高考数列与不等式压轴题(难题)
高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

一、选择题
1.设 , 满足 ,向量 , ,则满足 的实数 的最小值为()
A. B. C. D.
【答案】B
【解析】
【分析】
先根据平面向量垂直的坐标表示,得 ,根据约束条件画出可行域,再利用 的几何意义求最值,只需求出直线 过可行域内的点C时,从而得到 的最小值即可.
【详解】
解:不等式组表示的平面区域如图所示:因为 , ,
6.已知 、 满足约束条件 ,若 ,则实数 的最小值为()
A. B. C. D.
【答案】C
【解析】
【分析】
作出不等式组所表示的可行域,利用目标函数的几何意义求出 的最小值,进而可得出实数 的最小值.
【详解】
作出不等式组 所表示的可行域如下图所示,
表示原点到可行域内的点 的距离的平方,
原点到直线 的距离的平方最小, .
10.已知实数 , 满足 ,且 ,则 的最小值为().
A. B. C. D.
【答案】B
【解析】
【分析】
令 ,用 表示出 ,根据题意知 ,利用 的代换后根据基本不等式即可得 的最小值.
【详解】
,
令 ,解得 ,则 , ,
当且仅当 ,即 ,即
即 时取等号.
故选:B.
【点睛】
本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.
【详解】
当 时,即当 时,则有 ,该不等式恒成立,合乎题意;
当 时,则 ,解得 .
综上所述,实数 的取值范围是 .
故选:D.
【点睛】
本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.
高考数学压轴专题(易错题)备战高考《不等式》难题汇编附答案解析

【高中数学】数学《不等式》高考复习知识点一、选择题1.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12-【答案】A 【解析】 【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果. 【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.2.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) A 3B .51)C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x y x x PM P P M x F x Q P x x-+-+====+≥-, 当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.3.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .4.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .2B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.5.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭13a 时等号成立; 当10a <时,11113332222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭13a =-立;∴实数d 的取值范围为(,3]3,)-∞⋃+∞.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.6.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即222()3203a c f x x bx +-'=++>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为32()1f x x bx x =+++,所以222()323a c f x x bx +-'=++,若()g x 的定义域为R ,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 22a cb B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.7.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18B .14C .12D .34【答案】A 【解析】 【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不【详解】因为()122y a b x =+为幂函数, 所以21a b +=, 又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭,当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18. 故选:A 【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.8.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]【答案】B 【解析】 【分析】 作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值. 【详解】作出可行域,如图阴影部分(含边界),1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x+表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( ) A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=2k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.13.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.14.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.15.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.16.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.17.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.18.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭, 当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.19.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m m n +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.20.