北京市牛栏山一中2015-2016学年度第一学期期中考试高一数学试题
2016顺义牛栏山一中高一(上)期中数学

2016海淀八一中学高一(上)期中数学一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)已知全集U=R,集合M={x|x2﹣2x<0},集合N={x|x>1},则集合M∩(∁U N)=()A.{x|0<x<1} B.{x|0<x≤1} C.{x|0<x<2} D.{x|x≤1}2.(4分)下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=B.y=()2C.y=D.y=3.(4分)已知a=31.2,b=3°,,则a,b,c的大小关系是()A.c<a<b B.c<b<a C.b<c<a D.a<c<b4.(4分)下列函数中,在其定义域上为奇函数的是()A.B.f(x)=C.f(x)=(x﹣1)3D.f(x)=2x5.(4分)直线y=ax+b的图象如图所示,则函数h(x)=(ab)x在R上()A.为增函数 B.为减函数 C.为常数函数D.单调性不确定6.(4分)函数f(x)=1﹣2|x|的图象大致是()A.B.C.D.7.(4分)定义在实数集R上的偶函数y=f(x)满足f(x+1)=f(1﹣x),且在区间[﹣1,0]上单调递增,设a=f (1),,c=f(2),则a,b,c的大小关系是()A.a>b>c B.c>b>a C.b>c>a D.a>c>b8.(4分)要得到函数f(x)=21﹣x的图象.可以将()A.函数y=2x的图象向左平移1个单位长度B.函数y=2x的图象向右平移1个单位长度C.函数y=2﹣x的图象向左平移1个单位长度D.函数y=2﹣x的图象向右平移1个单位长度9.(4分)已知点B(2,0),P是函数y=2x图象上不同于A(0,1)的一点,有如下结论:①存在点P使得△ABP是等腰三角形;②存在点P使得△ABP是锐角三角形;③存在点P使得△ABP是直角三角形.其中,正确结论的序号为()A.①② B.②③ C.①③ D.①②③10.(4分)已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),若∀x1∈[﹣1,2],∃x2∈[﹣1,2],使得f(x1)=g (x2),则实数a的取值范围是()A. B. C.(0,3] D.[3,+∞)二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若,则f(x)的定义域是.12.(4分)已知f(x+1)=2x,且f(a)=4,则a= .13.(4分)已知则f(x)的零点为.14.(4分)如果集合A={x|ax2+2x+1=0}只有一个元素,则实数a的值为.15.(4分)已知函数的图象与函数y=2x+b的图象恰有两个交点,则实数b的取值范围是.16.(4分)给定集合A n={1,2,3,…,n},n∈N*.若f是A n→A n的映射且满足:①任取i,j∈A n,若i≠j,则f(i)≠f(j);②任取m∈A n,若m≥2,则有m∈{f(1),f(2),…,f(m)}.则称映射f为A n→A n的一个“优映射”.例如:用表1表示的映射f:A3→A3是一个“优映射”.表一i 1 2 3F(i) 2 3 1表2i 1 2 3 4F(i) 3(1)若f:A4→A4是一个“优映射”,请把表2补充完整(只需填出一个满足条件的映射);(2)若f:A2015→A2015是“优映射”,且f(1004)=1,则f(1000)+f(1017)的最大值为.二、解答题:本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.17.(10分)解关于x的不等式ax2﹣ax+x>0,其中a∈R.18.(8分)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,将在五边形ABCDE内截取一个矩形块BNPM,使点P在边DE上.(Ⅰ)设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域;(Ⅱ)求矩形BNPM面积的最大值.19.(9分)已知函数f(x)是定义在R上的偶函数,且x≥0时,.(Ⅰ)求f(﹣1)的值;(Ⅱ)求函数f(x)的值域A;(Ⅲ)设函数的定义域为集合B,若A⊆B,求实数a的取值范围.20.(9分)已知函数f(x)的定义域为(0,+∞),若在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”.(1)若f(x)=ax2+ax是“一阶比增函数”,求实数a的取值范围;(2)若f(x)是“一阶比增函数”,求证:对任意x1,x2∈(0,+∞),总有f(x1)+f(x2)<f(x1+x2);(3)若f(x)是“一阶比增函数”,且f(x)有零点,求证:关于x的不等式f(x)>2015有解.数学试题答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【解答】由M中不等式变形得:x(x﹣2)<0,解得:0<x<2,即M={x|0<x<2},∵全集U=R,N={x|x>1},∴∁U N={x|x≤1},则M∩(∁U N)={x|0<x≤1},故选:B.2.【解答】一个函数与函数y=x (x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x (x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x (x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x (x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x (x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x (x≥0)是同一个函数,具有相同的图象,故选 B.3.【解答】∵a=31.2>3,b=3°=1,=30.9<3,30.9>1,∴b=1<c<3<a,∴a,b,c的大小关系是b<c<a.故选:C.4.【解答】对于A,定义域为R,且f(﹣x)=﹣f(x),则函数为奇函数对于B,定义域为{x|x≠1}不对称,从而是非奇非偶函数对于C,f(﹣x)=﹣(x+1)3≠﹣f(x)=﹣(x﹣1)3,故不是奇函数对于D,f(﹣x)=2﹣x≠﹣f(x)=﹣2x,故不是奇函数故选A.5.【解答】由图可知x=﹣1时,y=b﹣a=0.∴a=b,当x=0时,y=b,0<b<1,∴0<a,b<1,根据指数函数的性质,∴h(x)=(ab)x,为减函数.故选B.6.【解答】因为|x|≥0,所以2|x|≥1,所以f(x)=1﹣2|x|≤0恒成立,故选:A7.【解答】∵偶函数y=f(x)满足f(x+1)=f(1﹣x),∴f(x)关于x=1对称,∵f(x)在区间[﹣1,0]上单调递增,∴在区间[0,1]上单调递递减,在区间[1,2]上单调递增,则f(2)>f()>f(1),即c>b>a,故选:B8.【解答】将函数y=2﹣x的图象向右平移1个单位长度,得函数y=2﹣(x﹣1)=21﹣x的图象故选 D9.【解答】∵函数y=2x的导函数为y′=(ln2)2x∴y′|x=0=ln2,即线段AB的斜率为,ln2<2∴存在点P使得三角形ABP为锐角和直角三角形.以B(2,0)为圆心,AB为半价作圆,和y=2x有交点,所以能够构成等腰三角形所以,选项都对,选D10.【解答】∵函数f(x)=x2﹣2x的图象是开口向上的抛物线,且关于直线x=1对称∴x1∈[﹣1,2]时,f(x)的最小值为f(1)=﹣1,最大值为f(﹣1)=3,可得f(x1)值域为[﹣1,3]又∵g(x)=ax+2(a>0),x2∈[﹣1,2],∴g(x)为单调增函数,g(x2)值域为[g(﹣1),g(2)]即g(x2)∈[2﹣a,2a+2]∵∀x1∈[﹣1,2],∃x2∈[﹣1,2],使得f(x1)=g(x2),∴⇒a≥3故选D二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.【解答】要使原函数有意义,则,解得:x≥0且x≠1,∴f(x)的定义域是[0,1)∪(1,+∞).故答案为:[0,1)∪(1,+∞).12.【解答】由f(x+1)=2x得f(x+1)=2(x+1)﹣2,则f(x)=2x﹣2,由f(a)=4得f(a)=2a﹣2=4,即2a=6,得a=3,故答案为:3.13.【解答】,当x≥0时,f(x)=3x﹣3=0,解得:x=1,当x<0时,f(x)==0,解得:x=﹣2,∴函数f(x)的零点为:﹣2和1.故答案为:﹣2和1.14.【解答】若集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则方程ax2+2x+1=0有且只有一个解当a=0时,方程可化为2x+1=0,满足条件;当a≠0时,二次方程ax2+2x+1=0有且只有一个解则△=4﹣4a=0,解得a=1故满足条件的a的值为0或1故答案为:0或115.【解答】当x>1或x<﹣1时,y=x+1,当﹣1≤x<1时,y=﹣x+1,当直线y=2x+b经过点A(1,﹣2)时,此时﹣2=2+b,解得b=﹣4时只有一个交点,当直线y=2x+b经过点B(,2)时,此时2=2+b,解得b=0,此时只有一个交点,由图象可知,函数的图象与函数y=2x+b的图象恰有两个交点,则实数b的取值范围是(﹣4,0)故答案为:(﹣4,0).16.【解答】(1)i 1 2 3 4f(i) 2 3 1 4或i 1 2 3 4f(i) 2 3 4 1(2)根据优影射的定义,f:A2010→A2010是“优映射”,且f(1004)=1,则对f(1000)+f(1007),只有当f(1000)=1004,f(1017)=1017,f(1000)+f(1017)取得最大值为 1004+1017=2021,故答案为:2021.二、解答题:本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.17.【解答】(I)当a=0时,原不等式变为:x>0,(II)当a≠0时,原不等式可写为,①当a>0时,若即a=1此时不等式变为x2>0得x≠0,若即0<a<1可得或x>0,若即a>1时可得x<0或,②当a<0时,可得,综上所述:当a=0时,不等式的解集为{x|x>0};当a=1时,不等式的解集为{x|x≠0};当a<0时,不等式的解集为当a>1时,不等式的解集为当0<a<1时,不等式的解集为{x|x<1﹣或x>0}18.【解答】(I)作PQ⊥AF于Q,所以PQ=8﹣y,EQ=x﹣4…(2分)在△EDF中,,所以…(4分)所以,定义域为{x|4≤x≤8}…(6分)(II)设矩形BNPM的面积为S,则…(9分)所以S(x)是关于x的二次函数,且其开口向下,对称轴为x=10所以当x∈[4,8],S(x)单调递增…(11分)所以当x=8米时,矩形BNPM面积取得最大值48平方米…(13分)19.【解答】(I)∵函数f(x)是定义在R上的偶函数∴f(﹣1)=f(1)又x≥0时,∴,即f(﹣1)=.(II)由函数f(x)是定义在R上的偶函数,可得函数f(x)的值域A即为x≥0时,f(x)的取值范围,当x≥0时,故函数f(x)的值域A=(0,1].(III)∵定义域B={x|﹣x2+(a﹣1)x+a≥0}={x|x2﹣(a﹣1)x﹣a≤0}方法一:由x2﹣(a﹣1)x﹣a≤0得(x﹣a)(x+1)≤0∵A⊆B∴B=[﹣1,a],且a≥1(13分)∴实数a的取值范围是{a|a≥1}方法二:设h(x)=x2﹣(a﹣1)x﹣aA⊆B当且仅当即∴实数a的取值范围是{a|a≥1}20.【解答】(1)依题意可知:函数在区间(0,+∞)上为增函数;由一次函数性质可知一次项系数a>0;∴实数a的取值范围为(0,+∞);(2)证明:因为f(x)为“一阶比增函数”,即在(0,+∞)上为增函数;又对任意x1,x2∈(0,+∞),有x1<x1+x2,x2<x1+x2;故,;∴,;不等式左右两边分别相加得:;因此,对于任意x1,x2∈(0,+∞),总有f(x1)+f(x2)<f(x1+x2);(3)证明:设f(x0)=0,其中x0>0;因为f(x)是一阶比增函数,所以当x>x0时,,即f(x)>0;取t∈(0,+∞),满足f(t)>0,记f(t)=m;由(2)知f(2t)>2f(t)=2m;同理可得:f(4t)>2f(2t)=4m,f(8t)>2f(4t)>8m;∴一定存在n∈N*,使得f(2n t)>2n m>2015;故不等式f(x)>2015有解.2016人大附中高一(上)期中数学一、选择题(共8小题).1.(3分)已知集合A={x|y=lg(x﹣1)},全集U=R,则有∁U A=()A.(﹣∞,1)B.(﹣∞,1] C.(1,+∞)D.[1,+∞)2.(3分)下列图示所表示的对应关系不是映射的是()A.B.C.D.3.(3分)若函数f(x)是一次函数,且函数图象经过点(0,1),(﹣1,3),则f(x)的解析式为()A.f(x)=2x﹣1 B.f(x)=2x+1 C.f(x)=﹣2x﹣1 D.f(x)=﹣2x+14.(3分)若函数f(x)=2x﹣3,则f﹣1(5)=()A.4 B.5 C.6 D.75.(3分)若实数a=20.1,b=log32,c=log0.34,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.a>c>b6.(3分)若函数,则f(x)的图象为()7.(3分)函数f(x)=x3﹣x+2在下列区间内一定存在零点的是()A.(1,2)B.(0,1)C.(﹣2,﹣1)D.(﹣1,0)8.(3分)函数f(x)为定义在R上的奇函数,且在(0,+∞)上为增函数,f(3)=0,则不等式f(2x﹣1)≥0的解为()A.B.C.[2,+∞)D.二、填空题(本大题共6小题).9.(3分)集合{a,b}的所有子集是:{a},{b},,.10.(3分)已知函数f(x+1)=x2,则函数f(x)的解析式为f(x)= .11.(3分)某班共有15人参加数学和物理课外兴趣小组,其中只参加数学兴趣小组的有5人,两个小组都参加的有4人,则只参加物理兴趣小组的有人.12.(3分)若函数,方程f(x)=m有两解,则实数m的取值范围为.13.(3分)函数单调减区间为.14.(3分)对于函数f(x),若存在实数M>0,使得对于定义域内的任意的x,使得函数|f(x)|≤M,则称函数f (x)为有界函数,下列函数是有界函数的是①y=2x+1②y=﹣x2+2x③y=2x﹣1④y=lnx(x∈(1,e])⑤y=2﹣|x|⑥.三、解答题15.计算下列指、对数式的值(Ⅰ)(Ⅱ).16.已知(Ⅰ)求函数y=f[g(x)]的解析式;(Ⅱ)求f[g(1)],f[g(﹣1)]的值;(Ⅲ)判别并证明函数y=f[g(x)]的奇偶性.17.已知(Ⅰ)求f(﹣1),f(1)的值;(Ⅱ)求f(a)+f(﹣a)的值;(Ⅲ)判别并证明函数f(x)的单调性.18.已知函数f(x)的定义域为(0,+∞),对于定义域内任意x,y,均有f(xy)=f(x)+f(y),且函数在定义域内为单调递减函数.(Ⅰ)求的值;(Ⅱ)求函数f(x)的零点;(Ⅲ)求满足不等式f(2m+1)+f(m)>0的实数m的范围.19.已知分段函数f(x)=.(1)求实数c的值;(2)当a=1时,求f[f(﹣1)]的值与函数f(x)的单调增区间;(3)若函数f(x)有且仅有一个零点,求实数a的取值范围.20.若A n=(a i=0或1,i=1,2,…n),则称A n为0和1的一个n位排列,对于A n,将排列记为R1(A n);将排列记为R2(A n);依此类推,直至R n(A n)=A n.对于排列A n和R i(A n)(i=1,2,…n﹣1),它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做A n和R i(A n)的相关值,记作t(A n,R i(A n)),(Ⅰ)例如A3=,则R1(A3)= ,t(A3,R1(A3))= ;若t(A n,R i(A n))=﹣1(i=1,2,…n﹣1),则称A n为最佳排列(Ⅱ)当n=3,写出所有的n位排列,并求出所有的最佳排列A3;(Ⅲ)证明:当n=5,不存在最佳排列A5.数学试题答案一、选择题(共8小题).1.【解答】由于函数y=y=lg(x﹣1)有意义,∴x﹣1>0,即x>1集合A={x|y=lg(x﹣1)}=(1,+∞)由于全集U=R,所以C U A=(﹣∞,1],故选:B.2.【解答】若在M中的任意一个元素,在N中都有唯一的元素对应,则M到N的对应叫映射,A、B、D符合映射的定义,是映射,C中,M的元素b在N中有两个对应的元素,不符合映射的定义,不是映射.故选:C.3.【解答】∵函数f(x)是一次函数,∴其解析式可以假设为f(x)=kx+b (k≠0),∵函数图象经过点(0,1),(﹣1,3),∴f(0)=1,f(﹣1)=3,∴b=1,k=﹣2,∴f(x)=﹣2x+1,故选:D.4.【解答】由2x﹣3=5,解得x=4.∴f﹣1(5)=4.故选:A.5.【解答】∵a=20.1>20=1,0=log31<b=log32<log33=1,c=log0.34<log0.31=0,∴a>b>c.故选:A.6.【解答】f(﹣x)===f(x),所以函数f(x)为偶函数,故图象关于y轴对称,故排除B,D,由f′(x)=,当x>0时,f′(x)为减函数,故f(x)的切线的斜率越来越小,故f(x)增加的越来越慢,故选:A.7.