工程热力学 鄂加强 第五章
工程热力学讲义第五章

t ,c t ,max
Wnet ,max Q1
Wnet ,max t ,c Q1 0.364 1000 364 kJ P 432 kJ
or
W0 432 t 0.432 t ,c Q1 1000
违反第二定律,所以不可能
18
热效率
T1=1500K;T2=300K; p1=28.0MPa;p2=0.1MPa 1.不是卡诺循环
' c
c可大于,小于,或等于1
c ' 1
11
三.概括性卡诺循环 1. 循环组成 1 定温吸热 →2 3 定温放热 →4 2 同(n)类可逆→3 4 同(n)类可逆→1
理论上Th→Tl温度连续变化的储热器可满足。工质在4→1中把热 量放给储热器,在2→3中又从储热器中收回。
q2 面积1mn2 TL s12 q1 面积34op3 Th s34 TL s12 TL wnet q1 q2 q2 1 1 tC t 1 Th s 34 Th q1 q1 q1
设为制冷循环
Tc 400 c 1.33 T0 Tc 700 400
t tc
不可能
Q2 4000 0.4 wnet 10000
c 可能但不可逆
27
注意:1)任何循环(可逆,不可逆;正向,反向) 第一定律都适用。故判断过程方向时仅有 第一定律是不够的; 2)热量、功的“+‖、“-”均基于系统,故取系 统 不同可有正负差别; Q Q 0 中, 不是工质微元熵变 Tr Tr 3)克氏积分
q1i
Thi
全部循环求和 lim (
i 1
q2i
Tli
)
工程热力学第5章习题答案

第5章 热力学第二定律5-1 当某一夏日室温为30℃时,冰箱冷藏室要维持在-20℃。
冷藏室和周围环境有温差,因此有热量导入,为了使冷藏室内温度维持在-20℃,需要以1350J/s 的速度从中取走热量。
冰箱最大的制冷系数是多少?供给冰箱的最小功率是多少? 解: 制冷系数:22253 5.0650Q T W T T ε====−5-4 有一卡诺机工作于500℃和30℃的两个热源之间,该卡诺热机每分钟从高温热源V吸收1000kJ ,求:(1)卡诺机的热效率;(2)卡诺机的功率(kW )。
解:1211500304700.608273500733T T W Q T η−−=====+110000.60810.1360W Q η=⋅=×= kw5-5 利用一逆向卡诺机作热泵来给房间供暖,室外温度(即低温热源)为-5℃,为使室内(即高温热源)经常保持20℃,每小时需供给30000kJ 热量,试求:(1)逆向卡110000100006894.413105.59C W Q =−=−=kJ热泵侧:'C10C C Q W T T T =− '103333105.5922981.3745C C C T Q W T T =⋅=×=− 暖气得到的热量:'1C16894.4122981.3729875.78C Q Q Q =+=+=总kJ5-7 有人声称设计出了一热机,工作于T 1=400K 和T 2=250K 之间,当工质从高温热源吸收了104750kJ 热量,对外作功20kW.h ,这种热机可能吗?解: max 12114002501500.375400400C W T T Q T η−−===== max 11047500.37510.913600C W Q η×=⋅==kW h ⋅<20kW h ⋅∴ 这种热机不可能5-8 有一台换热器,热水由200℃降温到120℃,流量15kg/s ;冷水进口温度35℃,11p 烟气熵变为:22111213731.46 6.41800T T p p n n T T Q T dTS c m c mL L T T T∆====××=−∫∫kJ /K 热机熵变为02.环境熵变为:图5-13 习题5-92210Q S S T ∆==−∆ ∴201()293 6.411877.98Q T S =⋅−∆=×=kJ 3.热机输出的最大功为:0123586.81877.981708.8W Q Q =−=−=kJ5-10 将100kg 、15℃的水与200kg 、60℃的水在绝热容器中混合,假定容器内壁与水之间也是绝热的,求混合后水的温度以及系统的熵变。
工程热力学 第五章

S g 2
1 1 Q0 ( ) T0 T0
1 1 Exl Q0T0 ( ) T0 S g 2 T0 T0
温差传热引起的火用损失与熵产成正比。
温差传热火用损失
T
1
2
T
1
2
TA
TA
1’
2’
ExQ
T0
TB
ExQ
T0
7
AnQ
5 6
S
AnQ
5 6 8 S
Exl T0 Sg1
Exl ExQA ExQB
5.3.1 温差传热火用损失
1 1 QT0 ( ) TB TA
温差传热是不可逆过程
1 1 S g1 Q( ) TB TA
1 1 Exl QT0 ( ) T0 S g1 TB TA
温差传热火用损失
同理,放热温差传热也是不可逆过程。
δExQ
Wout ExQ
T0 (1 )δQ T
ExQ
T0
δQ Q T0 Q T0 S T
AnQ Q ExQ T0 S
热量火用 ExQ
恒温热源
T
ExQ
T T0 Q(1 ) Q T0 S T
AnQ
T0 T0 S Q T
E xQ
dsg 0
没有功损失,火用总量守恒。 不可逆过程: 损失。
功损失,火用总量减少,能量品质贬值,火用
火用和火无的基本概念
孤立系统熵 增原理
孤立系统火用 减火无增
过程进行方 向的判据
火用的分类
做功的能力
不平衡势
化学势差 温度和压力差 速度差 位置差 浓度差
火用
工程热力学05章习题提示与答案.docx