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+…,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭ B .[3,2]-- C .[2,3)- D .[3,2]-【答案】D【解析】【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-…,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围.【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数; 又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称,则()()()222232323f s s f s s f s s -+--+=-+-…,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤.故选:D.【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.。
专题21 数列与不等式结合的问题(解析版)

专题21 数列与不等式结合的问题一、题型选讲题型一 不等式恒成立中的参数的范围,求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数()f x 在定义域为D ,则当x D ∈时,有()f x M ≥恒成立()min f x M ⇔≥;()f x M ≤恒成立()max f x M ⇔≤;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.例1、(2019镇江期末)设数列{a n }是各项均为正数的等比数列,a 1=2,a 2a 4=64.数列{b n }满足:对任意的正整数n ,都有a 1b 1+a 2b 2+…+a n b n =(n -1)·2n +1+2.(1) 分别求数列{a n }与{b n }的通项公式.(2) 若不等式λ⎝⎛⎭⎫1-12b 1⎝⎛⎭⎫1-12b 2…⎝⎛⎭⎫1-12b n <12b n +1对一切正整数n 都成立,求实数λ的取值范围. (3) 已知k ∈N *,对于数列{b n },若在b k 与b k +1之间插入a k 个2,得到一个新数列{c n }.设数列{c n }的前m 项的和为T m ,试问:是否存在正整数m ,使得T m =2019?如果存在,求出m 的值;如果不存在,请说明理由.规范解答 (1)设等比数列{a n }的公比为q(q>0),因为a 1=2,a 2a 4=a 1q ·a 1q 3=64,解得q =2,则a n =2n .(1分)当n =1时,a 1b 1=2,则b 1=1;(2分)当n ≥2时,a 1b 1+a 2b 2+…+a n b n =(n -1)·2n +1+2 ①,a 1b 1+a 2b 2+…+a n -1b n -1=(n -2)·2n +2 ②, ①-②得a n b n =n·2n ,则b n =n. 综上,b n =n.(4分)(2) 不等式λ⎝⎛⎭⎫1-12b 1⎝⎛⎭⎫1-12b 2…⎝⎛⎭⎫1-12b n <12b n +1对一切正整数n 都成立,即λ⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n <12n +1恒成立. 因为⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n >0,当λ≤0时,不等式显然成立.(5分) 当λ>0时,不等式等价于⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n 2n +1<1λ. 设f(n)=⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n 2n +1,则f (n +1)f (n )=⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n ⎝⎛⎭⎫1-12n +22n +3⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14—⎝⎛⎭⎫1-12n 2n +1=2n +12n +32n +2=4n 2+8n +34n 2+8n +4<1.(7分)所以f(1)>f(2)>f(3)>…>f(n)>…,所以1λ>f(n)max =f(1)=32,故λ<233,则0<λ<233.综上,λ<233.(8分)例2、(2019南京、盐城二模)已知数列{a n }各项均为正数,且对任意n ∈N *,都有(a 1a 2…a n )2=a n +11a n -1n +1.(1) 若a 1,2a 2,3a 3成等差数列,求a 2a 1的值;(2) ①求证:数列{a n }为等比数列;②若对任意n ∈N *,都有a 1+a 2+…+a n ≤2n -1,求数列{a n }的公比q 的取值范围.规范解答 (1)因为(a 1a 2)2=a 31a 3,所以a 22=a 1a 3,因此a 1,a 2,a 3成等比数列.(2分)设公比为t ,因为a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,即4×a 2a 1=1+3×a 3a 1,于是4t =1+3t 2,解得t =1或13,所以a 2a 1=1或13.(4分)(2)①因为(a 1a 2…a n )2=a n +11a n -1n +1,所以(a 1a 2…a n a n +1)2=a n +21a nn +2,两式相除得a 2n +1=a 1a n n +2a n -1n +1,即a n +1n +1=a 1a n n +2,(*)(6分)由(*),得a n +2n +2=a 1a n +1n +3,(**)(*)(**)两式相除得a n +2n +2a n +1n +1=a n +1n +3a n n +2,即a 2n +2n +2=a n +1n +1a n +1n +3, 所以a 2n +2=a n +1a n +3,即a 2n +1=a n a n +2,n ≥2,n ∈N *,(8分) 由(1)知a 22=a 1a 3,所以a 2n +1=a n a n +2,n ∈N *,因此数列{a n }为等比数列.(10分) ②当0<q ≤2时,由n =1时,可得0<a 1≤1,所以a n =a 1q n -1≤2n -1,因为a 1+a 2+…+a n ≤1+2+…+2n -1=2n -1,所以0<q ≤2满足条件.(12分) 当q >2时,由a 1+a 2+…+a n ≤2n-1,得a 1(1-q n )1-q≤2n -1,整理得a 1q n ≤(q -1)2n +a 1-q +1.(14分)因为q >2,0<a 1≤1,所以a 1-q +1<0, 因为a 1q n<(q -1)2n,即⎝⎛⎭⎫q 2n<q -1a 1,由于q 2>1,因此n <log q 2q -1a 1,与任意n ∈N *恒成立相矛盾,所以q >2不满足条件.综上,公比q 的取值范围为(0,2].