【解答】f(﹣2)=﹣8+2+2=﹣4<0,f(﹣1)=﹣1+1+2=2>0,则函数f(x)在(﹣2,﹣1)上存在零点,故选:C8.【解答】∵奇函数f(x)在(0,+∞)上为增函数,f(3)=0,∴函数f(x)在(﹣∞,0)上为增函数,且f(﹣3)=﹣f(3)=0,作出函数f(x)的草图:如图:由不等式f(2x﹣1)≥0得2x﹣1≥3或2x﹣1=0或﹣3≤2x﹣1<0,即x≥2或x=或﹣1≤x<,综上x≥2或﹣1≤x≤,即不等式的解集为,故选:B二、填空题(本大题共6小题).9.【解答】集合{a,b}的所有子集:∅,{a},{b},{a,b}.故答案为:∅,{a,b}.10.【解答】令t=x+1,则x=t﹣1,∴f(t)=(t﹣1)2,∴f(x)=(x﹣1)2.故答案为:(x﹣1)211.【解答】由题意可得到只参加物理兴趣小组的人数为15﹣5﹣4=6人,故答案为:612.【解答】如图所示.由题意,x≤0,0<3x≤1,x>0,f(x)≤2,∵方程f(x)=m有两解,∴0<m<2.故答案为:0<m<2.13.【解答】由2x﹣x2>0得0<x<2,设t=2x﹣x2,∵y=log2t为增函数,∴要求单调减区间,即求函数t=2x﹣x2(0<x<2)的递减区间,∵当1≤x<2时,函数t=2x﹣x2为减函数,故函数f(x)的单调递减区间为[1,2),故答案为:[1,2).14.【解答】若函数f(x)为有界函数,则函数的值域是有界的.①y=2x+1的值域为R,故不是有界函数,②y=﹣x2+2x的值域为(﹣∞,1],故不是有界函数,③y=2x﹣1的值域为(﹣∞,0)∪(0,+∞),故不是有界函数,④y=lnx(x∈(1,e])的值域为(0,1]为有界函数;⑤y=2﹣|x|的值域为(0,1]为有界函数;⑥.的值域为(﹣1,1)为有界函数;故答案为:④⑤⑥三、解答题15.【解答】(Ⅰ)=×=×==3.(Ⅱ)=1+3×5=16.16.【解答】(1)∵f(x)=log2x,g(x)=9﹣x2,∴y=f[g(x)]=(﹣3<x<3);(2)f[g(1)]=log28=3,f[g(﹣1)]=log28=3;(3)偶函数,证明:定义域为(﹣3,3),关于原点对称,∵y=f[g(x)]=,∴f[g(﹣x)]=,∴y=f[g(﹣x)]=y=f[g(x)],∴y=f[g(x)]为偶函数.17.【解答】(Ⅰ)∵,∴f(﹣1)==,f(1)==;(Ⅱ)f(a)+f(﹣a)=+=+=1;(Ⅲ)函数f(x)是定义域R上的单调增函数,证明如下:任取x1、x2∈R,且x1<x2,∴<,(1+)(1+)>0,∴f(x1)﹣f(x2)=﹣=>0,即f(x1)<f(x2),∴函数f(x)是定义域R上的单调增函数.18.【解答】(Ⅰ)由题意知,f(xy)=f(x)+f(y)令x=y=1得f(1)=f(1)+f(1),解得f(1)=0,令x=a,y=,∴f(a)+f()=f(1)=0;(Ⅱ)∵函数在定义域内为单调递减函数,∵f(1)=0,∴在定义域内只有一个零点x=1;(Ⅲ)f(2m+1)+f(m)>0,∴f(2m+1)+f(m)>f(1),∴(m+1)(2m﹣1)<0,∴﹣1<m<,∵m>0,∴0<m<19.【解答】(1)因为两段都取到x=0,所以当x=0时的函数值相等,即20=c,因此c=1 (2)因为a=1,所以,所以由解析式可知:f(x)的增区间是(﹣∞,0)和(1,+∞)(3)由解析式知:当x≤0时:函数没有零点当x≥0时:f(x)=(ax﹣1)(x﹣1),此时函数一定有一个零点x=1令h(x)=ax﹣1,则函数h(x)要么没有零点,要么有且只有一个零点x=1,而:当a=0时,此函数没有零点,符合题意当a<0时,此函数没有零点,符合题意当a>0时,若a=1,此函数有且只有一个零点x=1,符合题意;其它取值都有不等于1的根,不符合题意所以:当a∈(﹣∞,0]∪{1}时,函数f(x)有且只有一个零点20.【解答】(Ⅰ)当A3=,R1(A3)=,t(A3,R1(A3))=1﹣2=﹣1,故答案为:,﹣1…(4分)(Ⅱ)当n=3时,所有的3位排列有:,,,,,,,最佳排列A3为,,,,,…(8分)证明:(Ⅲ)设A 5=,则R1(A5)=,因为 t(A5,R1(A5))=﹣1,所以|a1﹣a5|,|a2﹣a1|,|a3﹣a2|,|a4﹣a3|,|a5﹣a4|之中有2个0,3个1.按a5→a1→a2→a3→a4→a5的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变.但是a5经过奇数次数码改变不能回到自身,所以不存在A5,使得t(A5,R1(A5))=﹣1,从而不存在最佳排列A5.…(12分)2016首师大附属育新高一(上)期中数学一、选择题(共8小题,每小题3分,满分24分,在后面答题区域的表格内填写正确的答案)1.(3分)已知全集U={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},则B∩∁U A()A.{5,6} B.{3,4,5,6} C.{1,2,5,6} D.∅2.(3分)下列函数中,在区间(0,+∞)上为增函数的是()A.f(x)=x2+3x B.y=(x﹣1)2C.g(x)=2﹣x D.y=log0.5(x+1)3.(3分)设a=()0.2,b=1.30.7,c=(),则a,b,c的大小关系是()A.a>c>b B.b>a>c C.c>a>b D.a>b>c4.(3分)已知集合A={x|﹣2≤x≤2,x∈R},B={x|x≥a},且A⊆B,则实数a的取值范围()A.a<﹣2 B.a>2 C.a≤﹣2 D.a≥25.(3分)已知函数f(x)=,若函数g(x)=f(x)﹣m恰有一个零点,则实数m的取值范围是()A.[0,1] B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0]∪(1,+∞)D.(﹣∞,0)∪[1,+∞)6.(3分)函数y=a x﹣(a>0,a≠1)的图象可能是()A. B. C.D.7.(3分)已知实数a,b满足等式2014a=2015b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b,其中不可能成立的关系式有()A.1个B.2个C.3个D.4个8.(3分)已知函数f(x)在定义域(0,+∞)上是单调函数,若对任意x∈(0,+∞),都有f[f(x)﹣]=2,则f()的值是()A.5 B.6 C.7 D.8二、填空题(本大题共10小题,每小题4分,在后面答题区域的表格内填写正确方为有效共10小题,每小题4分,满分40分)9.(4分)若函数f(x)=﹣x2+4ax在(﹣∞,﹣2]上单调递增,则实数a的取值范围是.10.(4分)已知函数y=3+log a(2x+3)(a>0,a≠1))的图象必经过定点P,则P点的坐标为.11.(4分)若函数f(x)=是奇函数,则a+b= .12.(4分)函数f(x)=x2﹣x+a,则f(m)f(1﹣m)(填“<”“>”或“=”)13.(4分)用“二分法”求函数f(x)=x3﹣3x+1的一个零点时,若区间[1,2]作为计算的初始区间,则下一个区间应取为.14.(4分)已知函数f(x)=x5+ax﹣8,且f(﹣2)=10,则f(2)= .15.(4分)函数f(x)=的值域是.16.(4分)函数f(x)=x2+2ax+a2在区间[﹣1,2]上的最大值是4,则实数a的值为.17.(4分)设2a=5b=m,且+=2,m= .18.(4分)已知下表中的对数值有且只有一个是错误的.x 1.5 3 5 6 8 9lg x 4a﹣2b+c 2a﹣b a+c 1+a﹣b﹣c 3[1﹣(a+c)] 2(2a﹣b)其中错误的对数值是.三、解答题(本大题共4小题,满分36分要求写出必要的解题步骤和文字说明)19.(9分)计算下来各式:(1)化简:a••;(2)求值:log535+2log0.5﹣log5﹣log514+5.20.(9分)已知函数f(x)=lg(1+x)﹣lg(1﹣x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由;(3)若f(x)>0,求x的取值范围.21.(9分)据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.22.(9分)已知二次函数f(x)=ax2+bx+c,a,b,c是常数且a≠0,满足条件:f(0)=3,f(3)=6,且对任意的x∈R有f(1+x)=f(1﹣x).(1)求函数f(x)的解析式;(2)问是否存在实数m,n(m<n),使f(x)的定义域和值域分别是[m,n],[2m,2n]?若存在,求出m,n;若不存在,说明理由.数学试题答案一、选择题(共8小题,每小题3分,满分24分,在后面答题区域的表格内填写正确的答案)1.【解答】∵全集U={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},∴∁U A={5,6},则B∩∁U A={5,6},故选:A.2.【解答】对于A,函数f(x)=x2+3x在(0,+∞)上是单调增函数,满足条件;对于B,函数y=(x﹣1)2在(0,1)是单调减函数,在(1,+∞)上是单调增函数,不满足条件;对于C,函数g(x)=2﹣x=在(﹣∞,+∞)上为单调减函数,不满足条件;对于D,函数y=log0.5(x+1)在(﹣1,+∞)上是单调减函数,不满足条件.故选:A.3.【解答】∵1>a=()0.2>(),b=1.30.7>1,则a,b,c的大小关系是b>a>c.故选:B.4.【解答】∵集合A={x丨﹣2≤x≤2,x∈R},B={x丨x≥a},且A⊆B,∴a≤﹣2故选:C.5.【解答】令g(x)=0得f(x)=m,作出y=f(x)的函数图象如图所示:由图象可知当m<0或m≥1时,f(x)=m只有一解.故选D.6.【解答】函数y=a x﹣(a>0,a≠1)的图象可以看成把函数y=a x的图象向下平移个单位得到的.当a>1时,函数y=a x﹣在R上是增函数,且图象过点(﹣1,0),故排除A,B.当1>a>0时,函数y=a x﹣在R上是减函数,且图象过点(﹣1,0),故排除C,故选D.7.【解答】分别作出y=2014x,与y=2015x的函数图象.∵2014a=2015b,∴a>b>0,或a<b<0,或a=b=0,正确;因此只有:③,④不正确.故选:B.8.【解答】根据题意,得若对任意x∈(0,+∞),都有f[f(x)﹣]=2,得到f(x)﹣为一个常数,令f(x)﹣=n,则f(n)=2,∴2﹣=n,∴n=1,∴f(x)=1+,∴f()=7,故选:C.二、填空题(本大题共10小题,每小题4分,在后面答题区域的表格内填写正确方为有效共10小题,每小题4分,满分40分)9.【解答】f(x)=﹣(x﹣2a)2+4a2,∴f(x)的图象开口向下,对称轴为x=2a,∴f(x)在(﹣∞,2a]上单调递增,在(2a,+∞)上单调递减,∵在(﹣∞,﹣2]上单调递增,∴﹣2≤2a,解得a≥﹣1,故答案为:[﹣1,+∞).10.【解答】令2x+3=1,可得 x=﹣1,此时y=3.即函数y=3+log a(2x+3)(a>0,a≠1))的图象必经过定点P的坐标为(﹣1,3).故答案为:(﹣1,3).11.【解答】由题意,a=f(0)=0.f(﹣1)=﹣f(1),∴﹣1+b=﹣(1﹣1),∴b=1,∴a+b=1.故答案为:1.12.【解答】解法一、函数f(x)=x2﹣x+a,可得f(1﹣m)﹣f(m)=(1﹣m)2﹣(1﹣m)+a﹣(m2﹣m+a)=(1﹣m)(﹣m)﹣m(m﹣1)=m(m﹣1)﹣m(m﹣1)=0,则f(m)=f(1﹣m).解法二、函数f(x)=x2﹣x+a的对称轴为x=,由m+(1﹣m)=1,可得f(m)=f(1﹣m).故答案为:=.13.【解答】由二分法由f(1)=1﹣3+1<0,f(2)=8﹣6+1>0,取区间[1,2]作为计算的初始区间取x1=1.5,这时f(1.5)=1.53﹣3×1.5+1=﹣0.125<0,故x0∈(1.5,2).故答案为:(1.5,2).14.【解答】f(﹣2)=(﹣2)5﹣2a﹣8=10,则2a=﹣25﹣18,则f(2)=25+2a﹣8=25﹣25﹣18﹣8=﹣26,故答案为:﹣26.15.【解答】若使函数的解析式有意义则4﹣2x≥0,解得x≤2此时0<2x≤4则0≤4﹣2x<40≤<2故函数的值域是[0,2)故答案为:[0,2)16.【解答】∵函数f(x)=x2+2ax+a2=(x+a)2在区间[﹣1,2]上的最大值是4,区间[﹣1,2]的中点为,二次函数f(x)的图象的图象的对称轴为x=﹣a,当﹣a<时,即a>﹣时,f(x)在区间[﹣1,2]上的最大值为f(2)=4+4a+a2=4,a=0.当﹣a≥时,即a≤﹣时,f(x)在区间[﹣1,2]上的最大值为f(﹣1)=1﹣2a+a2=4,求得a=﹣1,综上可得,a=0或 a=﹣1,故答案为:0或﹣1.17.【解答】解:∵2a=5b=m,∴a=log2m,b=log5m,由换底公式得,∴m2=10,∵m>0,∴故应填18.【解答】∵lg9=2lg3,适合,故二者不可能错误,同理:lg8=3lg2=3(1﹣lg5),∴lg8,lg5正确.lg6=lg2+lg3=(1﹣lg5)+lg3=1﹣(a+c)+(2a﹣b)=1+a﹣b﹣c,故lg6也正确.故答案为:lg1.5.三、解答题(本大题共4小题,满分36分要求写出必要的解题步骤和文字说明)19.【解答】(1)a••==;(2)log535+2log0.5﹣log5﹣log514+5=1+log57﹣log0.50.5+log550﹣log57﹣log52+3=1+log57﹣1+2+log52﹣log57﹣log52+3=1﹣1+2+3=5.20.【解答】函数f(x)=lg(1+x)﹣lg(1﹣x).(1)∵﹣1<x<1∴函数f(x)的定义域(﹣1,1)(2)函数f(x)=lg(1+x)﹣lg(1﹣x).∵f(﹣x)=lg(1﹣x)﹣lg(1+x)=﹣f(x).∴f(x)为奇函数(3)∵f(x)>0,∴求解得出:0<x<1故x的取值范围:(0,1)21.【解答】设直线l交v与t的函数图象于D点,(1)由图象知,点A的坐标为(10,30),故直线OA的解析式为v=3t,当t=4时,D点坐标为(4,12),∴OT=4,TD=12,∴S=×4×12=24(km);(2分)(2)当0≤t≤10时,此时OT=t,TD=3t(如图1)∴S=•t•3t=(4分)当10<t≤20时,此时OT=t,AD=ET=t﹣10,TD=30(如图2)∴S=S△AOE+S矩形ADTE=×10×30+30(t﹣10)=30t﹣150(5分)当20<t≤35时,∵B,C的坐标分别为(20,30),(35,0)∴直线BC的解析式为v=﹣2t+70∴D点坐标为(t,﹣2t+70)∴TC=35﹣t,TD=﹣2t+70(如图3)∴S=S梯形OABC﹣S△DCT=(10+35)×30﹣(35﹣t)(﹣2t+70)=﹣(35﹣t)2+675;(7分)(3)∵当t=20时,S=30×20﹣150=450(km),当t=35时,S=﹣(35﹣35)2+675=675(km),而450<650<675,∴N城会受到侵袭,且侵袭时间t应在20h至35h之间,(8分)由﹣(35﹣t)2+675=650,解得t=30或t=40(不合题意,舍去).∴在沙尘暴发生后30h它将侵袭到N城.22.【解答】(1)∵对任意的x∈R有f(1+x)=f(1﹣x),∴函数的对称轴是x=﹣=1①,又f(0)=3,f(3)=6,∴f(0)=c=3②,f(3)=9a+3b+c=6③,由①②③组成方程组解得:a=1,b=﹣2,c=3,∴f(x)=x2﹣2x+3;(2)f(x)=x2﹣2x+3=(x﹣1)2+2,对称轴x=1,函数的最小值是2,由于函数f(x)的定义域为[m,n],值域为[2m,2n],m<n,.∴函数f(x)在定义域为[m,n]上是增函数,∴f(m)=2m,f(n)=2n,即,解得:m=1,n=3,∴m=1,n=3.2016顺义牛栏山一中高一(上)期中数学一、选择题:(每题5分,共40分)在每小题的4个选项中,只有1项是符合题目要求的.1.(5分)设集合I=R,集合M={x|x<1},N={x|﹣1<x<2},则集合{x|﹣1<x<1}等于()A.M∪N B.M∩N C.(∁I M)∪N D.(∁I M)∩N2.(5分)若f(x)=x2+a(a为常数),,则a的值为()A.﹣2 B.2 C.﹣1 D.13.(5分)函数的定义域为()A.[﹣2,+∞)B.[﹣2,0)∪(0,+∞)C.(﹣2,+∞)D.(﹣∞,2)4.(5分)如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[﹣7,﹣3]上是()A.增函数且最小值为﹣5 B.增函数且最大值为﹣5C.减函数且最大值是﹣5 D.减函数且最小值是﹣55.(5分)已知a=40.4,b=80.2,,则()A.a<b<c B.a<c<b C.a>c>b D.a>b>c6.(5分)已知幂函数f(x)=xα(α∈Z),具有如下性质:f2(1)+f2(﹣1)=2[f(1)+f(﹣1)﹣1],则f(x)是()A.奇函数B.偶函数C.既是奇函数又是偶函数 D.是非奇非偶函数7.(5分)定义在R上的函数f(x)满足f(x)=,则f(3)的值为()A.﹣1 B.﹣2 C.1 D.28.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10) B.(5,6)C.(10,12)D.(20,24)二、填空题:(每题5分,共30分)9.