《圆柱的体积》评课稿
青岛版小学六年级数学下册《圆柱的体积》评课记录_青岛版

评课记录:教学内容:青岛版《数学》六年级下册第二单元。
教学目标:1、运用迁移规律,引导学生推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力。
4.借助实物演示,培养学生抽象、概括的思维能力。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积公式的推导过程。
第一方面:成功之处1、利用迁移规律引入新课,为学生创设良好的学习情境,为后面圆柱体体积的计算埋下伏笔。
2、传统教学与现代化教学相结合。
圆柱体体积的推导过程中,教师首先把实物圆柱体模型进行分解,再组合成一个已学过的长方体进行推导,但赵老师觉得还不够透彻,因此,又利用多媒体现代化教学手段把推导过程重新回顾一遍,这样就把传统教学与现代化教学有机地结合再一起,突破了教学难点。
3、针对本节课所学知识内容,安排练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
4、本节课,让学生动手、动脑,参与教学全过程,较好地处理教与学,练与学的关系,达到了一定的教学效果。
第二方面处:探讨之处1、本节课学生的主体性没有充分展示出来,例如:在体积公式的推导过程中,教师如能让学生自己去探讨长方体的底面积和高与圆柱的底面积和高的关系,从而推出圆柱体的体积公式,这样学生在课堂中的主体性就能充分发挥出来。
2、练习题有些多,应选择一些有代表性的题,这样小测验就能有充足的时间了。
3、关注学生的有些少,尤其是应关注做错的学生,应知道为什么错,及时在课堂评价出结果会更好。
总之,这节课从学生的练习来看,达到了预定的教学效果,是一堂成功的课,也希望赵老师今后继续发扬教学激情,发挥自己的个人专长,在教学上有新的突破。
圆柱体积评析

《圆柱的体积》教学评析听了戴晶霞老师执教的一节“圆柱的体积”这节课,真的是受益匪浅一、创设情境,让学生学到有价值的数学。
这节课的教学教者是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。
这样的教学流程有助于学生学会用圆柱的体积计算公式计算圆柱形物体的体积的前提下,学会转化的数学思想和数学方法,并能很好地解决生活中的数学问题,教师的引导行之有效。
学生在通过实践、探索、发现,得到的知识是“活”的。
在课中教师只是为学生的学习假设情景,所有的知识不是老师告诉的,而是学生在探索中发现,并自己总结出来的。
二、展示知识的获取过程,让学生在参与中学习。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。
学生动手实践、观察得出结论的过程,就是科学研究的过程。
操作验证是本节课的关键,为体现活动教学中学生“主动探索”的特点,从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。
学生以活动小组为单位根据问题进行验证。
从活动反馈情况来看,活动效果较好,学生思维活跃,方法颇有创意。
这不仅经历了知识产生的过程,而且加深了学生对圆柱的体积计算公式推导过程的理解,并领悟了学习方法,还培养了学生的学习能力、抽象概括能力和逻辑思维能力,从而促进了学生的思维发展。
三、设计多样性与递进性练习,培养学生思维的深度。
学习本身是一个不断归纳概括、演绎应用的过程。
在教学中,教者让学生经过探索获取知识、掌握方法后,安排了几个生活中的具体问题,让学生去解决。
由于“练一练”中的题目都比较浅显,学生容易掌握,但遇到多转几个弯的题目就束手无策了。
所以,为了让学生能熟练地掌握计算圆柱的体积,注重习题的多样化、层次化来拓展学生思维,从而培养了学生思维的深度。
《圆柱的体积》教学评价