(16分)例3、(2019苏州三市、苏北四市二调)已知数列{a n }的各项均不为零.设数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3S 2n -4S n +T n =0,n ∈N *.(1) 求a 1,a 2的值;(2) 证明:数列{a n }是等比数列;(3) 若(λ-na n )(λ-na n +1)<0对任意的n ∈N *恒成立,求实数λ的所有值.思路分析 (1) 对3S 2n -4S n +T n =0,令n =1,2得到方程,解得a 1,a 2的值.(2) 3S 2n -4S n +T n =0中,对n 赋值作差,消去T n ,再对n 赋值作差,消去S n ,从而得到a n +1=-12a n ,证得数列{a n }是等比数列.(3)先求出a n =⎝⎛⎭⎫-12n -1,由(λ-na n )(λ-na n +1)<0恒成立,确定λ=0适合,再运用反证法证明λ>0和λ<0不成立.规范解答 (1)因为3S 2n -4S n +T n =0,n ∈N *.令n =1,得3a 21-4a 1+a 21=0,因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0,因为a 2≠0,所以a 2=-12.(3分) (2)解法1 因为3S 2n -4S n +T n =0, ① 所以3S 2n +1-4S n +1+T n +1=0, ②②-①得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0, ③(5分) 所以3(S n +S n -1)-4+a n =0(n ≥2), ④当n ≥2时,③-④得,3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n ,因为a n ≠0,所以a n +1a n =-12.又因(1)知,a 1=1,a 2=-12,所以a 2a 1=-12,所以数列{a n }是以1为首项,-12为公比的等比数列.(8分)解法2 因为3S 2n -4S n +T n =0,① 所以3S 2n +1-4S n +1+T n +1=0,②②-①得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0, 因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0, 所以3(S n +1+S n )-4+(S n +1-S n )=0,(5分) 整理为S n +1-23=-12⎝⎛⎭⎫S n -23,又S 1-23=a 1-23=13, 所以S n -23=13·⎝⎛⎭⎫-12n -1,得S n =13·⎝⎛⎭⎫-12n -1+23,当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n -1,而a 1=1也适合此式,所以a n =⎝⎛⎭⎫-12n -1,所以a n +1a n =-12所以数列{a n }是以-12为公比的等比数列.(8分)(3)解法1 由(2)知,a n =⎝⎛⎭⎫-12n -1.因为对任意的n ∈N *,(λ-na n )(λ-na n +1)<0恒成立, 所以λ的值介于n ⎝⎛⎭⎫-12n -1和n ⎝⎛⎭⎫-12n之间. 因为n ⎝⎛⎭⎫-12n -1·n ⎝⎛⎭⎫-12n<0对任意的n ∈N *恒成立,所以λ=0适合.(10分) 若λ>0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有λ<n2n -1恒成立.记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n(*),从而当n ≥5且n ≥2λ时,有λ≥2n ≥n2n -1,所以λ>0不符.(13分)若λ<0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有-λ<n2n 恒成立.由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n2n ,所以λ<0不符.综上,实数λ的所有值为0. 解法2 由(2)知,a n =⎝⎛⎭⎫-12n -1,故a n a n +1<0,所以当λ=0时,(λ-na n )(λ-na n +1)<0即n 2a n a n +1<0,对任意的n ∈N *成立,符合题意;(10分)因为对任意的n ∈N *,(λ-na n )(λ-na n +1)<0恒成立,所以对任意的大于3的偶数n ,(λ-na n )(λ-na n +1)<0即⎝⎛⎭⎫λ+n 2n -1⎝⎛⎭⎫λ-n 2n <0成立,亦即对任意的大于3的偶数n ,|λ|<n 2n -⎝⎛⎭⎫-n 2n -1=3n2n 成立,(13分) 先证,当n ≥4时,n 2n ≤1n,记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n 41,所以n 2n ≤1n (*),所以对任意的大于3的偶数n ,|λ|<3n成立,但若λ≠0,当n >3|λ|时,|λ|>3n ,所以λ≠0不合题意,综上,实数λ的所有值为0.(16分)题型二、运用放缩法证明不等式与常数的关系此类问题往往与数列和有关,通过数列求和的方法研究求和或者通过放缩法研究数列和的不等关系,一般会得出数列的和与常数与一个变量之间的关系,进而得到与常数之间的不等关系。
【强烈推荐】数列压轴题训练50道(精华,含答案)

数列大题训练50题1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++ . 2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值. 3 .已知函数xab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8) (1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++ 的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++…12n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由.8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
高考压轴题之数列不等式恒成立问题解法例析

当 一1时 , 口 —S =b — 1 , 只 需 l l 2 >0 故
需 6 1 > ;
当 ≥ 2时 , 为 6 0 所 以 S =b + 因 > , 2
些差别 , 生 容易 出错 , 至不 知 所 措. 考 甚 这
n 2 >O恒成立 -
.
里通过几个例 子归 纳这类 问题 的几种常 用解 法 和需要注意 的 问题 .
第 2 卷第 3 9 期
21 0 0年 3月
数 学教 学 研 究
2 7
1 \
I
高考压轴题之数列不等式恒成立问题解法例析
余锦银
( 北 省大 冶市 第 一 中学 湖 450) 3 1 0
不 等式的恒 成立 问题是考 生较难 理解 和
即
s -6+ 。
.