(5分)写出满足条件{1,3}∪A={1,3,5}的集合A的所有可能情况是.10.(5分)函数y=1﹣2x(x∈[2,3])的值域为.11.(5分)如果奇函数y=f(x)(x≠0),当x∈(0,+∞)时,f(x)=x﹣1,则使f(x﹣1)<0的x的取值范围是.12.(5分)若函数y=2﹣x+m的图象不经过第一象限,则m的取值范围是.13.(5分)函数y=log2(x2﹣3x﹣4)的单调增区间是.14.(5分)定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(﹣3)= .三.解答题:解答应写出文字说明、证明过程或演算步骤.15.(12分)已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B),∁R(A∩B),(∁R A)∩B,A∪(∁R B)16.(14分)计算下列各题:(2)2lg lg49.17.(13分)已知函数f(x)=是奇函数,且f(2)=.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并用定义加以证明.18.(14分)某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A 和B,由于用货量大,这两家商店都给出了优惠条件:商店A:买一赠一,买一套工作服,赠一副手套;商店B:打折,按总价的95%收款.该企业需要工作服75套,手套x副(x≥75),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?19.(13分)设函数f(x)=log2(a x﹣b x),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)当x∈[1,2]时,求f(x)最大值.20.(14分)已知定义域为R的函数是奇函数(1)求a值;(2)判断并证明该函数在定义域R上的单调性;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;(4)设关于x的函数F(x)=f(4x﹣b)+f(﹣2x+1)有零点,求实数b的取值范围.数学试题答案一、选择题:(每题5分,共40分)在每小题的4个选项中,只有1项是符合题目要求的.1.【解答】∵I=R,M={x|x<1},N={x|﹣1<x<2},∴M∩N={x|﹣1<x<1},故选:B.2.【解答】∵f(x)=x2+a(a为常数),,∴2+a=3,∴a=1.故选:D.3.【解答】要使原函数有意义,则,解得:x>﹣2.∴函数的定义域为(﹣2,+∞).故选:C.4.【解答】由于奇函数的图象关于原点对称,故它在对称区间上的单调性不变.如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[﹣7,﹣3]上必是增函数且最小值为﹣5,故选A.5.【解答】a=40.4=20.8,b=80.2=20.6=20.5,因为y=2x是增函数,所以a>b>c.故选:D.6.【解答】幂函数f(x)=xα(α∈Z)中,若有f2(1)+f2(﹣1)=2[f(1)+f(﹣1)﹣1],则可取常量n=2,所以,函数为f(x)=x2,此函数的图象是开口向上,并以y轴为对称轴的二次函数,即定义域为R,关于原点对称,且f(﹣x)=(﹣x)2=x2=f(x),所以为偶函数.故选:B.7.【解答】∵f(x)=,∴f(3)=f(2)﹣f(1)=f(1)﹣f(0)﹣f(1)=﹣f(0)=﹣log24=﹣2.故选:B.8.【解答】作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.二、填空题:(每题5分,共30分)9.【解答】{1,3}∪A={1,3,5},可得A中必须含有5这个元素,也可以含有1,3中的数值,满足条件{1,3}∪A={1,3,5}的集合A的所有可能情况是{5},{1,5},{3,5},{1,3,5}.故答案为:{5},{1,5},{3,5},{1,3,5}.10.【解答】因为函数y=1﹣2x是减函数.所以x∈[2,3]时,可得函数的最大值为:﹣3,最小值为:﹣7,函数的值域[﹣7,﹣3].故答案为:[﹣7,﹣3].11.【解答】由题意x∈(0,+∞)时,f(x)=x﹣1,可得x>1时,函数值为正,0<x<1时,函数值为负又奇函数y=f(x)(x≠0),由奇函数的性质知,当x<﹣1时,函数值为负,当﹣1<x<0时函数值为正综上,当x<﹣1时0<x<1时,函数值为负∵f(x﹣1)<0∴x﹣1<﹣1或0<x﹣1<1,即x<0,或1<x<2故答案为(﹣∞,0)∪(1,2)12.【解答】∵函数y=2﹣x+m的图象不经过第一象限,而函数y=2﹣x+m的图象经过定点(0,1+m),且函数y在R上单调递减,则1+m≤0,求得m≤﹣1,故答案为:(﹣∞,﹣1].13.【解答】令t=x2﹣3x﹣4>0,求得x<﹣1,或x>4,故函数的定义域为(﹣∞,﹣1)∪(4,+∞),且y=log2t,故本题即求二次函数t的增区间.再利用二次函数的性质可得函数t的增区间为(4,+∞),故答案为:(4,+∞).14.【解答】由题意可知:f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴f(0)=0.f(0)=f(﹣1+1)=f(﹣1)+f(1)+2×(﹣1)×1=f(﹣1)+f(1)﹣2,∴f(﹣1)=0.f(﹣1)=f(﹣2+1)=f(﹣2)+f(1)+2×(﹣2)×1=f(﹣2)+f(1)﹣4,∴f(﹣2)=2.f(﹣2)=f(﹣3+1)=f(﹣3)+f(1)+2×(﹣3)×1=f(﹣3)+f(1)﹣6,∴f(﹣3)=6.故答案为:6.三.解答题:解答应写出文字说明、证明过程或演算步骤.15.【解答】∵集合A={x丨3≤x<7},B={x丨2<x<10},∴A∪B={x|2<x<10},A∩B={x|3≤x<7},∁R A={x|x<3或x≥7},∴∁R(A∪B)={x|x≤2或x≥10},∁R(A∩B)={x|x<3或x≥7},(∁R A)∩B={x|2<x≤3或7≤x<10}.16.【解答】(1)=0.4﹣1﹣1+[﹣2]﹣4+2﹣3+0.1=﹣1++=…(7分)(2)2lg lg49=2lg5﹣2lg3﹣lg7+2lg2+2lg3+lg7=2lg5+2lg2=2 …(14分)17.【解答】(1)∵f(x)是奇函数,∴f(﹣x)=﹣f(x).∴=﹣,因此b=﹣b,即b=0.又f(2)=,∴=,∴a=2;(2)由(1)知f(x)==+,f(x)在(﹣∞,﹣1]上为增函数,证明:设x1<x2≤﹣1,则f(x1)﹣f(x2)=(x1﹣x2)(1﹣)=(x1﹣x2)•.∵x1<x2≤﹣1,∴x1﹣x2<0,x1x2>1.∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在(﹣∞,﹣1]上为增函数.18.【解答】设按商店A和B优惠付款数分别为f(x)和g(x)商店A:f(x)=75×53+(x﹣75)×3=3x+3750(x≥75)…(4分)商店B:g(x)=(75×53+3x)×95%=2.85x+3776.25(x≥75)…(8分)令f(x)=g(x),解得x=175选择A与B是一样的…(10分)令y=f(x)﹣g(x)=0.15x﹣26.25,当75≤x<175时,y<0,选择商店A;…(12分)当x>175时,y>0,选择商店B;…(14分)19.【解答】∵函数f(x)=log2(a x﹣b x),且f(1)=1,f(2)=log212 ∴∴∴(2)由(1)得令g(x)=4x﹣2x=(2x)2﹣2x令t=2x,则y=t2﹣t∵x∈[1,2],∴t∈[2,4],显然函数y=(t﹣)2﹣在[2,4]上是单调递增函数,所以当t=4时,取得最大值12,∴x=2时,f(x)最大值为log212=2+log2320.【解答】(1)由题设,需,∴a=1,∴,经验证,f(x)为奇函数,∴a=1.(2)减函数证明:任取x1,x2∈R,x1<x2,△x=x2﹣x1>0,f(x2)﹣f(x1)=﹣=,∵x1<x2 ∴0<<;∴﹣<0,(1+)(1+)>0∴f(x2)﹣f(x1)<0∴该函数在定义域R 上是减函数.(3)由f(t2﹣2t)+f(2t2﹣k)<0 得f(t2﹣2t)<﹣f(2t2﹣k),∵f(x)是奇函数,∴f(t2﹣2t)<f(k﹣2t2),由(2)知,f(x)是减函数∴原问题转化为t2﹣2t>k﹣2t2,即3t2﹣2t﹣k>0 对任意t∈R 恒成立,∴△=4+12k<0,得即为所求.(4)原函数零点的问题等价于方程f(4x﹣b)+f(﹣2x+1)=0由(3)知,4x﹣b=2x+1,即方程b=4x﹣2x+1有解∴4x﹣2x+1=(2x)2﹣2×2x=(2x﹣1)2﹣1≥﹣1,∴当b∈[﹣1,+∞)时函数存在零点.。
高一数学-2015-2016学年高一上学期期中数学试卷

2015-2016学年高一(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,计70分.请把答案填写在答题卡相应位置上. 1.设集合A={1,2,3},B={2,4},则A∩B=__________.2.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是__________.3.=__________.4.若角α=﹣4,则角α的终边在第__________象限.5.已知幂函数y=f(x)的图象过点,则f(﹣2)=__________.6.函数的定义域为__________.7.函数y=3+log a x,(a>0且a≠1)必过定点__________.8.设a=log0.60.8,b=log1.20.9,c=1.10.8,则a、b、c由小到大的顺序是__________.9.已知定义域为[1,2]的函数f(x)=2+log a x(a>0,a≠1)的图象过点(2,3),若g(x)=f(x)+f(x2),则函数g(x)的值域为__________.10.已知f(x)=3kx3+﹣2(k∈R),f(lg7)=1(k∈R),则f(lg)=__________.11.设方程2x+x=4的根为x0,若x0∈(k﹣,k+),则整数k=__________.12.若2a=5b=10,则=__________.13.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(4)=0,则<0的解集__________.14.已知函数满足f(c2)=.则f(x)的值域为__________.二、解答题:本大题共6小题,计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知集合A={x|x2+3x+2=0},B={x|ax≥1,a<0}(1)当a=﹣时,求A∩B;(2)当A⊆B时,求a的取值范围.16.(14分)已知扇形的周长为16cm,圆心角为2rad,求该扇形的面积.17.(14分)已知二次函数f(x)满足=f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,(1)求f(x)的解析式;(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.18.(16分)用一根细铁丝围一个面积为4的矩形,(1)试将所有铁丝的长度y表示为矩形的某条边长x的函数;(2)①求证:函数f(x)=x+在(0,2]上是减函数,在[2,+∞)上是增函数;②题(1)中矩形的边长x多大时,细铁丝的长度最短?19.(16分)已知函数f(x)=ln(1+x)+aln(1﹣x)(a∈R)的图象关于原点对称.(1)求定义域.(2)求a的值.(3)若有零点,求m的取值范围.20.(16分)已知函数f(x)=2x(x∈R),(1)解不等式f(x)﹣f(2x)>16﹣9×2x;(2)若函数q(x)=f(x)﹣f(2x)﹣m在[﹣1,1]上有零点,求m的取值范围;(3)若函数f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag (x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.2015-2016学年高一(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,计70分.请把答案填写在答题卡相应位置上. 1.设集合A={1,2,3},B={2,4},则A∩B={2}.【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,2,3},B={2,4},∴A∩B={2},故答案为:{2}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是0.【考点】子集与真子集.【专题】计算题.【分析】由题意,集合{x|ax=1}是任何集合的子集,则此集合必是空集,a的值易求得.【解答】解:由于a是实数,若集合{x|ax=1}是任何集合的子集,则此集合必是空集,故方程ax=1无根,所以a=0故答案为:0.【点评】本题考查集合中的参数取值问题,空集的概念,解题的关键是理解题意,得出是任何集合的子集的集合必是空集.3.=2.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题.【分析】根据指数运算法则和对数运算法则化简即可得解【解答】解:原式=故答案为:2【点评】本题考查指数运算与对数运算,须能够对指数式和对数式灵活变形,熟练应用指数运算法则和对数运算法则.属简单题4.若角α=﹣4,则角α的终边在第二象限.【考点】象限角、轴线角.【专题】计算题;函数思想;三角函数的求值.【分析】判断角的所在范围,推出所在象限即可.【解答】解:因为α=﹣4,﹣4∈(﹣,﹣π),所以α的终边在第二象限.故答案为:二.【点评】本题考查象限角的判断,是基础题.5.已知幂函数y=f(x)的图象过点,则f(﹣2)=.【考点】幂函数的图像;函数的值.【专题】待定系数法.【分析】设出幂函数的解析式,由图象过(,8)确定出解析式,然后令x=﹣2即可得到f (﹣2)的值.【解答】解:设f(x)=x a,因为幂函数图象过,则有8=,∴a=﹣3,即f(x)=x﹣3,∴f(﹣2)=(﹣2)﹣3=﹣故答案为:﹣【点评】考查学生会利用待定系数法求幂函数的解析式.会根据自变量的值求幂函数的函数值.6.函数的定义域为(0,1].【考点】对数函数的定义域;函数的定义域及其求法.【专题】计算题.【分析】根据偶次根式下大于等于0,对数的真数大于0建立不等式组,解之即可求出所求.【解答】解:要使函数有意义则由⇒0<x≤1故答案为:(0,1].【点评】本题主要考查了对数函数的定义域,以及根式函数的定义域和不等式组的解法,属于基础题.7.函数y=3+log a x,(a>0且a≠1)必过定点(1,3).【考点】对数函数的图像与性质.【专题】数形结合;函数思想;分析法;函数的性质及应用.【分析】直接利用对数函数的图象经过的定点,再通过平移,求出函数y=3+log a x图象经过的定点.【解答】解:∵对数函数f(x)=log a x(a>0且a≠1)的图象恒过定点(1,0),而函数y=3+log a x的图象是由f(x)的图象向上平移3个单位得到,∴函数y=3+log a x的图象必过定点(1,3).故答案为:(1,3).【点评】本题主要考查了对数函数的图象经过的定点的应用,以及函数图象的平移变换,属于基础题.8.设a=log0.60.8,b=log1.20.9,c=1.10.8,则a、b、c由小到大的顺序是b<a<c.【考点】指数函数的图像与性质.【专题】函数的性质及应用.【分析】由y=log0.6x是减函数,知1=log0.60.6>a=log0.60.8>log0.61=0;由y=log1.2x是增函数,知b=log1.20.9<log1.21=0;由y=1.1x是增函数,知c=1.10.8>1.10=1,由此能比较a、b、c的大小【解答】解:∵y=log0.6x是减函数,∴1=log0.60.6>a=log0.60.8>log0.61=0;∵y=log1.2x是增函数,∴b=log1.20.9<log1.21=0;∵y=1.1x是增函数,∴c=1.10.8>1.10=1,∴b<a<c.故答案为:b<a<c.【点评】本题考查对数函数、指数函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.9.已知定义域为[1,2]的函数f(x)=2+log a x(a>0,a≠1)的图象过点(2,3),若g(x)=f(x)+f(x2),则函数g(x)的值域为[4,].【考点】对数函数的图像与性质;函数的值域.【专题】计算题;数形结合;函数的性质及应用.【分析】根据f(x)的图象过点(2,3),代入可得实数a的值,再确定g(x)的定义域,最后根据单调性求函数值域.【解答】解:∵f(x)=2+log a x的图象过点(2,3),∴3=2+log a2,即log a2=1,解得a=2,又∵g(x)=f(x)+f(x2)=4+3log2x,且f(x)的定义域为[1,2],∴g(x)的自变量x需满足,解得x∈[1,],又g(x)在x∈[1,]上单调递增,所以g(x)min=g(1)=4,g(x)max=g()=,因此,函数g(x)的值域为[4,],故填:[4,].