《圆柱的体积》教学评价鲁庄镇中心小学张扬博《圆柱的体积》教学评价1、为学生创造自主探究的学习环境在教学中老师注重学生的数学思想方法和学习能力,给学生提供较充分的探索交流的空间,为学生创设了活动情境,激发学生思考怎样才能求出圆柱的体积呢?引出本课題“圆柱的体积”。
此时已经点燃学生的学习欲望,他们渴望获得正确地结果,并愿意为此付出自己的努力。
这正是这节课成功的起点,也是教师的高明之处,不仅为学生创造了一个十分宽松的学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。
而一切又是那么的自然,丝毫不露痕迹,颇有“润物细无声”的味道。
2、让学生经历自主探究的全过程在教学中赵老师让学生经历了自主探究的过程:1.让学生回顾“圆”形转化成近似的长方形的过程。
通过课件演示操作,使学生感受到平均分的份数越多转化后的图形更接近长方形。
2.让学生迁移猜想:圆形摞成的圆柱体能转化成什么几何形体。
3.再次让学生用学具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。
4.教师出示一些字母,让学生用等式表示它们之间的关系,这进一步延伸了本课的知识,学生很快得出了已知底面半径、直径、底面周长、底面积和高求圆柱体积的计算公式。
接着教师有引导学生进行对比、总结发现其规律,加深学生的理解。
5.最后,利用体积公式计算圆柱的体积。
我们欣喜的看到,学生始终保持着高昂的学习情绪,积极参与了每一个环节并取得了理想的成果。
3、帮助学生收获自主探究的果实一堂课虽然只有几十分钟,但孩子们是那么积极主动,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,还找到了许多计算方法。
学生能有如此的表现和收获,与教师扮演的角色是密不可分的。
首先,赵老师课堂教学设计能从学生的实际出发,符合学生的认知规律和探究心理,不仅让学生自主探究解决当前问题,而且引发了下一个活动。
苏教版数学六年级下册《圆柱的体积》说课稿及反思(共三篇)

《圆柱的体积》说课稿及反思(一)一、说教材《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。
圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。
二、说教学目标1.运用迁移规律,引导学生借助圆的面积计算公式的推导方法来推导圆柱的体积公式,并理解这个过程。
2.指导学生学会用圆柱的体积公式计算圆柱形状的物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学方法,提高学生解决实际问题的能力。
4.借助实物演示,培养学生抽象、概括的能力。
三、说教学重难点重点:用圆柱的体积公式计算圆柱形状物体的体积和容积,运用公式解决一些简单的实际问题。
难点:借助圆的面积公式的推导方法来推导圆柱的体积公式,并理解这个过程。
四、说教学过程板块一、情境导入1.出示圆柱形状的水杯。
(1)在杯子里面装满水,让学生想一想水杯里的水是什么形状的。
(2)师:你能用以前学过的方法计算出这些水的体积吗?(3)学生讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)指定学生说一说长方体的体积公式。
2.创设情境。
(课件出示)师:如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才的方法吗?刚才的方法不是一种普遍适用的方法,那么在求圆柱体积的时候,有没有像长方体或正方体那样的体积计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
(板书课题:圆柱的体积)板块二、探究新知1.圆柱体积计算公式的推导。
(1)教师一边演示,一边讲解。
师:同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
师:下面请同学们拿出自己的学具动手拆一拆,拼一拼,看一看拼出来是什么形体。
《圆柱的体积》观评课报告

圆柱的体积观评课报告引言本次观评课的主题为圆柱的体积,通过老师的讲解和同学的互动演示,我对圆柱的体积有了更深刻的理解。
正文圆柱的定义首先,我们需要明确圆柱的概念。
圆柱是由一个圆和与这个圆共面且两端平行的一对平行曲面组成的几何体。
其中,圆称为底面,连接两个底面的侧面称为侧面,侧面所包围的部分称为侧面积。
圆柱的体积公式圆柱的体积是指圆柱所包含的空间大小,通常用立方单位来表示。
圆柱的体积公式如下所示:$V = \\pi r^2 h$其中,V表示圆柱的体积,$\\pi$表示圆周率约等于3.14,r表示圆柱底面的半径,ℎ表示圆柱的高。
圆柱体积公式的推导圆柱体积公式的推导可以分为两部分:底面和侧面积的计算。
底面积的推导圆柱的底面是圆形,其面积公式为:$S_{底} = \\pi r^2$侧面积的推导圆柱的侧面是由所谓的侧面发生的一条曲线滑动而成的,形成的面积公式为:$S_{侧} = 2\\pi rh$在计算圆柱的体积时,我们需要将底面积与侧面积相加。
因此,圆柱的体积公式可以推导出来,如下所示:$V = S_{底} \\cdot h + S_{侧} = \\pi r^2 h + 2\\pi rh$圆柱体积公式的应用圆柱体积公式广泛应用于工程、建筑、制造等各种领域。
例如,我们可以通过圆柱的体积公式来计算某个圆柱形容器所能够容纳的液体的数量;在建筑中,圆柱的体积公式可以用来计算柱子的混凝土用量。
圆柱的相关例题例题1已知柱子的底面半径为8cm,高为15cm,求该圆柱的体积。
解:根据圆柱的体积公式可得,$V = \\pi r^2 h = 3.14 \\times 8 \\times 8 \\times 15 = 3014.4 cm^3$因此,该圆柱的体积是3014.4$ cm^3$。
例题2球形泳池的直径为12.8m,高为5m,池底离地面的高度为2m,已知水的高度为4m,求球形泳池装满水后所需的水量。
解:我们将球形泳池抽象成一个圆柱体与一个圆锥体的组合体。
《圆柱的体积》评课稿