习题提示与答案第五章热力学第二定律5-1蒸汽机中所用新蒸汽的温度为227 °C,排出乏汽的温度为100 °C,如按卡诺循环计算,试求其热效率。
提示:新蒸汽与乏汽的温度分别看做卡诺循环的高、低温热源温度。
答案:7ft = 0.254。
5-2海水表而温度为10 °C,而深处的温度为4 °C。
若设计一热机利用海水的表而和深处作为高温热源及低温热源并按卡诺循环工作,试求该热机的热效率。
提示:略。
答案:7t = 0.021 2 o5-3 一卡诺热机的热效率为40%,若它从高温热源吸热4 000 kJ/h,而向25 °C的低温热源放热,试求高温热源的温度及热机的功率。
提示:略。
答案:T ri =497K, P = 0.44 kWo5-4某内燃机每作出1 kW-h的功需消耗汽油514.8 go已知每千克汽油燃烧时町放出41 868 kJ的热量, 试求该内燃机的实际热效率。
提示:热机的吸热量等于燃料的放热量。
答案:— 0.167。
5-5有报告宣称某热机H 160 °C的热源吸热,向5 °C的低温环境放热,而在吸热1000kJ/h时可发出功率0.12 kWo试分析该报告的正确性。
提示:热机热效率不可能大于在相同温度范围内工作的卡诺热机的热效率。
答案:报告不正确,不可能实现。
5-6冇A 、B 两个卡诺热机,A 从温度为700 °C 的热源吸热,向温度为/的热源放热。
B 则从温度为啲热源取得-A 排岀的热量并向温度为100 °C 的热源放热。
试求:当两热机 的循环净功相同或两热机的热效率相同吋温度/的数值。
提示:答案:两热机循环净功相同时f = 400 °C,两热机热效率相同时严= 329.4 °C 。
5-7以氮气作为工质进行一个R 诺循坏,其高温热源的温度为1 000 K 、低温热源的温度为300 K ;在定温压缩过程中,氮气的压力由0.1 MPa 升高到0.4 MPa 。
工程热力学第五篇1

§5-1 活塞式内燃机动力循环
一、四冲程高速柴油机(混合加热循环)
四冲程柴油机工作原理
空气、油
废气
吸气 压缩, 喷油燃烧
膨胀 作功
排气
四冲程高速柴油机工作过程
0—1 吸空气
p3
1—2’ 多变压缩
一般n=1.34~1.37
2 2’
p2’=3~5MPa t2’=600~800℃
柴油自燃t=335℃ p0
四冲程高速柴油机的理想化
1. 工质
p3 4
定比热理想气体
工质数量不变
2
P-V图p-v图
2’
2. 0-1和1’ -0抵消 开口闭口循环
3. 燃烧外界加热
p0 0
5 1’
1
4. 排气向外界放热
V
5. 多变绝热
6. 不可逆可逆
理想混合加热循环(萨巴德循环)
分析循环吸热量,放热量,热效率和功量
p
3
4
T
4 3
s
理想混合加热循环的计算
热效率
T
t
1 T3
T5 T2
T1
k T4
T3
4 3
5
k 1
2
T5
v4 v5
T4
p5 p1
T1
kT1
1
t
1
k 1
k 1
1 k
1
s
各因素对混合加热循环的影响
t
1
k 1
k
1
1
k
1
1、当 、 不变
k
t
t
受气缸材料限制
一般柴油机 14 21
潜艇用氦气,k=1.66
比较的对象:混合加热,定容加热,定压加热
热力学第五章6162474页PPT文档