【点评】本题主要考查了函数解析式和定义域的求法,以及应用单调性求函数的值域,忽视g(x)的定义域是本题的易错点,属于中档题.10.已知f(x)=3kx3+﹣2(k∈R),f(lg7)=1(k∈R),则f(lg)=﹣5.【考点】函数奇偶性的性质;函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】利用已知条件求出k,然后求解f(lg).【解答】解:f(x)=3kx3+﹣2(k∈R),f(lg7)=1(k∈R),可得3klg37+﹣2=1,可得3klg37+=3.f(lg)=f(﹣lg7)=﹣(3klg37+)﹣2=﹣5.故答案为:﹣5.【点评】本题考查函数值的求法,整体代入法的应用,考查计算能力.11.设方程2x+x=4的根为x0,若x0∈(k﹣,k+),则整数k=1.【考点】二分法求方程的近似解.【专题】计算题.【分析】令f(x)=2x+x﹣4,由f(x)的单调性知:f(k﹣)<0,且f(k+)>0,根据k 取整数,从而确定k 值.【解答】解:令f(x)=2x+x﹣4,则f(x0)=0,且f(x)=2x+x﹣4在定义域内是个增函数,∴f(k﹣)<0,且f(k+)>0即:+k﹣﹣4<0,且+k+﹣4>0又k 取整数,∴k=1;故答案为1.【点评】联系用二分法求函数近似解的方法,构造f(x)=2x+x﹣4,由f(k﹣)<0,且f(k+)>0 及k 取整数,来确定k 值.12.若2a=5b=10,则=1.【考点】对数的运算性质.【专题】计算题.【分析】首先分析题目已知2a=5b=10,求的值,故考虑到把a和b用对数的形式表达出来代入,再根据对数的性质以及同底对数和的求法解得,即可得到答案.【解答】解:因为2a=5b=10,故a=log210,b=log510=1故答案为1.【点评】此题主要考查对数的运算性质的问题,对数函数属于三级考点的内容,一般在高考中以选择填空的形式出现,属于基础性试题同学们需要掌握.13.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(4)=0,则<0的解集(﹣4,0)∪(4,+∞).【考点】奇偶性与单调性的综合.【专题】转化思想;转化法;函数的性质及应用.【分析】根据函数奇偶性和单调性的性质将不等式进行转化进行求解即可.【解答】解:若函数f(x)为偶函数,则不等式<0等价为=<0,即xf(x)<0,∵f(x)为偶函数,且在(0,+∞)上是减函数,f(4)=0,∴函数f(x)对应的图象为:则不等式等价为x>0时,f(x)<0,此时x>4,x<0时,f(x)>0,此时0<x<4,综上不等式的解集为(﹣4,0)∪(4,+∞),故答案为:(﹣4,0)∪(4,+∞)【点评】本题主要考查不等式的求解,利用函数奇偶性的性质,作出函数的图象,利用数形结合是解决本题的关键.14.已知函数满足f(c2)=.则f(x)的值域为(1,].【考点】函数的值域;分段函数的应用.【专题】函数思想;综合法;函数的性质及应用.【分析】由f(x)的定义域便可看出0<c<1,从而可判断0<c2<c,从而可求出,这样便可求出c=,然后根据一次函数、指数函数的单调性及单调性定义即可求出每段上f(x)的范围,然后求并集便可得出f(x)的值域.【解答】解:根据f(x)解析式看出0<c<1;∴0<c2<c;∴;∴;∴;①0时,f(x)=为增函数;∴;即;②时,f(x)=2﹣4x+1为减函数;∴;即;∴综上得f(x)的值域为.故答案为:.【点评】考查分段函数的概念,知道0<c<1时,c2<c,以及一次函数、指数函数的单调性,单调性的定义,函数值域的概念,分段函数值域的求法.二、解答题:本大题共6小题,计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知集合A={x|x2+3x+2=0},B={x|ax≥1,a<0}(1)当a=﹣时,求A∩B;(2)当A⊆B时,求a的取值范围.【考点】集合的包含关系判断及应用;交集及其运算.【专题】计算题;转化思想;综合法;集合.【分析】(1)化简集合A,B,再求A∩B;(2)当A⊆B时,,即可求a的取值范围.【解答】解:(1)A={x|x2+3x+2=0}={﹣1,﹣2},当a=﹣时,B=(﹣∞,﹣2],所以A∩B={﹣2};…(2)因为A⊆B,a<0时,,所以,解得a≤﹣1,所以a的取值范围是(﹣∞,﹣1].…(14分)【点评】考查描述法表示集合,不等式的性质,以及子集的定义,比较基础.16.(14分)已知扇形的周长为16cm,圆心角为2rad,求该扇形的面积.【考点】扇形面积公式.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】设扇形的半径为r,弧长为l,根据扇形周长和弧长公式列式,解之得r=4,l=8,再由扇形面积公式可得扇形的面积S.【解答】解设扇形的半径为r,弧长为l,则有,得,…故扇形的面积为(cm2)…(14分)【点评】本题给出扇形的周长和圆心角的大小,求扇形的面积,着重考查了扇形的面积公式和弧长公式等知识,属于基础题.17.(14分)已知二次函数f(x)满足=f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,(1)求f(x)的解析式;(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.【考点】二次函数的性质;函数的值域.【专题】计算题;函数思想;待定系数法;函数的性质及应用.【分析】(1)要求二次函数的解析式,利用直接设解析式的方法,一定要注意二次项系数不等于零,在解答的过程中使用系数的对应关系,解方程组求的结果;(2)求得二次函数g(x)的解析式,求得对称轴,可得[﹣1,]为减区间,即可得到最值,进而得到值域.【解答】解:(1)设二次函数的解析式为f(x)=ax2+bx+c (a≠0),由f(0)=1得c=1,故f(x)=ax2+bx+1.因为f(x+1)﹣f(x)=2x,所以a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=2x.即2ax+a+b=2x,根据系数对应相等,∴,所以f(x)=x2﹣x+1;(2)当x∈[﹣1,1]时,函数g(x)=f(x)﹣2x=x2﹣3x+1=(x﹣)2﹣,对称轴为x=,区间[﹣1,1]在对称轴的左边,为减区间,即有x=﹣1时取得最大值,且为5,x=1时取得最小值,且为﹣1.故值域为[﹣1,5].【点评】本题考查二次函数的解析式的求法,注意运用待定系数法,考查二次函数的值域的求法,注意运用函数的单调性,属于基础题.18.(16分)用一根细铁丝围一个面积为4的矩形,(1)试将所有铁丝的长度y表示为矩形的某条边长x的函数;(2)①求证:函数f(x)=x+在(0,2]上是减函数,在[2,+∞)上是增函数;②题(1)中矩形的边长x多大时,细铁丝的长度最短?【考点】基本不等式在最值问题中的应用.【专题】计算题;不等式的解法及应用.【分析】(1)利用面积求出另一条边长为,则可得铁丝的长度;(2)①利用导数证明即可;②由①可知x=3时,函数取得最小值.【解答】(1)解:由题意,另一条边长为,则铁丝的长度y=2x+(x>0);(2)①证明:∵f(x)=2(x+),∴f′(x)=2﹣,∴在(0,2]上,f′(x)<0,在[2,+∞)上,f′(x)>0,∴函数f(x)=2(x+)在(0,2]上是减函数,在[2,+∞)上是增函数;②解:由①可知x=2时,函数取得最小值8.【点评】本题考查函数模型的选择与应用,考查学生的计算能力,属于中档题.19.(16分)已知函数f(x)=ln(1+x)+aln(1﹣x)(a∈R)的图象关于原点对称.(1)求定义域.(2)求a的值.(3)若有零点,求m的取值范围.【考点】对数函数的单调区间;函数的零点.【专题】函数的性质及应用.【分析】(1)由函数的解析式可得,由此求得函数的定义域.(2)由题意可得,函数f(x)为奇函数,f(﹣x)=﹣f(x),即(1+a)ln(1﹣x)+(a+1)ln(1+x)=0,即(1+a)ln(1﹣x2)=0恒成立,由此可得a的值.(3)由题意可得:,在x∈(﹣1,1)上有解,即:,解得,由此利用不等式的性质求得m的范围.【解答】解:(1)由函数的解析式可得,求得﹣1<x<1,故函数的定义域为(﹣1,1).(2)由题意可得,函数f(x)为奇函数,f(﹣x)=﹣f(x),即ln(1﹣x)+aln(1+x)=﹣[ln(1+x)+aln(1﹣x)],即(1+a)ln(1﹣x)+(a+1)ln(1+x)=0,故(1+a)ln(1﹣x2)=0恒成立,∴a=﹣1.(3)∵,由题意可得:在x∈(﹣1,1)上有解,即:在x∈(﹣1,1)上有解,即在x∈(﹣1,1)上有解,即3x=﹣2m﹣1在x∈(﹣1,1)上有解,∴,即,解得﹣2<m<1,∴m∈(﹣2,1).【点评】本题主要考查求函数的定义域,奇函数的定义,求函数的零点,不等式的性质应用,属于中档题.20.(16分)已知函数f(x)=2x(x∈R),(1)解不等式f(x)﹣f(2x)>16﹣9×2x;(2)若函数q(x)=f(x)﹣f(2x)﹣m在[﹣1,1]上有零点,求m的取值范围;(3)若函数f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag (x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.【考点】函数与方程的综合运用;函数恒成立问题;二次函数的性质;指数函数的图像与性质.【专题】计算题;函数思想;方程思想;转化思想;函数的性质及应用.【分析】(1)设t=2x,利用f(x)>16﹣9×2x,转化不等式为二次不等式,求解即可.(2)设t=2x,求出,利用二次函数的性质求解最值.然后求解m的取值范围为.(3)利用函数的奇偶性以及函数恒成立,结合基本不等式求解函数的最值,推出结果.【解答】解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,即t2﹣10t+16<0.…∴2<t<8,即2<2x<8,∴1<x<3∴不等式的解集为(1,3).…(2)设t=2x,∵x∈[﹣1,1],∴,.∴f(x)的值域为.函数有零点等价于方程有解等价于m在f(x)的值域内,∴m的取值范围为.…(3)由题意得解得2ag(x)+h(2x)≥0即,对任意x∈[1,2]恒成立,又x∈[1,2]时,令,在上单调递增,当时,有最大值,所以…(16分)【点评】本题考查函数与方程的综合应用,二次函数的性质,基本不等式以及函数恒成立的转化,考查计算能力.。
北京市一零一中学2015-2016学年高一上学期期中考试数学试卷 Word版含答案

北京一零一中2015-2016学年度第一学期期中考试高一数学一、选择题:本大题共8小题,共40分。
1. 下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是( )(A ){}0x x = (B ){}20a a = (C ){}0a = (D ){}0 2. 函数()y f x =的定义域为[]1,5,则函数()21y f x =-的定义域是( ) (A ) []15, (B )[]2,10 (C )[]19, (D )[]13, 3. 下列四组函数,表示同一函数的是( ) (A ) ()f x =()g x x =(B )()f x x =,()2x g x x=(C ) ()f x =()g x =(D )()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩4.如图是函数()y f x =的图象,()()2ff 的值为( )(A ) 3 (B )4 (C ) 5 (D )65. 已知函数()35x f x x =+-,用二分法求方程35=0xx +-在()0,2x ∈内近似解的过程中,取区间中点01x =,那么下一个有根区间为( )(A ) ()0,1 (B ) ()12, (C )()12,或()0,1都可以 (D )不能确定6. 函数()248f x x ax =--在区间()4+∞,上是增函数,则实数a 的取值范围是( ) (A )32a ≤ (B )32a ≥ (C )16a ≥ (D )16a ≤7. 已知函数()f x 为奇函数,且当0x >时,()21f x x x=+,则()1f -等于( ) (A )2- (B )0 (C )1 (D ) 28. 定义区间(),a b 、[),a b 、(],a b 、[],a b 的长度均为d b a =-,用[]x 表示不超过x 的最大整数,例如[]3.2=3,[]2.33-=-.记{}[]x x x =-,设()[]{}f x x x=⋅,()1g x x =-,若用d 表示不等式()()f x g x <解集区间长度,则当03x ≤≤时有( ) (A ) 1d = (B )2d = (C ) 3d = (D ) 4d = 二、填空题:本大题共6小题,共30分。
北京市顺义区牛栏山第一中学2015-2016学年高一上学期期中考试化学试题带答案

牛栏山一中2015――2016学年度第一学期期中考试高一年级化学学科试卷2015.11.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分。
所有答案一律作答在答题卡上。
可能用到的相对原子质量:Na: 23 Cl: 35.5 Mg: 24 Al: 27 H: 1 S: 32 O: 16 C: 12 N: 14 P: 31 K: 39第Ⅰ卷(选择题共42分)本卷共21小题,每小题2分,共42分。
在每小题列出的四个选项中,选出符合题目答案的一项。
1.实验室装有浓硫酸的试剂瓶应贴有的图标是有毒品A B C D2.有关氧化还原反应实质的说法中正确的是A.是否有元素的电子转移B.是否有元素的化合价的变化C.是否有氧元素的参加D.是否有原子的重新组合3. 下列操作过程中一定有氧化还原反应发生的是4. 下列基本反应类型中,一定是氧化还原反应的是A. 置换反应B.分解反应C. 化合反应D. 复分解反应5.下图为反应Fe + CuSO4 === Cu + FeSO4中电子转移的关系图,则图中的元素甲、乙分别表示A. Fe,SB. Cu,SC. Fe,OD. Fe,Cu6.实验中的下列操作正确的是A.取出试剂瓶中的Na2CO3溶液,加入试管中,发现取量过多,为了不浪费,又把试管中过量的试剂倒回原试剂瓶中。
B.Ba(NO3)2 溶于水,可将含有Ba(NO3)2 的废液倒入水池中,再用水冲入下水道C.用蒸发方法使NaCl 从溶液中析出时,应将蒸发皿中NaCl 溶液全部蒸干才停止加热。
D.用浓硫酸配制一定物质的量浓度的稀硫酸时,浓硫酸溶于水后,应冷却至室温才能转移到容量瓶中7. 下图所示是分离混合物时常用的仪器,从左至右,可以进行的混合物分离操作分别是A. 蒸馏、蒸发、萃取、过滤B. 蒸馏、过滤、萃取、蒸发C. 萃取、过滤、蒸馏、蒸发D. 过滤、蒸发、萃取、蒸馏8.相同物质的量的固体或液体体积并不相同,其主要原因是A.微粒大小不同B.微粒间距离不同C.微粒数量不同D.微粒质量不同9. 每摩尔物质含有A.6.02×1023个分子B.6.02×1023个原子C.阿伏加德罗常数个原子D.阿伏加德罗常数个该物质的粒子10. 下列说法正确的是① 2mol Fe ② 1mol Fe3+③ 0.5mol 氧④ 0.5mol N2⑤ 1mol Cl2的质量为35.5g,1mol Cl—的质量也为35.5g⑥ NH3的摩尔质量是17gA.①②④⑥B.①②④⑤⑥C.①②④D.都正确11.按照物质的组成和性质进行分类,HNO3应属于①酸②氧化物③无氧酸④挥发性酸⑤化合物⑥混合物⑦纯净物⑧一元酸A.①④⑤⑦⑧B.②③④⑤C.③④⑤⑦D.②⑤⑥⑦⑧12. 等质量的SO2和SO3 ,下列说法正确的是A.所含氧原子的个数比为2∶3 B.所含硫原子的个数比为1∶1C.所含氧元素的质量比为6∶5 D.所含硫元素的质量比为5∶413.用N A 表示阿伏加德罗常数,下列叙述正确的是 A. 64g SO 2含有氧原子数为N AB. 常温常压下,14g N 2含有分子数为0.5N AC. 标准状况下,22.4L H 2O 的分子数为N AD. 物质的量浓度为0.5mol/L MgCl 2溶液,含有Cl -离子数为N A 14. 下列装置能达到对应实验目的的是15.下列关于分散系的说法,正确是A. 稀硫酸、盐酸、空气和水等都是分散系B. 一般可用丁达尔现象区分溶液和浊液C. 按稳定性由弱到强的顺序排列的是溶液、胶体、浊液(以水为分散剂时)D. 按照分散质和分散剂的状态(气、液、固态),它们之间可以有9种组合方式16. 某一化学兴趣小组的同学在家中进行实验,按照图示连接好线路,发现图B 中的灯泡亮了。
北京市顺义牛栏山第一中学高一数学上册期末试题