学校
@学校
评课组
高年级数学教研组
主发言人
@
评
课
内
容
在《圆柱的体积》教学过程中,李老师紧紧抓住“圆柱体积公式的推导过程”这一教学重点,通过对旧知的回忆,激发学生从旧知探索新知的兴趣,注重鼓励学生大胆尝试、探索新知,放手让学生自主动手操作、归纳、推理,利用等积变形把圆柱转化成我们学过的长方体,逐步归纳出圆柱的体积公式。
七、不足之处:
1.让学生上台展示圆柱转化成长方体的过程中,应指出先把圆柱体平均分成两部分(学具是自动分成的,老师应指出来),然后沿底面圆的直径分割成16等份,其中有一半其实是分成了9等份(如果不将第8等份再分成2小等份,那拼成的图形底面就是一个平行四边形,而不是长方形),这些过程老师应讲解详细些,以便学生理解并推导出体积公式。
三、巧设疑问,体现两“主”。
李老师通过设疑,指明探究方向,营造探究新知识的氛围。通过学习指南单,学生先自己独立完成,然后再进行小组合作交流,探究圆柱底面积、高与拼成的近似长方体的底面积、高之间的关系,进而推导出圆柱的体积计算公式。这一环节给学生提供充分的合作交流时间,通过小组合作交流,让每一个学生的智慧得以发挥,让每一个学生体亲历转化的的过程,在小组交流中真正的体验圆柱体体积公式的来源。李老师的“导”、“放”、“扶”层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力。
四、注重数学思想的渗透。
在教学过程中,李老师首先通过回忆圆的面积公式的推导Байду номын сангаас程,唤醒学生尝试用这种“转化”的数学思想来推导出圆柱的体积。接着,学生利用学具动手操作,再启发说出转化成我们熟悉的立体图形。最后,老师合理运用多媒体课件,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近长方体”,这里转化思想和极限思想得到应有的渗透。
人教版小学数学六年级下册《圆柱的体积》评课记录

《圆柱的体积》评课记录本节课采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。
真正体现了学生是学习的主人。
新课引入“引”出了学习新知识的思路, ,激发了学生探求新知识的欲望。
新课教学,教者积极创设了有利于学生自主探究、动手实践、合作交流的学习情境,引导学生开展观察、猜测、操作、交流等有效的学习活动,让学生在学习活动中体验数学、理解数学。
教者留给学生充分的时间和足够大的学习空间,充分调动了学生学习的积极性和主动性。
教师以参与者的身份投入到学生学习小组活动中去,体现了教师角色的转变和学生的主体地位。
教师的"导"、"放"、"扶"层次分明,教师虽然没有讲太多东西,但保证了学生参与的广度。
充分体现了教师的主导作用和学生的主体作用。
通过学生的汇报、交流、评价与反思,进一步培养了学生合作学习的意识。
师与生、生与生间的交流评价,动手实践是学生学习的主要方式,合作交流是学生体验的有效途径。
使学生领悟了学习方法,培养了学生的学习能力。
本节课取得了较好的教学效果。
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。
所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。
学生动手实践、观察得出结论的过程,就是科学研究的过程。
本节课无论是导入环节,还是新课部分都恰当的引导学生进行知识迁移,充分的让学生感受和体验“转化”这一解决数学问题重要的思想方法。
同时,还合理的运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近长方体”。
有机的渗透了极限的数学思想。
冀教版六年级数学下册《测量并计算圆柱的体积》评课稿