四冲程高速柴油机的理想化
1. 工质
p3 4
定比热理想气体
工质数量不变
2
P-V图p-v图
2’
2. 0—1和1’ —0抵消 开口闭口循环
3. 燃烧外界加热
p0 0
5 1’
1
4. 排气向外界放热
V
5. 多变绝热
6. 不可逆可逆
理想混合加热循环(萨巴德循环)
分析循环吸热量,放热量,热效率和功量
p
3
4
T
4 3
1
2’ 喷柴油
V
2 开始燃烧
2—3 迅速燃烧,近似 V
p↑5~9MPa
四冲程高速柴油机工作过程
3—4 边喷油,边膨胀
p3 4
近似 p 膨胀
t4可达1700~1800℃
2 2’
4 停止喷柴油
5
4—5 多变膨胀
p0
1’
p5=0.3~0.5MPa
0
1
t5500℃
V
5—1’ 开阀排气, V 降压
1’—0 活塞推排气,完成循环
p 3
T
3
2
2
4
4
1
1
v
s
定容加热循环的计算Βιβλιοθήκη 吸热量T3
q1cvT3T2
放热量(取绝对值)
2
4
q2cvT4T1
1
热效率
s
t
wq1q21q21T 4T 1
q1 q1
q1 T 3T 2
定容加热循环的计算
热效率
T
t
1 T4 T3
T1 T2
1
T1
T4 T1
T2
T3 T2
《工程热力学》热力学第五章第三部分

热量的Ex与An
1、恒温热源 T 下的 Q
ExQ: Q中最大可能转换为功的部分
卡诺循环的功
T
ExQ
1
T0 T
Q
T
T0 T
T
S
T T0 S Q T0S
AnQ Q ExQ T0S
T0
Q ExQ AnQ
T ExQ
AnQ
S
热量的Ex与An
2、变温热源下的 Q
微元卡诺循环的功
T
ExQ
1
T0 T
Q
Q T0
Q
T
Q
T0S
T0
AnQ T0S
Q ExQ AnQ
ExQ AnQ
Ex的定义
Ex与An
Ex作功能力
当系统由一任意状态可逆地变化到与给定 环境相平衡的状态时,理论上可以无限转换
为任何其它能量形式的那部分能量,称为Ex
功
100%相互转换
能量中除了 Ex 的部分,就是 An
Ex ——作功能力
环境一定,能量中最大可能转换为功的部分
1000 K
500 K
100 kJ
Wmax
anu T0 s1 s0 p0 v1 v0
q'
T0
闭口系统内能的Ex与An的说明 exu u1 u0 T0 s1 s0 p0 v1 v0
1)闭口系的内能u1-u0,只有一部分是exu 内能anu=T0(s1-s0)-p0(v1-v0)
工程热力学习题(第章)解答鄂加强

第 5 章 热力学第二定律5.5 三个刚性物体 A、B、C 组成的封闭绝热系统,其温度分别为 TA=200K、TB=400K、TC=600K,其热容 量(mc)分别为(mc)A=10J/K、(mc)B=4J/K、(mc)C=6J/K。
试求:①三个物体直接接触传热达到热平衡时的温 度 Tx,并求此过程封闭绝热系统相应的总熵变;②三个物体经可逆热机而达到热平衡时的温度 Tm,及此 过程所完成的总功量 Wnet。
解: ①能量平衡方程: (mc)A(Tx-TA)+ (mc)B(Tx-TB)+ (mc)C(Tx-TC)=0 由题设:(mc)A=10J/K、(mc)B=4J/K、(mc)C=6J/K,则易得: Tx=(10TA+ 4TB+ 6TC)/20=(10×20+ 4×400+ 6×600)/20=360K∆S = (mc) A ln = 10 × ln Tx T T + (mc) B ln x + (mc)C ln x TA TA TA360 360 360 + 4 × ln + 6 × ln = 2.4J /(kg ⋅ K) 200 400 600②对于三个刚性物体 A、B、C 组成的封闭绝热系统,有: A 的总熵变: ∆S = (mc) ln Tm ;B 的总熵变: ∆S = (mc) ln Tm ;C 的总熵变: ∆S = (mc) ln Tm A A B B B CTA TB TC由于 ∆Siso = ∆SA + ∆SB + ∆SC + ∆S可逆机 ,且 ∆Siso = 0 , ∆S可 逆 机 =0 ,则:∆SA + ∆SB + ∆SC = 0 ⇒ (mc) A lnTm T T +(mc) B ln m +(mc)C ln m =0 TA TB TC⇒10 × ln⇒ TmTm T T + 4 × ln m + 6 × ln m = 0 TA TB TC(Tm 10 Tm 4 Tm 6 ) ⋅( ) ⋅( ) =1 TA TB TC= 20 TA10TB 4TC 6 = 20 20010 × 400 4 × 6006 = 319.4 K由热力学第一定律可知:Q=∆U+Wnet,其中 Q=0,则: Wnet=-∆U =-(∆UA+∆UB+∆UC) =-[(mc)A(Tm-TA)+ (mc)B(Tm-TB)+ (mc)C(Tm-TC)] =-[10×(319.4-200)+4×(319.4-400)+6×(319.4-600)] =812J 5.7 进入蒸汽轮机的过热蒸汽的参数为:p1=30bar,t1=450℃。