北京市顺义牛栏山第一中学高一数学上册期末试题一、选择题1.已知全集U =R ,集合{}2A x x =>,那么UA( )A .{}2x x ≥B .{}2x x >C .{}2x x ≤D .{}2x x < 2.函数ln(1)y x =-的定义域为A .(,0)-∞B .(,1)-∞C .(0,)+∞D .(1,)+∞3.已知cos tan 0θθ<,那么θ是第几象限的角( )A .第一或第二B .第二或第三C .第三或第四D .第一或第四4.已知点()3,4A ,向的OA 绕原点O 逆时针旋转3π后等于OB ,则点B 的坐标为( ) A .433343,22⎛⎫++ ⎪ ⎪⎝⎭ B .433343,22⎛⎫-+ ⎪ ⎪⎝⎭ C .343433,22⎛⎫-- ⎪ ⎪⎝⎭D .343433,22⎛⎫-+ ⎪ ⎪⎝⎭5.函数()23log f x x x =+的零点所在区间为( ) A .11,168⎡⎤⎢⎥⎣⎦B .11,84⎡⎤⎢⎥⎣⎦C .11,42⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦6.中国传统扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,如图,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,若扇形的半径20cm R =,则此时的扇形面积为( )A .2200(51)cm πB .2200(51)cm πC .2200(35)cm πD .2200(52)cm π7.已知奇函数()f x 在R 上单调递减,且()11f =-,则不等式()121f x -≤-≤的解集是( )A .[]22-,B .[]1,1-C .[]0,4D .[]1,38.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +2)=f (x ),当-1≤x <1时,2()f x x =.若函数g (x )=f (x )-a |x |有5个不同零点,则a 的取值范围是( )A .103⎛⎫⎪⎝⎭,B .113⎛⎫ ⎪⎝⎭,C .113⎡⎤⎢⎥⎣⎦, D .112⎛⎫⎪⎝⎭, 二、填空题9.下列函数中,既是偶函数又在区间()0,∞+单调递增的是( ) A .21y x =+B .1y x =-C .21y x =D .x t e -=10.下列说法中正确的是( )A .命题2000,0x R x x ∃∈->“”的否定是“x R ∀∈,20x x -<”B .“1x >”是“2230x x +->”的充分不必要条件C .“22ac bc >”的必要不充分条件是“a b >”D .函数4πsin 0,sin 2y x x x ⎛⎫⎛⎤=+∈ ⎪⎥⎝⎦⎝⎭的最小值为4 11.若0a b >>,则下列不等式成立的是( ) A .11a b < B .11b b a a +<+ C .11a b b a+>+ D .11a b a b+>+ 12.已知函数()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭,则( )A .函数()f x 的最小正周期为π2B .若函数()f x 的最大值为6,则3m =C .直线π6x =是函数()f x 的图象的一条对称轴 D .函数()f x 的图象可由函数()π2sin 213g x x m ⎛⎫=+++ ⎪⎝⎭的图象向右平移π6个单位长度得到三、多选题13.若“2[2,1],20x x x m ∃∈-+->”为假命题,则实数m 的最小值为___________. 14.计算102554(1)2100.25log log π-++++=_____.15.设,a b 是实数,已知角θ的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(,1)A a ,(2,)B b -,且1sin 3θ=,则ab 的值为____________ .16.已知函数()12,01,33,>1.22x x xf x x x ⎧+<≤⎪⎪=⎨⎪+⎪⎩若方程()()f x a a R =∈有两个不同的实根12,x x ,且满足121223x x <<,则实数a 的取值范围为___________. 四、解答题17.在“①A B =∅,②A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤. (Ⅰ)若0a =,求A B ;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答记分.18.已知函数()2sin(2)6f x x π=+,x ∈R .(1)求函数()f x 的最小正周期和单调增区间;(2)求函数()y f x =的最大值以及取最大值时对应的x 的值.19.函数()f x 对于任意实数m ,n 有()()()f m n f m f n +=+,当0x >时,()0f x >. (1)求证:()f x 在(),-∞+∞上是增函数;(2)若()11f =,()22log 2f x x m +⎡⎤⎣⎦-<对任意实数[]0,2x ∈恒成立,求实数m 的取值范围.20.某工厂生产一新款智能迷你音箱,每日的成本C (单位:万元)与日产量x(x N *∈,单位:千只)的关系满足2C x =+.每日的销售额S (单位:万元)与日产量x 的关系满足:当17x ≤≤时,161xS x x =++,当716x ≤<时,3216kS x x =++-;当16x ≥时,28S =.已知每日的利润L S C =-(单位:万元).(1)求k 的值,并将该产品每日的利润L (万元)表示为日产量x (千只)的函数; (2)当日产量为多少千只时,每日的利润可以达到最大,并求出最大值.21.已知函数()()220g x ax ax b b =-+>,在[]1,2x ∈时最大值为1和最小值为0.设()()g x f x x=. (1)求实数a ,b 的值;(2)若不等式()2410x xg k -⋅+≥在[]1,1x ∈-上恒成立,求实数k 的取值范围;(3)若关于x 的方程()222log 310log mf x m x+--=有四个不同的实数解,求实数m 的取值范围.22.已知函数()33x xf x -=+,函数()()()26g x f x mf x =-+.(1)填空:函数()f x 的增区间为___________(2)若命题“(),0x R g x ∃∈≤”为真命题,求实数m 的取值范围;(3)是否存在实数m ,使函数()()()3log m h x g x -=在[]0,1上的最大值为0?如果存在,求出实数m 所有的值.如果不存在,说明理由.【参考答案】一、选择题 1.C 【分析】应用集合的补运算求UA 即可.【详解】∵{}2A x x =>,U =R , ∴{|2}UA x x =≤.故选:C 2.B 【详解】 由,得选B【分析】将给定不等式结合有理数的乘法法则转化为两个不等式组,再分别判断即可. 【详解】由cos tan 0θθ<得:cos 0tan 0θθ>⎧⎨<⎩或cos 0tan 0θθ<⎧⎨>⎩,且θ角终边不在坐标轴上,若cos 0tan 0θθ>⎧⎨<⎩,由cos 0θ>知,θ角终边在第一或第四象限,由tan 0θ<知,θ角终边在第二或第四象限,于是得θ角终边在第四象限,若cos 0tan 0θθ<⎧⎨>⎩,由cos 0θ<知,θ角终边在第二或第三象限,由tan 0θ>知,θ角终边在第一或第三象限,于是得θ角终边在第三象限, 所以θ是第三或第四象限的角. 故选:C 4.D 【分析】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,先求出5OA =,34cos ,sin 55αα==,再结合两角和的正弦公式和余弦公式求出cos β和sin β,进而可以求出结果. 【详解】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,则3πβα=+,由题意知 5OA =,34cos ,sin 55αα==,所以cos cos cos cos sin sin 333πππβααα⎛⎫=+=-= ⎪⎝⎭sin sin sin cos cos sin 333πππβααα⎛⎫=+=+= ⎪⎝⎭所以点B 的横坐标为5cos 5β==;点B 的纵坐标为5sin 5β==;所以点B 的坐标为⎝⎭, 故选:D.【分析】由函数()23log f x x x =+,分别求得区间端点的函数值,结合函数的单调性和零点的存在定理,即可求解. 【详解】由题意,函数()23log f x x x =+,可得函数()f x 为单调递增函数, 可得21113()3log 4016161616f =⨯+=-<,13()3088f =-<,13()2044f =-<, 13()1022f =->,(1)30f =>, 所以11()()042f f <,所以函数()f x 的零点所在区间为11,42⎡⎤⎢⎥⎣⎦.故选:C. 6.C 【分析】由扇形的面积比可得扇形的圆心角,再由扇形面积公式即可得解. 【详解】设1S 与2S 所在扇形圆心角分别为,αβ,由题意知,1S 与2S 所在扇形圆心角的比即为它们的面积比,则αβ=,又2αβπ+=,解得(3απ=,所以21200(32S R απ==()2cm .故选:C . 7.D 【分析】根据()f x 为奇函数且()11f =-,将()121f x -≤-≤转化为()()()121f f x f ≤-≤-,利用函数的单调性求解. 【详解】因为()f x 为奇函数且且()11f =-, 所以不等式()121f x -≤-≤, 即为()()()121f f x f ≤-≤-,又因为函数在区间(),-∞+∞单调递减, 所以121x -≤-≤, 解得13x ≤≤, 故x 的取值范围为[]1,3. 故选:D. 8.B 【分析】问题转化为()f x 的图象与y a x =的图象有5个交点,y a x =是偶函数,()f x 是周期为2的周期函数,作出()f x 的图象与y a x =的图象,由观察图象可得不等关系得结论. 【详解】由题意()()g x f x a x =-有5个解,即函数()y f x =和y a x =的图象有5个交点, 因为f (x +2)=f (x ),所以()f x 是周期为2的周期函数, 当-1≤x <1时,2()f x x =,图象关于y 轴对称,过原点, 当1≤x <3时,()2()2f x x =-,y a x =是偶函数,图象关于y 轴对称,过原点,作出()y f x =和y a x =的图象,如图,它们有5个交点时,0a >, 根据对称性,可知,0x >时两个图象要有两个交点,y ax =直线在OA OB 、之间,即在(1,1)A 点下方,在(3,1)B 点上方,则131a a <⎧⎨>⎩,解得113a <<,故选:B.【点睛】方法点睛:本题考查函数零点个数问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,然后作出两个函数的图象,由图象观察所需同条件求得结论.考查了数形结合思想.二、填空题9.AB 【分析】利用定义法逐一判断奇偶性,并结合常见函数性质判断单调性,即得结果.【详解】选项A 中,()211y f x x ==+,定义域为R ,满足()()()221111f x x x f x -=-+=+=,故()1f x 是偶函数,又由二次函数性质知()211y f x x ==+区间()0,∞+单调递增,故符合题意;选项B 中,2()1y f x x ==-,定义域为R ,满足22()11()f x x x f x -=--=-=,故2()f x 是偶函数,在区间()0,∞+上,2()1y f x x ==-是递增函数,故符合题意; 选项C 中,321()y f x x==,定义域为()(),00,-∞⋃+∞,满足()332211()()f x f x x x -===-,故3()f x 是偶函数,但由幂函数性质知2321()y f x x x-===在区间()0,∞+单调递减,故不符合题意;选项D 中,()x t t x e -==,定义域为R ,()x x t x e e --=≠恒成立,故()x t t x e -==不是偶函数,故不符合题意. 故选:AB. 10.BC 【分析】根据含有一个量词的否定,充分不必要条件,必要不充分条件及基本不等式依次判断各选项即可. 【详解】对于A.命题2000,0x R x x ∃∈->“”的否定是“x R ∀∈,20x x -≤”,故A 错误;对于B. 2230x x +->等价于(3)(1)0x x +->,解得3x <-或1,x >故“1x >”是“2230x x +->”的充分不必要条件,B 正确;对于C.由22ac bc >可知20c >,则,a b >即22,b ac bc a >⇒>反之20a b c >≥,,22ac bc >不成立,所以“a b >” 是“22ac bc >”的必要不充分条件,C 正确;对于D.4sin 4sin y x x =+≥当且仅当4sin sin x x =,即sin 2x =±取等号,显然等号无法取得,故最小值不是4,设sin t x =,则(]0,1,t ∈4y t t=+在(]0,1,t ∈上为减函数,当1t =时,y 取最小值5,故D 错误;故选:BC. 11.ABC 【分析】利用不等式的性质可判断ABC ,取特殊值可判断D 选项. 【详解】选项A :因为0a b >>,所以10a b >⋅,不等式a b >两侧同时乘以1a b ⋅,所以11a b<,故A 正确;选项B :因为0a b >>,所以0ab >,所以a ab b ab +>+,即()()11a b b a +>+,又()101a a >+,所以不等式()()11a b b a +>+两侧同时乘以()11a a +,则11b b a a+>+,故B 正确;选项C :因为0a b >>,所以11b a >,根据不等式的同向可加性知11a b b a+>+,故C 正确;选项D :当2a =,12b =时,此时0a b >>,11a b a b+=+,故D 错误. 故选:ABC 12.BC 【分析】对于A 可以根据正弦函数最小正周期公式直接求得;对于B 根据题意得出等式计算即可;对于C 利用代入法判断即可;对于D 得出函数()π2sin 213g x x m ⎛⎫=+++ ⎪⎝⎭的图象向右平移π6个单位长度的解析式与函数()f x 的解析式对比即可. 【详解】对于A ,函数()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭的最小正周期2T ππω==,故A 错误; 对于B ,函数()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭最大值为2113m m ⨯++=+,若函数()f x 的最大值为6,则3m =,故B 正确; 对于C ,代入π6x =可知πsin 2=sin 162x π⎛⎫+= ⎪⎝⎭,函数取得最大值,所以直线π6x =是函数()f x 的图象的一条对称轴,故C 正确;对于D ,函数()π2sin 213g x x m ⎛⎫=+++ ⎪⎝⎭的图象向右平移π6个单位长度得到π2sin 212sin 2163y x m x m π⎛⎫⎛⎫-+++⎪==++ ⎪⎝⎭⎝⎭,与()f x 图像不同,故D 错误.故选:BC三、多选题 13.3【分析】写出该命题的否定命题,根据否定命题求出m 的取值范围即可. 【详解】解:命题“[]2,1x ∃∈-,有220x x m +->”是假命题, 它的否定命题是“[]2,1x ∀∈-,有220x x m +-≤”,是真命题,即[]2,1x ∀∈-,22x x m +≤恒成立,所以()2max 2m x x +≥,[]2,1x ∀∈-因为()()22211f x x x x =+=+-,在()2,1--上单调递减,()1,1-上单调递增,又()13f =,()20f -=,所以()max 3f x =所以3m ≥,m ∴的最小值为3, 故答案为:3.14.72【分析】根据指数、对数的运算法则和性质求解. 【详解】 102554(1)2100.25π-++++log log ,551211000.1254=+++log log ,511252=++log 171222=++=. 故答案为:72【点睛】本题主要考查了对数,指数的运算,还考查了运算求解的能力,属于基础题.15.4-【分析】根据三角函数的定义,得到两个方程,解方程即可求出ab的值.【详解】由三角函数的定义,13==a < 0,解得b a ==-所以4ab=-. 故答案为:4- 16.9,2⎛⎫+∞ ⎪⎝⎭【分析】首先画出函数图象,结合函数图象可得22a >,对3a ≤和3a >分类讨论,当3a >时,y a =分别与12y x x =+、3322y x =+有交点,设12x x <,则1210,12x x <<>由112123322x a x x a⎧+=⎪⎪⎨⎪+=⎪⎩消去a 得211213321022x x x x +--=,再根据121223x x <<,即可求出1x 的取值范围,从而求出()1f x 的取值范围,即可求出参数a 的取值范围;【详解】解:因为()12,01,33,>1.22x x xf x x x ⎧+<≤⎪⎪=⎨⎪+⎪⎩,函数图象如下所示:当01x <≤时,()12f x x x =+,由图可知当12x x =即2x =()min 22f x =()13f =,132f ⎛⎫= ⎪⎝⎭当a >()()f x a a R =∈才有两个不同的实根,当3a ≤时,方程()()f x a a R =∈有两个不同的实根,即12x a x+=有两个解,即2210x ax -+=有两个根,此时1212x x =,不符题意, 当3a >时,y a =分别与12y x x=+、3322y x =+有交点,设12x x <,则1210,12x x <<>由112123322x a x x a⎧+=⎪⎪⎨⎪+=⎪⎩消去a 得211213321022x x x x +--=,所以212114233x x x x =+-,因为121223x x <<,所以21114222333x x <+-<,解得1104x <<,或1112x <<,又因为1102x <<,所以1104x <<,由函数图象可知()f x 在10,4⎛⎫⎪⎝⎭上单调递减,又1942f ⎛⎫= ⎪⎝⎭ 所以()19,2f x ⎛⎫∈+∞ ⎪⎝⎭,故9,2a ⎛⎫∈+∞ ⎪⎝⎭故答案为:9,2⎛⎫+∞ ⎪⎝⎭【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.