掌握的一 个难点 , 以数 列 为 载体 的不 等式 恒 成立问题 的档次更 高 、 合性更 强 , 是一类 综 它 非常常见 的考试 题 型 , 出现在 高 考 压轴 题 常 中, 它与 函数 恒成立 问题 既有类 似之处 , 又有
a n 1 +
问题本质 的理 解 , 只是视角 不同 , 3种方法 这
是将 数列看成 函数 问题 来解 决 , 2分 离 变 法
量 后需解 不等 式 , 1 离 变 量 b后 需 求 法 分 最值. 若对 本题 ( ) 再作 如 下变 式 , 更 易 1式 则
看透恒成立 问题 的方法本 质. 变式 1 将 ( ) 变 为 关 于 b的 二 次不 1式
例 2 已知 <
法 3 令 g ) ( —6 +3 —1 则 一 ( 一n 1 ) 6 ,
次 函数 g 在 ≥4单 调递减. () 要使 g ) ( <0在 ≥ 4时恒 成 立 , 需 只
高考数学数列压轴题常考题型

数列基本题型一、由a n 与S n 的关系求通项a n :a n =⎩⎪⎨⎪⎧ S 1,n =1,S n -S n -1,n ≥2,n ∈N *. 1、记S n 为数列{a n }的前n 项和.若S n =2a n +1,则a n =________.2、设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________.3、已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.4、n S 为数列{a n }的前n 项和,已知20,243n n n n a a a S >+=+,a n =________.注:根据所求结果的不同要求,将问题向不同的两个方向转化.(1) 利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解.(2) 利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 二、由递推关系式求数列的通项公式1、差商法:一个数列每一项前的系数构成等差或者等比数列:① 设数列{}n a 满足123(21)2n a a n a n ++⋅⋅⋅+-=,a n =________.② 已知数列满足{}n a 满足,a n =________.2、累加法:a n+1=a n +f (n )③ 设数列{a n }满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{a n }的通项公式为___________.3、累乘法:a n+1=a n ⋅f (n )④ 设数列{a n }满足a 1=1,a n +1=2n a n ,则通项公式a n =________.4、构造法:⑤ a n+1=pa n +q已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________________. ⑥ a n+1=pa n +q n (等式左右两边同除q n 或者q n+1)已知数列{a n }满足a 1=1,a n +1=2a n +,则数列{a n }的通项公式为________________. 已知数列{an }满足a 1=1,a n +1=2a n {a n }的通项公式为________________.⑦ a n+1=da n b+ca n (取倒数) 已知数列{a n }满足a 1=1,a n +1=,则数列{a n }的通项公式为________________. 三、数列性质及其应用1、周期性:① 数列{a n }满足a n +1=⎩⎨⎧ 2a n ,0≤a n ≤12,2a n -1,12<a n <1,a 1=35,则数列的第2 019项为________. ② 已知数列{a n }满足a n +1=11-a n ,若a 1=12,则数列的第2 019项为________. 2、单调性:③ 已知数列{a n }满足2S n =4a n -1,当n ∈N *时,是递增数列,则实数λ的取值范围是________________.④ 已知数列{a n }的通项公式为,则当a n 取得最大值时,n =________. ⑤ 已知数列{a n }是等差数列,其前n 项和为S n ,,,则S n 的最大值为________. 性质:(1)按单调性来分:⎩⎪⎨⎪⎧ 递增数列:a n +1>a n ,递减数列:a n +1<a n ,常数列:a n +1=a n =C 常数,摆动数列.(2)在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1. 3、奇偶并项⑥ 脚标分奇偶项数列{n a },求a n =_________________.数列{n a }满足,求S n =_________________.⑦ 隔项等差或等比(数列退项相减或相除,构造隔项等差或等比)数列{a n }满足,求a n =_________________.(奇偶项法或待定系数法) 数列{a n }满足a n =_________________.数列{n a },求S n =_________________. 注:(1) 形如:最终数列中的奇数项和偶数项分别构成等差数列。
