强,抗CO和抗碱侵蚀性能也有一定提高。
在七十年代国际上许多高炉先后采用它们来砌筑中段(宝钢从新日铁引进的大型高炉采用刚玉砖)。
然而,十几年的实践说明,采用优质高纯高铝制品在提高中段寿命效果不够显著,一般只能提高1-2年,未能达到满意的技术经济效益。
究其原因,关键在于Al2O3-SiO2系耐火材料无论是刚玉还是莫来石,其抗碱侵蚀性不够理想。
它们容易被碱蒸气或碱凝聚物所分解,并伴随有较大的体积膨胀,从而导致材料损毁。
例如它们在碱的作用下,600-900℃会形成钾霞石(KAS2)、白榴石(KAS4)、六方钾霞石(KAS2)、铝酸钾(KA)、β-氧化铝(β-Al2O3)等矿物并引进6-20%体积膨胀。
几个主要化学反式如下:Al2O3•2SiO2+K2CO3→K2O•Al2O3•2SiO2+CO2Al2O3•2SiO2+2SiO2+ K2CO3→K2O•Al2O3•4SiO2+ CO3Al2O3•2SiO2+K2CO3→K2O•Al2O3•2SiO2+2Al2O3+CO2Al2O3•2SiO2+K2O•SiO2→K2O•Al2O3•2SiO2+SiO23Al2O3•2SiO2+K2O•SiO2→K2O•Al2O3•2SiO2+ Al2O3另一条途径是从金属非氧化物入手。
考虑到非氧化物一般抗碱侵蚀性能较好,只要具有适当的抗氧化性,很可能成为较理想的中段材料。
优质SiC制品被人们重视和大量采用是从七十年代中后期才开始,而且后来居上。
1969年在比利时首先出现了高炉用SiC砖衬试验。
1971年美国在高炉的风口区试用过,1974年日本Muroran于炉身下部试用,1976年美国Spaiicw.Point,1977年法国Dunkerque用于炉腰。
此后,它的优越性很快被实践所证明,因而得到迅速推广应用。
高炉炉底和炉缸耐火材料,在50年代以前,基本上以铝硅质耐火材料为主,但使用寿命不长,经常出现炉缸、炉底烧穿事故。
1939年德国第一次使用炭砖砌筑炉底,取得了好的效果,后来日本、美国改用炭砖和致密粘土砖实行综合炉底,使用寿命达到15年。
在中国,1958年以后才采用炭砖砌筑炉底,解决了炉底炉缸烧穿的技术难题。