四、解答题17.(1){|31}x x -<≤;(2)若选①,(,1][2,)-∞-+∞;若选②,()1,2- 【分析】(1)由0a =得到{|31}A x x =-<<,然后利用并集运算求解.(2)若选A B =∅,分A =∅和A ≠∅两种情况讨论求解; 若选A B ⋂≠∅,则由23123110a a a a -<+⎧⎪-<⎨⎪+>⎩求解. 【详解】(1)当0a =时,{|31}A x x =-<<,{|01}B x x =<≤; 所以{|31}A B x x =-<≤ (2)若选①,A B =∅,当A =∅时,231a a -≥+,解得4a ≥,当A ≠∅时,4231a a <⎧⎨-≥⎩或410a a <⎧⎨+≤⎩,解得:24a ≤<或1a ≤-,综上:实数a 的取值范围(,1][2,)-∞-+∞. 若选②,A B ⋂≠∅,则23123110a a a a -<+⎧⎪-<⎨⎪+>⎩,即421a a a <⎧⎪<⎨⎪>-⎩,解得:1a 2-<<, 所以实数a 的取值范围()1,2-. 【点睛】易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题. 18.(1)π,[,]()36k k k Z ππππ-+∈;(2)max ()2f x =,此时,6=+∈x k k Z ππ.【分析】(1)利用正弦型函数周期公式求得,再利用正弦函数的性质即可求出增区间; (2)利用正弦函数的性质,分析计算作答. 【详解】(1)因函数()2sin(2)6f x x π=+,x ∈R ,则()f x 最小正周期22T ππ==, 由222,262k x k k Z πππππ-≤+≤+∈得:,36k x k k Z ππππ-≤≤+∈,所以()f x 的单调增区间是[,]()36k k k Z ππππ-+∈;(2)依题意,当sin(2)16x π+=时,max ()2f x =,此时,22,62x k k Z πππ+=+∈,即,6=+∈x k k Z ππ,所以max ()2f x =,此时,6=+∈x k k Z ππ.19.(1)证明见解析;(2)1,24⎛⎫⎪⎝⎭.【分析】(1)直接利用单调性的定义进行证明即可;(2)先得到()22f =,利用单调性把()22log 2f x x m +⎡⎤⎣⎦-<转化为()22log 2x x m -+<,由题意列不等式24104m m +<⎧⎪⎨-+>⎪⎩,即可解出实数m 的取值范围.【详解】(1)任取1x ,()2,x ∈-∞+∞,且12x x <, 则210x x ->,()210f x x ->.∵()()()()()()()2121112111f x f x f x x x f x f x x f x f x -=-+-=-+-()210f x x =->,即()()21f x f x >,∴()f x 在(),-∞+∞上是增函数.(2)∵()11f =,∴()()()211112f f f =+=+=.()22log 2f x x m +⎡⎤⎣⎦-<可等价变形为()()22log 2f x x m f ⎡⎤-+<⎣⎦,∵()f x 在(),-∞+∞上是增函数,∴上式可变形为()22log 2x x m -+<.∴204x x m <-+<.依题意,当[]0,2x ∈时,()()2max 2min40x x m x x m ⎧-+<⎪⎨-+>⎪⎩.当12x =时,2x x m -+取得最小值14m -+; 当2x =时,2x x m -+取得最大值2m +.∴24104m m +<⎧⎪⎨-+>⎪⎩.解得124m <<. 故实数m 的取值范围是1,24⎛⎫ ⎪⎝⎭.【点睛】(1)利用单调性解不等式通常用于: ①分段函数型不等式;②复合函数型不等式;③抽象函数型不等式;④解析式较复杂的不等式;(2)解题的一般策略是:利用函数的单调性,将函数值的的大小关系转化为自变量的关系,解不等式即可.20.(1)18,***162,17,,1182,716,,1626,16,xx x x L x x x x x x x ⎧-∈⎪+⎪⎪=+<<∈⎨-⎪-∈⎪⎪⎩N N N ;(2)当日产量为13千只时,每日的利润可以达到最大值为20万元. 【分析】(1)由题意可知,7x =时,167737271716kS ⨯=+=⨯+++-,从而可求出k 的值,由利润L S C =-可求得每日的利润L (万元)表示为日产量x (千只)的函数;(2)分17x ,7<x <16和16x 三种情况,求三个函数的最大值,再作比较可求出利润的最大值 【详解】(1)当x =7时,167737271716kS ⨯=+=⨯+++-,解得k =18. ***162,17,,1182,716,,1626,16,xx x x L x x x x x x x ⎧-∈⎪+⎪⎪=+<<∈⎨-⎪-∈⎪⎪⎩N N N(2)当17x ,*x ∈N 时,161621411x L x x =-=-++,在[1,7]上单调递增, 所以当x =7吋,max 12L =; 当7<x <16,*x ∈N 时,18182322(16)1616L x x x x ⎡⎤=+=--+⎢⎥--⎣⎦, 因为182(16)22(161216x x -+-=-, 当且仅当182(16)16x x-=-,即x =13时,max 20L =; 当16x ,*x ∈N 时,26L x =-在[16,)+∞上单调递减, 所以当16 x =时,max 10L =. 综上,当13x =时,max 20L =.答:当日产量为13千只时,每日的利润可以达到最大值为20万元. 21.(1)1a b ==;(2)12k ≤;(3)12m >-. 【分析】(1)就0a =、0a <、0a >分类讨论后可求,a b 的值.(2)令2x t =,则原不等式等价于222110t t kt -+-+≥在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,参变分离后可求k 的取值范围.(3)令2log 0s x =>,则原方程等价于()231210s m s m -+++=在()0,s ∈+∞有两个不同的实数解,利用根分布可求m 的取值范围. 【详解】解:(1)∵函数()()220g x ax ax b b =-+>,在[]1,2x ∈时最大值为1和最小值为0.∴(i )当0a =时,()g x b =不符合题意;(ii )当0a >时,由题意得()g x 对称轴为1x =,()g x 在[]1,2x ∈单调增, ∴()()1021g g ⎧=⎪⎨=⎪⎩,∴1a b ==;(ⅲ)当0a <时,由题意得()g x 对称轴为1x =,()g x 在[]1,2x ∈单调减, ∴()()1120g g ⎧=⎪⎨=⎪⎩,∴1a =-,0b =,不符合题意,综上:1a b ==;(2)当[]1,1x ∈-,令12,22xt ⎡⎤=∈⎢⎥⎣⎦,∴()210g t k t -⋅+≥在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,∴222110t t kt -+-+≥在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,即211221k t t ⎛⎫⎛⎫≤-+ ⎪ ⎪⎝⎭⎝⎭在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,又当2t =时,211221t t ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭最小值为12,∴12k ≤;(3)令2log 0s x =>,∴当0s >时,方程2log s x =有两个根;当0s <时,方程2log s x =没有根. ∵关于x 的方程()222log 310log mf x m x+--=有四个不同的实数解, ∴关于s 的方程()2310mf s m s+--=在()0,s ∈+∞有两个不同的实数解, ∴()231210s m s m -+++=在()0,s ∈+∞有两个不同的实数解,∴()()()2914210310210m m m m ⎧∆=+-⋅+>⎪+>⎨⎪+>⎩,∴12m >-.综上:关于x 的方程()222log 310log mf x m x +--=有四个不同的实数解时,12m >-.【点睛】方法点睛:对于指数不等式的恒成立问题或对数方程的有解问题,我们可以通过换元把它们转化为一元二次不等式的恒成立问题(可用参变分离来求参数的取值范围)或一元二次方程的解的问题(可用根分布来处理).22.(1)[0,)+∞(写出开区间亦可);(2)4m ≥;(3)72m =. 【分析】(1)根据单调性的定义结合奇偶性可得解;(2)令332xxt -=+≥=,问题转化为“242,t t m t+∃≥≥”为真命题,根据基本不等式找函数的最小值即可;(3)当[0,1]x ∈时,1033[2,]3x xt -=+∈,记2()4t t mt ϕ=-+,若函数()()()3log m h x g x -=在[]0,1上的最大值为0,分031m <-<和31m ->,结合对数函数的单调性列式求解即可. 【详解】(1)函数()f x 的增区间为[0,)+∞(写出开区间亦可); 理由:()()f x f x =-,()f x 为偶函数,任取210x x >>,()22112112211()()(1()33333)330x x x x x xx x f x f x --+-=+--+=->,所以()f x 的增区间为[0,)+∞.(2)()22233(33)6(33)(33)4x x x x x x x xg x m m ----=+-++=+-++,令332x x t -=+≥=,当且仅当0x =时取“=”,“(),0x R g x ∃∈≤”为真命题可转化为“242,t t m t+∃≥≥”为真命题,因为2444t t t t +=+≥,当且仅当2t =时取“=”, 所以2min 4()4t t+=, 所以4m ≥;(3)由(1)可知,当[0,1]x ∈时,1033[2,]3x xt -=+∈,记2()4t t mt ϕ=-+, 若函数()()()3log m h x g x -=在[]0,1上的最大值为0,则 1)当031m <-<,即34m <<时,()t ϕ在10[2,]3上最小值为1, 因为()t ϕ图象的对称轴为3(,2)22m t =∈,所以min ()(2)821t m ϕϕ==-=,解得7(3,4)2m =∈,符合题意;2)当31m ->,即4m >时,()t ϕ在10[2,]3上最大值为1,且()0t ϕ>恒成立, 因为()t ϕ图象是开口向上的抛物线,在10[2,]3的最大值可能是(2)ϕ或10()3ϕ,若(2)1ϕ=,则742m =<,不符合题意, 若10()13ϕ=,则127430m =>, 此时对称轴127310[,]6023t =∈,由2min ()()4024m m t ϕϕ==-<,不合题意0. 综上所述,只有72m =符合条件. 【点睛】本题主要考查了对数型、指数型的复合函数的单调性及最值问题。
2015-----2016上学期,期中考试高一数学,试卷(实验) (2)

2015----2016上学期期中考试高一数学试卷刘春和一、选择题(本大题共12小题,每小题5分,共60分)1.设集合M ={1,2,4,8},N ={x |x 是2的倍数},则M ∩N 等于( )A .{2,4}B .{1,2,4}C .{2,4,8}D .{1,2,8}2.已知函数y =1-x 2x 2-3x -2的定义域为( ) A .(-∞,1] B .(-∞,2]C .(-∞,-12)∩(-12,1]D .(-∞,-12)∪(-12,1]3.若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( )A .1+22B .1-22C .0D .24.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -45.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 676.若100a =5,10b =2,则2a +b 等于( ) A .0 B .1 C .2 D .37.式子log 89log 23的值为( ) A.23 B.32 C .2 D .38.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度9.函数y =1+1x 的零点是( )A .(-1,0)B .-1C .1D .010.函数f(x)=ln x -2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)11.若a>1,则函数y =a x 与y =(1-a)x 2的图象可能是下列四个选项中的( )12.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( )A .3B .1C .-1D .-3二、填空题(本大题共4小题,每小题5分,共20分)13.设函数f (x )=⎩⎪⎨⎪⎧ x 2+2 (x ≥2)2x (x <2),已知f (x 0)=8,则x 0=________. 14.函数f(x)=a x -1+3的图象一定过定点P ,则P 点的坐标是________.15.幂函数f (x )的图象过点(3,427),则f (x )的解析式是______________.16.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________.三、解答题(本大题共6小题,共70分)17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-;(2)已知a =12,b =132, 求[32a -()()122123b ab a ----]2的值.18.(12分)设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .19.(12分)已知函数f (x )=-3x 2+2x -m +1.(1)当m 为何值时,函数有两个零点、一个零点、无零点;(2)若函数恰有一个零点在原点处,求m 的值.20.(12分)函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f (x )=2x -1.(1)用定义证明f (x )在(0,+∞)上是减函数;(2)求当x <0时,函数的解析式.21.(12分)函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值.22.(12分)某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是p=⎩⎪⎨⎪⎧ t +20, 0<t <25,t ∈N ,-t +100, 25≤t ≤30,t ∈N .该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40(0<t ≤30,t ∈N ).(1)求这种商品的日销售金额的解析式;(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?。
2015-2016学年度第一学期期中高一数学试卷