压轴题02 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题02数列压轴题题型/考向一:多选、填空综合题型/考向二:数列通项公式与数列求和题型/考向三:数列与其他知识综合一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一多选题综合一、多选题1.已知等差数列{}n a 的前n 项和为n S ,满足12321a a a ++=,525S =,下列说法正确的是()A .23n a n =+B .210n S n n=-+C .{}n S 的最大值为5S D .11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为1099-【答案】BCD【详解】根据等差中项,1232213a a a a ++==,解得27a =,()()512345315243255S a a a a a a a a a a a ==++++=++++=,解得35a =,设等差数列{}n a 的公差为d ,则322d a a =-=-,于是等差数列的通项公式为:2(2)112n a a n d n =+-=-,故A 选项错误;2.数列n 是等差数列,8,则下列说法正确的是()A .36a a +为定值B .若1272a =,则5n =时n S 最大C .若12d =,使n S 为负值的n 值有3个D .若46S =,则1212S =111的对角线向相邻的某个顶点移动,且向每个相邻顶点移动的概率相同,设蚂蚁移动n次后还在底面ABC的概率为n P,则下列说法正确的是()A.11 2P=B.213 25P=C.12nP⎧-⎫⎨⎬⎩⎭为等比数列D.11111052nnP-⎛⎫=-⨯-+⎪⎝⎭4.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy --= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=5.已知定义在[]0,1上的函数()0,010,1,1,,,,f x p p x p q q q q ⎧==⎪=⎛⎫⎨= ⎪⎪⎝⎭⎩或或为内的无理数为正整数为既约真分数该函数称为黎曼函数.若数列{}n a 满足1n n a f n ⎛⎫= ⎪+⎝⎭,则下列说法正确的是()A .0n a >B .1n na a +>C .11nn i a =<∑D .1112nn n i a a +=<∑二、填空题6.艾萨克牛顿是英国皇家学会会长,著名物理学家,他在数学上也有杰出贡献.牛顿用“作切线”的方法求函数()f x 零点时给出一个数列{}()()1:n n n n n f x x x x f x +-'=,我们把该数列称为牛顿数列.如果函数()2(0)f x ax bx c a =++>有两个零点1和2,数列{}n x 为牛顿数列.设2ln 1nn nx a x -=-,已知11a =,2n x >,{}n a 的前n 项和为n S ,则2023S =__________.【答案】202321-##202312-+7.对任意*n ∈N ,任意[1,2]a ∈,都有2112e 3ax x a n ⎛⎫+≤-+- ⎪⎝⎭恒成立(注:e 为自然对数的底数),则实数x 的取值范围是__________.123新编辑,编辑新序列为*234123,,,a a a A a a a ⎧⎫=⎨⎬⎩⎭,它的第n 项为1n na a +,若序列()**A 的所有项都是2,且41a =,532a =,则1a =__________.9.黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想涉及到很多领域的应用,有些数学家将黎曼猜想的攻坚之路趣称为:“各大行长躲在银行保险柜前瑟瑟发抖,不少黑客则潜伏敲着键盘蓄势待发”.黎曼猜想研究的是无穷级数()1111123ss s s n s n ξ∞-===+++∑ ,我们经常从无穷级数的部分和1111123s s s sn ++++ 入手.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则12400111S S S ⎡⎤+++=⎢⎥⎣⎦ ______(其中[]x 表示不超过x 的最大整数).10.南宋数学家杨辉善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为求离散量的垛积问题,在他的专著《详解九章算法·商功》中给出了著名的三角垛公式()()()()()1112123123126n n n n ++++++⋅⋅⋅++++⋅⋅⋅+=++,则数列{}22n n +的前n项和为____________.○热○点○题○型二数列通项公式与数列求和11.已知数列{}n a 满足1322a a a +=,13,2,n n na n a a n +⎧=⎨+⎩为奇数为偶数,数列{}n c 满足21n n c a -=.(1)求数列{}n c 和{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .【详解】(1)13,2,n n n a n a a n +⎧=⎨+⎩为奇数为偶数,得213213,232a a a a a ==+=+,因为1322a a a +=,即111326a a a ++=,解得11a =,由21n n c a -=,得111211,n n c a c a ++===,12.在①n b =②11n n n b a a +=;③2nn n b a =,这三个条件中任选一个补充在下面横线上,并解答问题.已知数列{}n a 的前n 项和23322n n S na n n =-+.(1)证明:数列{}n a 是等差数列;(2)若12a =,设___________,求数列{}n b 的前n 项和n T .13.