冀教版六年级数学下册《测量并计算圆柱的体积》评课稿一、课程背景《冀教版六年级数学下册》是适用于小学六年级学生的数学教材,该教材对圆柱的测量和计算体积进行了详细介绍。
本次评课稿将针对该教材中的《测量并计算圆柱的体积》这一章节进行评估和分析。
二、教学目标1. 知识目标•了解圆柱的定义及其特点;•掌握圆柱的测量方法;•学会计算圆柱的体积。
2. 能力目标•能够准确测量圆柱的高度、底面半径等参数;•能够运用公式计算圆柱的体积;•能够应用所学知识解决与圆柱体积相关的实际问题。
3. 情感目标•培养学生对数学的兴趣和探求精神;•提高学生的观察能力和实际应用能力;•培养学生合作学习和团队合作的意识。
三、教学重点•学生理解圆柱的概念及其特点;•学生掌握圆柱的测量方法;•学生能够运用公式计算圆柱的体积。
四、教学难点•学生理解并应用体积的概念;•学生正确运用公式计算圆柱的体积;•学生能够解决与圆柱体积相关的实际问题。
五、教学过程1. 导入与激发兴趣为了引起学生的兴趣,我将通过一个小视频或图片展示一些与圆柱相关的场景,例如圆柱形的杯子、筒形容器等。
并通过提问和让学生自由发言的方式,引导学生思考圆柱的定义和特点。
2. 概念讲解与例题演示•通过板书和教材对圆柱的定义及其特点进行讲解,让学生理解圆柱的概念;•通过几个具体的例子,演示如何测量圆柱的高度、底面半径等参数,并引导学生参与讨论;•引导学生观察图形,学会从图中提取出所需的参数。
3. 公式推导与体验活动•导入圆柱的公式:V = 底面积× 高度,通过理论推导让学生理解公式的原理;•进行一定数量的体验活动,让学生亲自测量不同圆柱的底面积和高度,并进行体积计算;•引导学生探索公式中各个参数之间的关系。
4. 巩固与拓展•练习册中的习题让学生巩固所学知识,并与同学们分享解题方法;•小组合作探究一些实际问题,并进行讨论和展示;•鼓励学生自己寻找一些与圆柱体积相关的实际问题,并尝试解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.让学生上台展示圆柱转化成长方体的过程中,应指出先把圆柱体平均分成两部分(学具是自动分成的,老师应指出来),然后沿底面圆的直径分割成16等份,其中有一半其实是分成了9等份(如果不将第8等份再分成2小等份,那拼成的图形底面就是一个平行四边形,而不是长方形),这些过程老师应讲解详细些,以便学生理解并推导出体积公式。
四、注重数学思想的渗透。
在教学过程中,李老师首先通过回忆圆的面积公式的推导过程,唤醒学生尝试用这种“转化”的数学思想来推导出圆柱的体积。接着,学生利用学具动手操作,再启发说出转化成我们熟悉的立体图形。最后,老师合理运用多媒体课件,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近长方体”,这里转化思想和极限思想得到应有的渗透。
三、巧设疑问,体现两“主”。
李老师通过设疑,指明探究方向,营造探究新知识的氛围。通过学习指南单,学生先自己独立完成,然后再进行小组合作交流,探究圆柱底面积、高与拼成的近似长方体的底面积、高之间的关系,进而推导出圆柱的体积计算公式。这一环节给学生提供充分的合作交流时间,通过小组合作交流,让每一个学生的智慧得以发挥,让每一个学生体亲历转化的的过程,在小组交流中真正的体验圆柱体体积公式的来源。李老师的“导”、“放”、“扶”层次分明,充分体现了教师的主导作用和学生的主体作用。这样的,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力。
一、展示导学提示,明确教学目标
李老师通过展示导学提示,使学生明确学习目标,学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。
二、传统教学与现代化教学相结合。
在圆柱体积的推导过程中,李教师首先让学生利用圆柱体教具进行转化,转化成已学过的长方体进行推导,但李老师觉得还不够透彻,因此,又利用多媒体课件把推导过程重新回顾一遍,引导学生观察比较,使学生在丰富感性认识的基础上,推导出圆柱体积计算的公式。充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。这样就把传统教学与现代化教学有机地结合在一起,突破了教学难点。
2.在解决实际问题时,经常用的圆柱体积公式是V=πr2h,老师应重点强调下,便于学生更好地利用公式进行计算。
五、加强学习方法的指导
李老师的教学中,体现了以下的学习方法:
1.学生学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学生学会利用旧知转化成新知,解决新问题的能力。
3.学生学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
六、习题的设置层次分明。
李老师的习题设置遵循了由浅入深,由易到难的原则。由已知底面积,半径、直径到周长,步步引申,提高学生应用圆柱体积公式解决问题的能力。
学 校
辽宁东戴河新区实验学校
评课组高年级数学教研组源自主发言人杨春月评
课
内
容
在《圆柱的体积》教学过程中,李老师紧紧抓住“圆柱体积公式的推导过程”这一教学重点,通过对旧知的回忆,激发学生从旧知探索新知的兴趣,注重鼓励学生大胆尝试、探索新知,放手让学生自主动手操作、归纳、推理,利用等积变形把圆柱转化成我们学过的长方体,逐步归纳出圆柱的体积公式。