高一数学期中试卷一、填空题(本大题共14小题,每小题5分,计70分)1.设集合{}1,0,1,2A =-,{}0,2,5B =,则A B = ▲ . 2.函数1y x=+的定义域为 ▲ . 3. 用列举法...表示集合{}2|1log 2,A x x x =-<<∈z ,其表示结果应为 ▲ . 4. 函数223(03)y x x x =-++≤<的值域是 ▲ .5.已知函数21(0)()1()(0)3x x x f x x -≥⎧⎪=⎨<⎪⎩则1(())2f f -= ▲ .6. 若{}1,3,5B =-,下列集合A ,使得:21f x x →+是A 到B 的映射的是________(填写序号)①{}1,2A = ②{}1,7,11A =- ③{}1,1,2A =- ④{}1,0,1A =- 7. 已知幂函数25*()m y xm -=∈N 在(0,)+∞上是减函数,且它的图像关于y 轴对称,则m = ▲ .8.已知函数222()x x y x --+=∈R ,对于任意x 恒有0()()f x f x ≤成立,则0x = ▲ .9. 函数143y x =-+的图象的对称中心的坐标是 ▲ . 10. 计算:3298542lg 4lg log 16log 818-+++⋅= ▲ .11.函数lg 25y x x =+-的零点0(1,3)x ∈,对区间(1,3)利用两次“二分法”,可确定0x 所在的区间为 ▲ .12. 已知()y f x =是R 上的偶函数,且当[0,)x ∈+∞时,()23xf x =-,则满足()0f x <的x 的取值范围是 ▲ .13.函数3()||3f x x x x =⋅++在区间[2015,2015]-上的最大值与最小值之和为= ▲ . 14.下列命题:① 函数22(2)2x x y x -=-是奇函数; ② 函数|3|2x y -+=在(,4)-∞上是增函数; ③ 将函数2log (2)y x =-的图象向左平移3个单位可得到2log (1)y x =+的图象; ④ 若1.4 1.51ab=<,则0a b <<;则上述正确命题的序号是 ▲ .(将正确命题的序号都填上)二、解答题 (共6道题,计90分) 15.(本题满分14分)设全集U =R ,集合{}|14A x x =≤<,{}|23B x a x a =≤<-. (1)若2a =-,求B A ,U B A ð (2)若B A ⊆,求实数a 的取值范围; 16、(本题满分14分)已知函数22231()log (1)1x x x f x x x ⎧--+≤=⎨->⎩(1) 画出函数()y f x =的简图(要求标出关键的点、线); (2) 结合图象,直接写出函数()y f x =的单调增区间;(3) 观察图象,若关于x 的方程()f x t =有两个不相等的实数解,求实数 t 的取值范围.17、(本题满分15分)已知0a >且1a ≠,函数1()log (1),()log (3),a af x xg x x =-=-(1)若()()()h x f x g x =-,求函数()h x 的定义域; (2)若2,a = 求函数()()()h x f x g x =-的值域; (3)讨论不等式()()0f x g x +≥中x 的取值范围.18、(本题满分15分)物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是0T ,经过一段时间t 后的温度是T ,则有01()()2T T T T αα-=-⋅th,其中T α表示环境温度,h 称为半衰期且10h =. 现有一杯用89℃热水冲的速溶咖啡,放置在25℃的房间中20分钟,求此时咖啡的温度是多少度?如果要降温到35℃,共需要多长时间?(lg 20.301≈,结果精确到0.1) 19、(本题满分16分)已知函数()af x x x=+,()2g x a x =- (1) 若4,a =判断函数()y f x =在[2,)+∞上的单调性,并证明你的结论;(2) 若不等式()()f x g x ≥在[1,)+∞上恒成立,求实数a 的取值范围.20、(本题满分16分)已知函数2()21(0,1)g x ax ax b a b =-++≠<,在区间[2,3]上有最大值4,有最小值1, 设()()g x f x x=. (1) 求,a b 的值;(2) 不等式(2)20x x f k -⋅≥在[1,1]x ∈-时恒成立,求实数k 的取值范围; (3) 若方程2(|21|)(3)0|21|xx f k -+-=-有三个不同的实数解,求实数k 的取值范围.高一数学期中考试参考答案一、填空题(本大题共14小题,每小题5分,计70分)1、{}1,0,1,2,5-2、{}|1,0x x x ≥-≠3、{}1,2,34、(0,4]5、16、①③7、18、12-9、(3,4)- 10、912411、5(2,)212. 22(log 3,log 3)- 13. 6 14、 ①②③④ 二、解答题 (共6道题,计90分)15.(本题满分14分)解:(1){}|14U A x x x =<≥或ð, 2a =-时,{}45B x =-≤<, ………………2分 所以[1,4)B A = ,U B A ð={}|4145x x x -≤<≤<或 ………………6分(2)若B A ⊆,分以下两种情形:①B =∅时,则有23a a ≥-,∴1a ≥ ………………8分②B ≠∅时,则有232134a aa a <-⎧⎪≥⎨⎪-≤⎩,∴112a ≤< ………………12分综上所述,所求a 的取值范围为12a ≥………………14分 (注:画数轴略,不画数轴不扣分)16、(本题满分14分) 解:(1),其中图象正确得3分,关键点、线的标注3分. ………………6分以下要素有一处不标注的,扣1分:x 、y 轴、原点O ,对称轴,渐近线,顶点(-1,4),点(1,0),点(2,0).(2)增区间为:(,1]-∞-,(1,)+∞ ………………10分(3)观察图象,方程()f x t =有两个不相等的解等价于函数()y f x =的图象与直线y t =只有两个交点. 所以实数 t 的取值范围是4t =或0t < ………………14分 17、(本题满分15分) 解:(1)x 应满足1030x x ->⎧⎨-<⎩,∴13x <<,所求定义域为{}|13x x << …………4分注:如对原来函数变形后求定义域,则扣2分. (2)2a =时, 函数2()log (1)(3)h x x x =--,令(1)(3)t x x =--,由于13x <<,∴01t <≤, …………7分 ∴ ()0h x ≤, 所以,所求函数()h x 的值域为(,0]-∞ …………9分 (3)1()()log 03a x f x g x x-+=≥-,分以下两种情形: 情形一:当1a >时,得113x x -≥-,等价于:3013x x x ->⎧⎨-≥-⎩或3013x x x -<⎧⎨-≤-⎩解得:23x ≤<. …………12分情形二:当01a <<时,得1013x x -<≤-,等价于:301013x x x x ->⎧⎪->⎨⎪-≤-⎩或301013x x x x-<⎧⎪-<⎨⎪-≥-⎩解得:12x <≤.…………15分 18、(本题满分15分)解:由条件知,089,T =25T α=,20t=, …………2分代入01()()2T T T T αα-=-⋅t h 得125(8925)()2T -=-⋅2010,解得41T = …………………6分如果要降温到35℃,则13525(8925)()2-=-⋅t 10, …………8分则1lg 18lg 2102t ⋅=-,解得26.8t ≈ …………13分 答:此时咖啡的温度是41℃,要降温到35℃,共需要约26.8分钟. …………15分19、(本题满分16分) 解:(1)4a =时,函数()y f x =在[2,)+∞上是增函数 ………………1分 任取12,[2,)x x ∈+∞,设12x x > 则211212121212444()()()()()()x x f x f x x x x x x x x x --=+-+=-+ =1212124()x x x x x x --⋅………………4分 ∵ 122x x >≥,∴ 120x x ->,124x x >,∴121240x x x x -> ………………6分∴12()()0f x f x ->,即:12()()f x f x >所以,函数)(x f =xx 4+在[2,)+∞上是增函数 ………………8分(2)不等式()()f x g x ≥就是:2a x a x x +≥-,即:3ax a x+≥由于[1,)x ∈+∞,等价于230x ax a -+≥在[1,)+∞上恒成立 ………………9分① 当16a≤时,2()3g x x ax a =-+在[1,)+∞是增函数,则(1)0g ≥,这显然成立 ………………12分 ② 当16a ≥时,2()3g x x ax a =-+在[1,]6a 是减函数,在[,)6a+∞上增函数,则()06ag ≥,解得612a ≤≤ ………………15分综上,所求实数a 的取值范围是12a ≤ ………………16分注:用分离参数法解,相应给分。
北京市顺义区牛栏山一中2015_2016学年高一数学上学期期中试卷(含解析)

2015-2016学年北京市顺义区牛栏山一中高一(上)期中数学试卷一、选择题:(每题5分,共40分)在每小题的4个选项中,只有1项是符合题目要求的. 1.设集合I=R,集合M={x|x<1},N={x|﹣1<x<2},则集合{x|﹣1<x<1}等于( ) A.M∪N B.M∩N C.(∁I M)∪N D.(∁I M)∩N2.若f(x)=x2+a(a为常数),,则a的值为( )A.﹣2 B.2 C.﹣1 D.13.函数的定义域为( )A.上是增函数且最大值为5,那么f(x)在区间上是( )A.增函数且最小值为﹣5 B.增函数且最大值为﹣5C.减函数且最大值是﹣5 D.减函数且最小值是﹣55.已知a=40.4,b=80.2,,则( )A.a<b<c B.a<c<b C.a>c>b D.a>b>c6.已知幂函数f(x)=xα(α∈Z),具有如下性质:f2(1)+f2(﹣1)=2,则f(x)是( ) A.奇函数B.偶函数C.既是奇函数又是偶函数 D.是非奇非偶函数7.定义在R上的函数f(x)满足f(x)=,则f(3)的值为( )A.﹣1 B.﹣2 C.1 D.28.已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6) C.(10,12)D.二、填空题:(每题5分,共30分)9.写出满足条件{1,3}∪A={1,3,5}的集合A的所有可能情况是__________.10.函数y=1﹣2x(x∈)的值域为__________.11.如果奇函数y=f(x)(x≠0),当x∈(0,+∞)时,f(x)=x﹣1,则使f(x﹣1)<0的x的取值范围是__________.12.若函数y=2﹣x+m的图象不经过第一象限,则m的取值范围是__________.13.函数y=log2(x2﹣3x﹣4)的单调增区间是__________.14.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(﹣3)=__________.三.解答题:解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B),∁R(A∩B),(∁R A)∩B,A∪(∁R B)16.(14分)计算下列各题:(2)2lg lg49.17.(13分)已知函数f(x)=是奇函数,且f(2)=.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并用定义加以证明.18.(14分)某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A和B,由于用货量大,这两家商店都给出了优惠条件:商店A:买一赠一,买一套工作服,赠一副手套;商店B:打折,按总价的95%收款.该企业需要工作服75套,手套x副(x≥75),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?19.(13分)设函数f(x)=log2(a x﹣b x),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)当x∈时,求f(x)最大值.20.(14分)已知定义域为R的函数是奇函数(1)求a值;(2)判断并证明该函数在定义域R上的单调性;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;(4)设关于x的函数F(x)=f(4x﹣b)+f(﹣2x+1)有零点,求实数b的取值范围.2015-2016学年北京市顺义区牛栏山一中高一(上)期中数学试卷一、选择题:(每题5分,共40分)在每小题的4个选项中,只有1项是符合题目要求的. 1.设集合I=R,集合M={x|x<1},N={x|﹣1<x<2},则集合{x|﹣1<x<1}等于( ) A.M∪N B.M∩N C.(∁I M)∪N D.(∁I M)∩N【考点】交集及其运算.【专题】计算题;集合思想;集合.【分析】由M与N,求出两集合的交集、并集,M补集与N的并集,M补集与N的交集即可.【解答】解:∵I=R,M={x|x<1},N={x|﹣1<x<2},∴M∩N={x|﹣1<x<1},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若f(x)=x2+a(a为常数),,则a的值为( )A.﹣2 B.2 C.﹣1 D.1【考点】函数的零点.【专题】计算题;方程思想;综合法;函数的性质及应用.【分析】利用f(x)=x2+a(a为常数),,代入计算,即可得出结论.【解答】解:∵f(x)=x2+a(a为常数),,∴2+a=3,∴a=1.故选:D.【点评】本题考查函数值的计算,考查学生的计算能力,比较基础.3.函数的定义域为( )A.上是增函数且最大值为5,那么f(x)在区间上是( )A.增函数且最小值为﹣5 B.增函数且最大值为﹣5C.减函数且最大值是﹣5 D.减函数且最小值是﹣5【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据奇函数的图象关于原点对称,故它在对称区间上的单调性不变,结合题意从而得出结论.【解答】解:由于奇函数的图象关于原点对称,故它在对称区间上的单调性不变.如果奇函数f(x)在区间上是增函数且最大值为5,那么f(x)在区间上必是增函数且最小值为﹣5,故选A.【点评】本题主要考查函数的奇偶性和单调性的综合应用,奇函数的图象和性质,属于中档题.5.已知a=40.4,b=80.2,,则( )A.a<b<c B.a<c<b C.a>c>b D.a>b>c【考点】指数函数的单调性与特殊点.【专题】计算题;函数思想;转化思想;函数的性质及应用.【分析】把3个数化为底数相同,利用指数函数的单调性判断大小即可.【解答】解:a=40.4=20.8,b=80.2=20.6=20.5,因为y=2x是增函数,所以a>b>c.故选:D.【点评】本题考查指数函数的单调性的应用,考查计算能力.6.已知幂函数f(x)=xα(α∈Z),具有如下性质:f2(1)+f2(﹣1)=2,则f(x)是( ) A.奇函数B.偶函数C.既是奇函数又是偶函数 D.是非奇非偶函数【考点】函数的零点.【专题】计算题;方程思想;综合法;函数的性质及应用.【分析】欲正确作答,取常量n=2,验证可得结论.【解答】解:幂函数f(x)=xα(α∈Z)中,若有f2(1)+f2(﹣1)=2,则可取常量n=2,所以,函数为f(x)=x2,此函数的图象是开口向上,并以y轴为对称轴的二次函数,即定义域为R,关于原点对称,且f(﹣x)=(﹣x)2=x2=f(x),所以为偶函数.故选:B.【点评】本题考查幂函数,函数的奇偶性,考查学生的计算能力,比较基础.7.定义在R上的函数f(x)满足f(x)=,则f(3)的值为( )A.﹣1 B.﹣2 C.1 D.2【考点】函数的值.【专题】函数的性质及应用.【分析】利用分段函数的性质和对数的运算法则求解.【解答】解:∵f(x)=,∴f(3)=f(2)﹣f(1)=f(1)﹣f(0)﹣f(1)=﹣f(0)=﹣log24=﹣2.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意对数性质的灵活运用.8.已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5, 6)C.(10,12)D.【考点】分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质.【专题】作图题;压轴题;数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:(每题5分,共30分)9.写出满足条件{1,3}∪A={1,3,5}的集合A的所有可能情况是{5},{1,5},{3,5},{1,3,5}.【考点】并集及其运算.【专题】计算题;集合思想;集合.【分析】利用已知条件,直接写出结果即可.【解答】解:{1,3}∪A={1,3,5},可得A中必须含有5这个元素,也可以含有1,3中的数值,满足条件{1,3}∪A={1,3,5}的集合A的所有可能情况是{5},{1,5},{3,5},{1,3,5}.故答案为:{5},{1,5},{3,5},{1,3,5}.【点评】本题考查集合的并集的元素,基本知识的考查.10.函数y=1﹣2x(x∈)的值域为.【考点】函数的值域.【专题】计算题;函数思想;函数的性质及应用.【分析】利用函数的单调性,直接求解函数值域即可.【解答】解:因为函数y=1﹣2x是减函数.所以x∈时,可得函数的最大值为:﹣3,最小值为:﹣7,函数的值域.故答案为:.【点评】本题考查函数的单调性的应用,函数的值域的求法,是基础题.11.如果奇函数y=f(x)(x≠0),当x∈(0,+∞)时,f(x)=x﹣1,则使f(x﹣1)<0的x的取值范围是(﹣∞,0)∪(1,2).【考点】其他不等式的解法.【专题】计算题;数形结合.【分析】由题意,可先研究出奇函数y=f(x)(x≠0)的图象的情况,解出其函数值为负的自变量的取值范围来,再解f(x﹣1)<0得到答案【解答】解:由题意x∈(0,+∞)时,f(x)=x﹣1,可得x>1时,函数值为正,0<x<1时,函数值为负又奇函数y=f(x)(x≠0),由奇函数的性质知,当x<﹣1时,函数值为负,当﹣1<x<0时函数值为正综上,当x<﹣1时0<x<1时,函数值为负∵f(x﹣1)<0∴x﹣1<﹣1或0<x﹣1<1,即x<0,或1<x<2故答案为(﹣∞,0)∪(1,2)【点评】本题考查利用奇函数图象的对称性解不等式,解题的关键是先研究奇函数y=f(x)函数值为负的自变量的取值范围,再解f(x﹣1)<0的x的取值范围,函数的奇函数的对称性是高考的热点,属于必考内容,如本题这样的题型也是高考试卷上常客12.若函数y=2﹣x+m的图象不经过第一象限,则m的取值范围是(﹣∞,﹣1].【考点】指数函数的图像变换.【专题】转化思想;综合法;函数的性质及应用.【分析】根据函数y=2﹣x+m的图象经过定点(0,1+m),且函数y在R上单调递减,可得1+m≤0,求得m的范围.