在数列n a 中,19a =,2313912n n n n a n a ++⋅+=+.(1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<-⋅.○热○点○题○型三数列与其他知识综合14.已知函数()y f x =是定义在()(),00,∞-+∞U 上的偶函数,当0x >时,()()121,0212,22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,()n a f n =(n 为正整数).(1)当20x -≤<时,求()y f x =的解析式;(2)若函数()()g x f x m =-存在零点,且零点个数不超过10,求实数m 的取值范围;(3)求数列{}n a 的前n 项和为,n n S S 是否存在极限?若存在,求出这个极限;若不存在,请说明理由【详解】(1)当20x -≤<时,()02,x y f x <-≤= 是偶函数,()()11|2121x x f x f x --+∴=-=-=-∣(2)0x >,当()222N,1k x k k k -<≤∈≥时,()0212x k <--≤,()()()()()()2321111112222322211212122x k k k f x f x f x f x f x k -+--∴=-=-⨯=-⨯=⎡⎤=--=-⎣⎦ ,∴当02x <≤时,()[]1|210,1x f x -=-∈∣,当24x <≤时,()()()|31112210,222x f x f x -⎡⎤=-=-∈⎢⎥⎣⎦∣,当24x <≤时,()()()521114210,244x f x f x -⎡⎤=-=-∈⎢⎥⎣⎦,图像如图所示:若1m =,函数()()g x f x m =-有1个零点2x =;若112m <<,函数()()g x f x m =-有2个零点;若12m =,函数()()g x f x m =-有3个零点;15.若无穷数列n 的各项均为整数.且对于,,i j i j *∀∈<N ,都存在,使得k j i j i a a a a a =--,则称数列{}n a 满足性质P .(1)判断下列数列是否满足性质P ,并说明理由.①n a n =,1n =,2,3,…;②2n b n =+,1n =,2,3,….(2)若数列{}n a 满足性质P ,且11a =,求证:集合{}3∣n n a *∈=N 为无限集;(3)若周期数列{}n a 满足性质P ,请写出数列{}n a 的通项公式(不需要证明).【详解】(1)对①,取1i =,对,1j j *∀∈>N ,则11,j i j a a a ===,可得11j j i i j a a a j a =---=--,显然不存在,k j k *>∈N ,使得1k a =-,所以数列{}n a 不满足性质P ;对②,对于,,i j i j *∀∈<N ,则2i b i =+,2j b j =+,故()()()()2222j i i j i j i j i j i j b b b b --=++-+-+=⋅++()22i j i j =⋅++-+,因为,,1,2i j i j *∈≥≥N ,则()2i j i j *⋅++-∈N ,且()()2123i j i j i j j ⋅++-=++-≥,所以存在()2k i j i j *=⋅++-∈N ,k j >,使得()22j k i j i b b i b j i j b b =⋅++-=--+,故数列{}n b 满足性质P ;(2)若数列{}n a 满足性质P ,且11a =,则有:取111,1,i j j j *==>∈N ,均存在111,k j k *>∈N ,使得111111k j j a a a a a =--=-,取2121,,i j j k j *==>∈N ,均存在2212,k j k k *>>∈N ,使得222111k j j a a a a a =--=-,取121,i k j k k ==>,均存在1211,m k m *>>∈N ,使得112123m k k k k a a a a a =--=,故数列{}n a 中存在n *∈N ,使得3n a =,即{}3∣n n a *∈=≠∅N ,反证:假设{}3∣n n a *∈=N 为有限集,其元素由小到大依次为()12,,,1l l n n n n >L ,取1,1l l i j n n ==+>,均存在1,L l L k n k *>+∈N ,使得11111Lllk n n a a a a a ++=--=-,取1,1L i j k ==+,均存在111,L L L k k k *++>+∈N ,使得111111L L L kk k a a a a a +++=--=-,取1,L L i k j k +==,均存在111,l L l l n k n n *+++>>∈N ,使得1113l LL LL n k k k ka a a a a +++=--=,即{}13∣l n n n a *+∈∈=N 这与假设相矛盾,故集合{}3∣n n a *∈=N 为无限集.(3)设周期数列{}n a 的周期为1,T T *≥∈N ,则对n *∀∈N ,均有n n T a a +=,设周期数列{}n a 的最大项为,,1M a M M T *∈≤≤N ,最小项为,,1N a N N T *∈≤≤N ,即对n *∀∈N ,均有N n M a a a ≤≤,若数列{}n a 满足性质P :反证:假设4M a ≥时,取,i M j M T ==+,则,k M T k *∃>+∈N ,使得22k M M T M M T M M a a a a a a a ++=--=-,则()2330k M M M M M a a a a a a -=-=->,即k M a a >,这对n *∀∈N ,均有N n M a a a ≤≤矛盾,假设不成立;则对n *∀∈N ,均有3n a ≤;反证:假设2N a ≤-时,取,i N j N T ==+,则,k N T k *∃>+∈N ,使得224k N N T N N T N N a a a a a a a ++=--=-≥,这与对n *∀∈N ,均有3n a ≤矛盾,假设不成立,即对n *∀∈N ,均有1n a ≥-;综上所述:对n *∀∈N ,均有13n a -≤≤,反证:假设1为数列{}n a 中的项,由(2)可得:1,3-为数列{}n a 中的项,∵()13135-⨯---=-,即5-为数列{}n a 中的项,这与对n *∀∈N ,均有13n a -≤≤相矛盾,即对n *∀∈N ,均有1n a ≠,同理可证:1n a ≠-,∵n a ∈Z ,则{}0,2,3n a ∈,当1T =时,即数列{}n a 为常数列时,设n a a =,故对,,i j i j *∀∈<N ,都存在k j >,使得22i k i j j a a a a a a a a =--=-=,解得0a =或3a =,即0n a =或3n a =符合题意;当2T ≥时,即数列{}n a 至少有两个不同项,则有:①当0,2为数列{}n a 中的项,则02022⨯--=-,即2-为数列{}n a 中的项,但{}20,2,3-∉,不成立;②当0,3为数列{}n a 中的项,则03033⨯--=-,即3-为数列{}n a 中的项,但{}30,2,3-∉,不成立;③当2,3为数列{}n a 中的项,则23231⨯--=,即1为数列{}n a 中的项,但{}10,2,3∉,不成立;综上所述:0n a =或3n a =.16.如果数列{}n a 对任意的*N n ∈,211n n n n a a a a +++->-,则称{}n a 为“速增数列”.(1)判断数列{}2n是否为“速增数列”?说明理由;(2)若数列{}n a 为“速增数列”.且任意项Z n a ∈,121,3,2023k a a a ===,求正整数k 的最大值;(3)已知项数为2k (2,Z k k ≥∈)的数列{}n b 是“速增数列”,且{}n b 的所有项的和等于k ,若2n bn c =,1,2,3,,2n k = ,证明:12k k c c +<.即32121k k k k k k b b b b b b +--+++>+>+,同理可得:211k m m k k b b b b -+++>+,*N m ∈,11m k ≤≤-,故()()()()1221222111k k k k k k k k b b b b b b b b b k b b -++=+++=++++++>+ ,故11k k b b ++<,1112222kk kk b b b bk k c c ++++=⨯=<,得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数列与不等式压轴题
1.
已知数列{}n a 为等差数列,且满足211n n n a a na +=-+,*n N ∈。
1) 求数列{}n a 的通项公式; 2) 求证:
12321
1111
...ln 2n n n n a a a a ++++++++<. 3) 当
01λ<<时,设1
()2n n b a λ=-,(1)n n c a λ=-,数列1n n b c ⎧⎫⎨⎬⎩⎭
的前n 项和为n
T ,求证:
91
43
n n T n ->
+。
2.
(2013•蓟县一模)已知数列{}n a 中,11a =,*12311
23()2
n n n a a a na a n N +++++⋅⋅⋅+=
∈ 1) 求数列{}n a 的通项n a ; 2) 求数列2
{}n n
a 的前n 项和n T ;
3) 若存在*
n N ∈,使得(1)n
a n λ≥+成立,求实数λ的取值范围.
3.
(2010•无锡模拟)已知数列{}n a 的前n 项和为n S
,数列是公比为2的等比数列.
1) 证明:数列{}n a 成等比数列的充要条件是13a =;
2) 设*5(1)()n n
n b n a n N =--∈,若1n n b b +<对*n N ∈恒成立,求1a 的取值范围.
4.
已知数列{}n a 中,2
2(a a a =+为常数),n S 是{}n a 的前n 项和,且n S 是n na 与na 的等差中项.
1) 求数列{}n a 的通项公式;
2) 设数列{}n b 是首项为1,公比为2
3
-
的等比数列,n T 是{}n b 的前n 项和,问是否存在常数a ,使1012n a T ⋅<恒成立?若存在,求出a 的取值范围;若不存在,说明理由.
5.
已知数列{}n a 满足11a =,2*123()1
n n n n a a m
a n N a +++=∈+。
1) 若恒有1n n a a +≥,求m 的取值范围.
2) 在31m -≤<时,证明:
121111
11112
n
n a a a ++⋅⋅⋅+≥-+++
3) 设正项数列{}n a 的通项n a 满足条件:*()
10()n
n n a na n N +-=∈,求证:1
02
n a ≤≤。
6.
(2012•资阳二模)已知数列{}n a 的前
n
项和为
n
S ,
11a =,且12n n
na S +=,数列{}n b 满足
212+1
1n n n b a a -=
⋅,数列{}n b 的前n 项和为n T (其中*
n N ∈).