【解答】解:∵函数y=2﹣x+m的图象不经过第一象限,而函数y=2﹣x+m的图象经过定点(0,1+m),且函数y在R上单调递减,则1+m≤0,求得m≤﹣1,故答案为:(﹣∞,﹣1].【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.13.函数y=log2(x2﹣3x﹣4)的单调增区间是(4,+∞).【考点】复合函数的单调性.【专题】函数的性质及应用.【分析】令t=x2﹣3x﹣4>0,求得函数的定义域,根据y=log2t,本题即求二次函数t的增区间,再利用二次函数的性质可得函数t的增区间.【解答】解:令t=x2﹣3x﹣4>0,求得x<﹣1,或x>4,故函数的定义域为(﹣∞,﹣1)∪(4,+∞),且y=log2t,故本题即求二次函数t的增区间.再利用二次函数的性质可得函数t的增区间为(4,+∞),故答案为:(4,+∞).【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.14.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(﹣3)=6.【考点】抽象函数及其应用.【专题】计算题.【分析】本题是抽象函数及其应用类问题.在解答时,首先要分析条件当中的特殊函数值,然后结合条件所给的抽象表达式充分利用特值得思想进行分析转化,例如结合表达式的特点1=0+1等,进而问题即可获得解答.【解答】解:由题意可知:f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴f(0)=0.f(0)=f(﹣1+1)=f(﹣1)+f(1)+2×(﹣1)×1=f(﹣1)+f(1)﹣2,∴f(﹣1)=0.f(﹣1)=f(﹣2+1)=f(﹣2)+f(1)+2×(﹣2)×1=f(﹣2)+f(1)﹣4,∴f(﹣2)=2.f(﹣2)=f(﹣3+1)=f(﹣3)+f(1)+2×(﹣3)×1=f(﹣3)+f(1)﹣6,∴f(﹣3)=6.故答案为:6.【点评】本题是抽象函数及其应用类问题.在解答的过程当中充分体现了抽象性、特值的思想以及问题转化的能力.值得同学们体会和反思.三.解答题:解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B),∁R(A∩B),(∁R A)∩B,A∪(∁R B)【考点】交、并、补集的混合运算.【专题】计算题;集合.【分析】利用集合的交、并、补集的混合运算和不等式的性质求解.【解答】解:∵集合A={x丨3≤x<7},B={x丨2<x<10},∴A∪B={x|2<x<10},A∩B={x|3≤x<7},∁R A={x|x<3或x≥7},∴∁R(A∪B)={x|x≤2或x≥10},∁R(A∩B)={x|x<3或x≥7},(∁R A)∩B={x|2<x≤3或7≤x<10}.【点评】本题考查集合的交、并、补集的混合运算,是基础题,解题时要认真审题,注意不等式性质的合理运用.16.(14分)计算下列各题:(2)2lg lg49.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;转化法;函数的性质及应用.【分析】(1)利用有理指数幂的运算法则化简求解即可.(2)利用对数运算法则化简求解即可.【解答】解:(1)=0.4﹣1﹣1+﹣4+2﹣3+0.1=﹣1++=…(2)2lg lg49=2lg5﹣2lg3﹣lg7+2lg2+2lg3+lg7=2lg5+2lg2=2 …(14分)【点评】本题考查对数与已经在什么的运算法则的应用,考查计算能力.17.(13分)已知函数f(x)=是奇函数,且f(2)=.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并用定义加以证明.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(1)根据函数奇偶性的性质和条件建立方程关系即可求实数a,b的值;(2)根据函数单调性的定义即可证明函数f(x)在(﹣∞,﹣1]上的单调性.【解答】解:(1)∵f(x)是奇函数,∴f(﹣x)=﹣f(x).∴=﹣,因此b=﹣b,即b=0.又f(2)=,∴=,∴a=2;(2)由(1)知f(x)==+,f(x)在(﹣∞,﹣1]上为增函数,证明:设x1<x2≤﹣1,则f(x1)﹣f(x2)=(x1﹣x2)(1﹣)=(x1﹣x2)•.∵x1<x2≤﹣1,∴x1﹣x2<0,x1x2>1.∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在(﹣∞,﹣1]上为增函数.【点评】本题主要考查函数奇偶性的应用以及函数单调性的证明,根据相应的定义是解决本题的关键.18.(14分)某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A和B,由于用货量大,这两家商店都给出了优惠条件:商店A:买一赠一,买一套工作服,赠一副手套;商店B:打折,按总价的95%收款.该企业需要工作服75套,手套x副(x≥75),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?【考点】函数模型的选择与应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】分别计算按商店A和B优惠付款数,作差比较,即可得出结论.【解答】解:设按商店A和B优惠付款数分别为f(x)和g(x)商店A:f(x)=75×53+(x﹣75)×3=3x+3750(x≥75)…商店B:g(x)=(75×53+3x)×95%=2.85x+3776.25(x≥75)…令f(x)=g(x),解得x=175选择A与B是一样的…令y=f(x)﹣g(x)=0.15x﹣26.25,当75≤x<175时,y<0,选择商店A;…当x>175时,y>0,选择商店B;…(14分)【点评】本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,正确求出按商店A和B优惠付款数是关键.19.(13分)设函数f(x)=log2(a x﹣b x),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)当x∈时,求f(x)最大值.【考点】对数函数图象与性质的综合应用.【专题】综合题.【分析】(1)由已知f(1)=1,f(2)=log212代入到f(x)中,求得a、b的值即可;(2)利用换元法,由(1)得,令g(x)=4x﹣2x=(2x)2﹣2x,再令t=2x,则y=t2﹣t,可知函数y=(t﹣)2﹣在上是单调递增函数,从而当t=4时,取得最大值12,故x=2时,f(x)取得最大值.【解答】解:∵函数f(x)=log2(a x﹣b x),且f(1)=1,f(2)=log212∴∴∴(2)由(1)得令g(x)=4x﹣2x=(2x)2﹣2x令t=2x,则y=t2﹣t∵x∈,∴t∈,显然函数y=(t﹣)2﹣在上是单调递增函数,所以当t=4时,取得最大值12,∴x=2时,f(x)最大值为log212=2+log23【点评】本题以对数函数为载体,考查学生利用待定系数法求函数解析式的能力,考查函数的单调性与最值,属于基础题.20.(14分)已知定义域为R的函数是奇函数(1)求a值;(2)判断并证明该函数在定义域R上的单调性;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;(4)设关于x的函数F(x)=f(4x﹣b)+f(﹣2x+1)有零点,求实数b的取值范围.【考点】指数函数的单调性与特殊点;奇偶性与单调性的综合.【专题】综合题.【分析】(1)根据奇函数当x=0时的函数值为0,列出方程求出a的值;(2)先判断出单调性,再利用函数单调性的定义法进行证明,即取值﹣作差﹣变形﹣判断符号﹣下结论;(3)利用函数的奇偶性将不等式转化为函数值比较大小,再由函数的单调性比较自变量的大小,列出不等式由二次函数恒成立进行求解;(4)根据函数解析式和函数零点的定义列出方程,再利用整体思想求出b的范围.【解答】解:(1)由题设,需,∴a=1,∴,经验证,f(x)为奇函数,∴a=1.(2)减函数证明:任取x1,x2∈R,x1<x2,△x=x2﹣x1>0,f(x2)﹣f(x1)=﹣=,∵x1<x2 ∴0<<;∴﹣<0,(1+)(1+)>0∴f(x2)﹣f(x1)<0∴该函数在定义域R 上是减函数.(3)由f(t2﹣2t)+f(2t2﹣k)<0 得f(t2﹣2t)<﹣f(2t2﹣k),∵f(x)是奇函数,∴f(t2﹣2t)<f(k﹣2t2),由(2)知,f(x)是减函数∴原问题转化为t2﹣2t>k﹣2t2,即3t2﹣2t﹣k>0 对任意t∈R 恒成立,∴△=4+12k<0,得即为所求.(4)原函数零点的问题等价于方程f(4x﹣b)+f(﹣2x+1)=0由(3)知,4x﹣b=2x+1,即方程b=4x﹣2x+1有解∴4x﹣2x+1=(2x)2﹣2×2x=(2x﹣1)2﹣1≥﹣1,∴当b∈[﹣1,+∞)时函数存在零点.【点评】本题考查了函数的奇偶性、单调性的应用,利用奇函数的定义域内有0时有f(0)=0进行求值,函数单调性的证明必须按照定义法进行证明,即取值﹣作差﹣变形﹣判断符号﹣下结论,利用二次函数的性质,以及整体思想求出恒成立问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市牛栏山一中2015-2016学年度第一学期期中考试
高一数学试题
牛栏山一中 2015.11.12
一、选择题:(每题5分,共40分)在每小题的4个选项中,只有1项是符合题目要求的.
1. 设集合I =R ,集合{}1=<M x x ,N={x |12-<<x },则集合{x |11-<<x }等于( )
A . M N
B . M N
C . I (M)N ?
D . I (M)N ?
2. 若2()=+f x x a (a 为常数)
,3=f ,则a 的值为( )
A .2-
B . 2
C . 1-
D . 1
3. 函数x x y +-+=2)2(0的定义域为( )
A .),2[+∞-
B . [2,0)(0,)-+∞
C . ),2(+∞-
D . )2,(-∞
4.如果奇函数)(x f 在区间[3,7]上是增函数,且最小值为5,那么)(x f 在区间]3,7[--上是
( )
A .增函数,且最小值为5-
B .增函数,且最大值为5-
C .减函数,且最小值为5-
D .减函数,且最大值为5-
5.已知4.04=a ,2.08=b ,5.0)21
(-=c ,则( )
A . c b a <<
B . b c a <<
C . b c a >>
D . c b a >>
6. 已知幂函数)()(Z x x f ∈=αα,具有如下性质:]1)1()1([21-122--+=+f f f f )()(,
则)(x f 是
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.是非奇非偶函数
7.定义在R 上的函数)(x f 满足⎩⎨⎧>---≤-=0),2()1(0
),4(log )(2x x f x f x x x f ,则)3(f 的值为( )
A.2-
B. 1-
C. 2
D.1
8.已知函数⎪⎩⎪⎨⎧>+-≤<=10,62
1100,|lg |)(x x x x x f ,若c b a ,,互不相等,且)()()(c f b f a f ==,则abc
的取值范围是( )
A. (1,10)
B. (5,6)
C. (10,12)
D. (20,24)
二、填空题:(每题5分,共30分)
9.写出满足条件{1,3}A {1,3,5}= 的集合A 的所有可能情况是 ;
10.函数])3,2[(21∈-=x y x 的值域为 ;
11.若奇函数)0)((≠∈=x R x x f y 且,当),0(+∞∈x 时,1)(-=x x f ,那么使0)1(<-x f 的x 的取值范围为 ;
12.若函数m y x +=-2的图象不经过第一象限,则m 的取值范围是 ;
13.函数22()log (34)=--f x x x 的单调增区间为 ;
14.定义R 在上的函数)(x f 满足()()()2(,),(1)2=++∈=+f f f y xy x y R f x y x 则)3(-f = .
三.解答题:解答应写出文字说明、证明过程或演算步骤.
15.(本题满分12分)
已知集合}73|{<≤=x x A ,}102|{<<=x x B 。
求R (A B) ?,R (A B) ?,()R A B ?,()R A B ?.
16.计算下列各题:(本题满分14分,每小题7分,共14分)
141030.753
327(1)0.064()[(2)]160.018-----+-++ 571(2)2lg lg 2lg 3lg 49342
-++ 17.(本题满分13分) 已知22()3+=+px f x x q 是奇函数,且35)2(=f . (1)求实数q p ,的值;
(2)判断函数)(x f 在)1,(--∞上的单调性,并加以证明.
18.(本题满分14分)某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A 和B ,由于用货量大,这两家商店都给出了优惠条件:
商店A :买一赠一,买一套工作服,赠一副手套;
商店B :打折,按总价的95%收款.
该企业需要工作服75套,手套x 副(75≥x ),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?
19. (本题满分13分)设函数2()log ()=-x x f x a b ,且2(1)1,(2)log 12==f f 。
(1)求,a b 的值;
(2)当[1,2]∈x 时,求()f x 的最大值.
20.(本题满分14分)已知定义域为R 的函数2()12x x a f x -+=
+是奇函数,
(1)求实数a 的值;
(2)判断该函数在定义域R 上的单调性(不要求写证明过程);
(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围;
(4)设关于x 的方程1(4)(2)x x f b f +-+-= 0有实数根,求实数b 的取值范围.
参考答案:
1.B 2.D 3.C 4.B 5.D 6.B 7.A 8.C
9.{}{}{}{}1,3,5,3,5,1,5,5 10.[-7,-3] 11.()(1,2),0- ∞ 12.
]1,(--∞ 13.()+∞4, 14.6
15. R (A B) ð{}10,2x ≥≤=x x 或……3分R (A B) ð{}7,3x ≥<=x x 或……6分 R (A)B ð{}107,32x <≤<<=x x 或……9分,
R A (B) ð{}10,73,2x ≥<≤≤=x x x 或或…………12分. 16.(1)80
143 …………7分 (2)2 …………14分 17.(1)0,2==q p ……6分
(2)利用定义证明…………13分
18.设按商店A 和B 优惠付款数分别为)(x f 和)(x g
商店A :)75(375033)75(5375)(≥+=⨯-+⨯=x x x x f ……4分 商店B :)75(25.377685.2%95)35375()(≥+=⨯+⨯=x x x x g ……8分
令)()(x g x f =,解得175=x 选择A 与B 是一样的 ……10分
令25.2615.0)()(-=-=x x g x f y ,
当17575<≤x 时,0<y ,选择商店A ; ……12分
当175>x 时,0>y ,选择商店B ; ……14分
19.(1)有题设得.2
412log )(log 1)(log 22222⎩⎨⎧==⇒⎩⎨⎧=-=-b a b a b a …………5分 (2)因为)(log )(x x x f 24
2-=,由0024>⇒>-x x x 即)(x f 的定义域为{}0>x x ……………7分
因为]2,1[∈x 为)
,(∞+0的真子集,令x t 2=,则42≤≤t ……………9分 于是,]4
1)21[(log )(log )()(2222--=-==t t t t x f ϕ,
又)(t ϕ在[2,4]上为增函数……………11分
所以)(x f 的为.12log )4()2(2==ϕf ……………13分
20.(1)由题设,需12(0)0,1a f a -+==∴=,
12()12
-∴=+x
x f x ,经验证,()f x 为奇函数,1a ∴=--------4分 (2)该函数在定义域R 上是减函数------6分
(3)由22(2)(2)0f t t f t k -+-<得22(2)(2)f t t f t k -<--,()f x 是奇函数 22(2)(2)f t t f k t ∴-<-,由(2)知()f x 是减函数
∴原问题转化为2222t t k t ->-,即2320t t k -->对任意t R ∈恒成立4120,k ∴∆=+< 得13
k <-即为所求----------------10分 (4)因为方程1(4)(2)0x x f b f +-+-=有实数根,
由(2),142x x b +-=,即方程124+-=x x b 有解--------12分
11)12(22)2(24221-≥--=⨯-=-+x x x x x ,
∴b [1,)∈-+∞ ------------14分.。