1) 求n a 和n T ;
2) 若对任意的*
n N ∈,不等式8(1)n n
T n λ<+--恒成立,求实数λ的取值范围。
7.
已知数列{}n a 的前n 项和为n S ,若1
1a =,(1)n n S na n n =--,*n N ∈,令1
1
n n n b a a +=
⋅,且数列
{}n b 的前项和为n T .
1) 求证:数列{}n a 为等差数列,并写出n a 关于n 的表达式; 2) 若不等式8
5
n
n T λ+<
(λ为常数)对任意正整数n 均成立,求λ的取值范围; 3) 是否存在正整数,m n (1m n <<),使得1,,m n T T T 成等比数列?若存在,求出所有的,m n 的值;若不
存在,请说明理由.
8.
已知函数
()2ln m
f x x x x
=-
-在定义域是单调函数,'()f x 是函数()f x 的导函数. 1) 求实数m 的取值范围;
2) 当m 取得最小值时,数列{}n a 满足:1
3a m =+,11
'(
)11
n n n a f na a +==-++,*n N ∈。
试证:①
2n a n >+;
② 121111
(1114)
n m a a a m ++++<++++ 9.
若数列{}n a 满足2
2
1n n
a a d
+-=,其中d 为常数,则称数列{}n a 为等方差数列.已知等方差数列{}n a 满足
0n a >,151,3a a ==。
1) 求数列{}n a 的通项公式. 2) 求数列2
1
{()}2
n n a ⋅的前n 项和。
3) 记2n
n b na =,则当实数k 大于4时,不等式n kb 大于(4)4n k -+能否对于一切的*
n N ∈恒成立?请
说明理由
10. (2011•河池模拟)已知正项数列{}n a 满足:1
1a =,且2211(1)n n n n n a na a a +++=-,*
n N ∈
(I) 求数列{}n a 的通项公式;
(II) 设数列1
{}n a 的前n 项积为n T ,求证:当0x >时,对任意的正整数n 都有n n x
x T e
>。
11. (2012•江苏三模)已知数列{}n a 满足1
2a =,且对任意*n N ∈,恒有12(1)n n na n a +=+。
1) 求数列{}n a 的通项公式; 2) 设区间1
[,]33(1)
n n a a n n ++中的整数个数为n b ,求数列{}n b 的通项公式.
12. 已知数列{}n a 的前n 项和为n S ,若1
1a =,(1)n n S na n n =--,*n N ∈,令1
1n n n b a a +=
⋅,且数列
{}n b 的前项和为n T 。
1) 求证:数列{}n a 为等差数列,并写出n a 关于n 的表达式; 2) 若不等式8
5
n
n T λ+<
(λ为常数)对任意正整数n 均成立,求λ的取值范围; 3) 是否存在正整数,m n (1m n <<),使得1,,m n T T T 成等比数列?若存在,求出所有的,m n 的值;若不
存在,请说明理由。
13. 已知数列{}n a 满足1
21,(3a a λλλ==<≠且-2),且*216()n n n a a a n N ++=+∈。
1) 证明:数列1{2}n n a a ++与数列1{3}n n a a +-都是等比数列; 2) 若*1
()n n a a n N +>∈恒成立,求λ的取值范围.
14. 已知数列{}n a 中,
11a =,0n a >,1n a +是函数321111
()(1)3222
n n f x x a x a x =
+--⋅的极小值点.(2013•烟台二模)
1) 证明数列{}n a 为等比数列,并求出通项公式n a ; 2) 设2
n
n b na =,数列{}n b 的前n 项和为n S ,求证:16
9
n S <。
15. 已知数列{}n a 满足1
0a =,22a =,且对任意*,m n N ∈都有22121122()m n m n a a a m n --+-+=+-
1) 求35,a a 2) 设2121n n n b a a +-=-(*n N ∈),求{}n b 的通项公式;
3) 设1
1
n
n c a +=
,n S 为数列{}n c 的前n 项和,若存在n 使n S M >,求M 的取值范围.
16. 已知函数
32()(,,)f x ax bx cx a b c R =++∈
1) 若函数
()f x 过点(1,2)-且在点(1,(1))f 处的切线方程为20y +=,求函数()f x 的解析式;
2) 当1a =时,若2(1)1,1(1)3f f -≤-≤-≤≤,试求(2)f 的取值范围;
3) [1,1]x ∀∈-,都有|'()|1f x ≤,试求实数a 的最大值,并求a 取得最大值时,函数()f x 的解析式。