2004级高数B1标准答案05(乙)
2004普通高等学校招生全国统一考试辽宁卷数学试题含答案

的年产量;
(2)甲方每年受乙方生产影响的经济损失金额 y = 0.002t 2 (元),在乙方按照获得最
大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求 的赔付价格 s 是多少?
A. p1 p2
B. p1(1− p2 ) + p2 (1− p1)
C.1 − p1 p2
D.1− (1− p1)(1− p2 )
6.已知点 A(−2,0) 、 B(3,0) ,动点 P(x, y)满足PA PB = x2 ,则点 P 的轨迹是
A.圆
B.椭圆
C.双曲线
7.已知函数 f (x) = sin(x − ) −1 ,则下列命题正确的是 2
A. 8 6
B. 64 6
C. 24 2
D. 72 2
11.若函数 f (x) = sin(x + ) 的图象(部分)如图所示,则和 的取值是
A. = 1, = B. = 1, = −
y
3
3
C. = 1 , = D. = 1 , = −
26
2
6
12.有两排座位,前排 11 个座位,后排 12 个座位,现安排
38
39
则 P( = 10) =
A.
2 39
B.
2 310
C.
1 39
D.
1 310
9.已知点 F1(−
2,0) 、 F2 (
2,0) ,动点 P 满足| PF2 | − | PF1 |= 2 .
当点 P 的纵坐标是 1 时, 2
点 P 到坐标原点的距离是
2004 年普通高等学校招生全国统一考试答案

附:参考答案及解析!""#年普通高等学校招生全国统一考试(全国卷!)$%(理)&本题考查复数的运算%原式’($(!)($))’(!)!’!,故选&%(文)&本题考查集合的运算%易知!!"’{$,*,#},则#"!+,’{$,!,*}"{$,*,#}’{$,*},故选&%!%(理),本题考查函数的奇偶性%由$((%)’-.$/%$(%’(-.$(%$/%’($(%),定义域($0%0$,则$(%)为奇函数,由$(&)’’#$((&)’(’,故选,%(文),本题考查函数的奇偶性的性质%由$(%)为奇函数,则$((&)’($(&)’($!,故选,%*%1本题考查向量的运算%由题知2!2’2"2’$,!・"’2!2・2"2・3456"7’$!#2!/*"2!’!!/6!・"/8"!’$!/69$!/89$!’$*#2!/*"$2’$*,故选1%#%,本题考查反函数与原函数之间的关系%由(’%$($/$(%%$)知(%$#%’((($)!/$,则所求的原函数为(’(%($)!/$,即(’%!(!%/!(%%$),故选,%:%;本题考查二项式定理的有关性质%展开式中的第)/$项为*)/$’1)<(!%*)<()・(($$%))’1)<・!<()・%!$(*)()!・(($)),由题可知:!$(*)()!’"得)’6%展开式中常数项为16<・!<(6・(($)6’$#,故选;%6%(理),本题考查集合之间的运算关系%由已知#&"&+#!+#’!+",易知,错误,故选,%(文),本题考查三角函数的求值%由已知可得345!’#:,$!345(!/"#)$’!(345!・345"#(5)=!・5)="#)$’!(#:9$!!(*:9$!!)’$:,故选,%<%1本题考查圆锥曲线的有关问题%将%$’(*代入椭圆方程得(,’$!,由2-.$2/2-.!2’##2-.(!2’#(2-.($2’#($!’<!,故选1%>%1本题考查直线与圆锥曲线的位置关系%由(!’>%#准线%’(!#/((!,"),设直线的斜率为0(过/与抛物线相交,0一定存在),则直线(’0(%/!)代入(!’>%,得0!(%!/#%/#)’>%#0!%!/(#0!(>)%/#0!’",当0’"时易知有交点,当0)"时,"%"#(#0!(>)!(#0!・#0!%",0#(#0!/#(0#%"#0!*$#($*0*$,故选1%8%,本题考查函数图象的平移变换%由(’345!%#(’5)=("!(!%)#(’5)=["(("!(!%)]#(’5)=(!%/"!)#(’5)=!(%/"#),又(’5)=(!%("6)#(’5)=!(%("$!),可见,由(’5)=!(%/"#)向右移动"#/"$!’*"/"$!’"*,得到(’5)=!(%("$!),故选,%$"%;本题考查两个正四面体的棱之间的关系%连结各面中心如图所示,12?"3’$?*,同理可得:四面体1.24的棱与四面体#"53相对应的棱之比均为$?*,则面积之比为其相对棱的比的平方#*?6’$?8,故选;%$$%(理)&本题考查等可能事件发生的概率%能组成满足题中条件的:#)无重复数字有$,*,:;!,*,#,共有;**/;**’$!,$)有重复数字,!,!,:;*,*,*;#,#,$共有;**;!!/$/;**;!!’<,综上共有$!/<’$8,无条件要求有:9:9:’$!:,则满足条件的概率为$8$!:,故选&%(文)1本题考查概率的求法%满足题中条件的为两个奇数一个偶数或三个偶数,则满足题中条件的数为())取两个奇数一个偶数:1!:・1$#,()))取三个偶数有:1*#%总计为1!:1$#/1*#’##%从$,!,…,8中抽*个不同的数有1*8,则满足题中条件的概率为##1*8’$$!$,故选1%$!%,本题考查方程的解法%由题可知&!’$!,’!’$!,7!’*!#&’@$!!,’’@$!!,7’@$6!欲取最小值可得,只有7’($6!,&’’’$!!时(或&’’’($!!,7’$6!)即可,A &’/’7/7&%$!!・$!!/$!!9(($6!)/$!!9(($6!)’$!($*,故选,%$*%(理){%2%%($}本题考查含绝对值不等式的解法%2%/!2%2%2())当%%"时,易知%/!%%成立#%%",()))当%0"时,2%/!2%(%#%/!%(%或%/!*%#"B %%($,综上可得%%($%(文){%2%%"}本题考查不等式的解法%%($/%!)%",C $/%!B ",A %%",则解集为{%2%%"}%$#%%!/(!’#本题考查动点的轨迹方程%由题可知,2(8#2’$,+#-"’6"7#+#-8’*"7,则2(-82’28#25)=*"7’!,设-(%,(),则(%(")!/(((")$!’!#%!/(!’#%$:%(理)9!!本题考查数列的递推公式的求解%由&9’&$/!&!/*&*/…/(9($)&9($’&$/!&!/…(9(!)&9(!/(9($)&9($’&9($/(9($)&9($(9%*)#&9’9&9($(9%*)#&*&!’*,&#&*’#,…,&9&9($’9#&*&!・&#&*…&9&9($’*9#9…99,故&9’*9#9…99’$9!9*9#9…99!’9!!,当9’!时,&!’&$’$,则&9’$,9’$9!!,9%{!%(文)*・!9(*本题考查等比数列的通项公式的求法%由等比数列的性质&9’&$:9($’&!:9(!’…’&;:9(;#&$"’&*:$"(*#*>#’*9:<#:<’!<#:’!#&9’*・!9(*$6%%&’本题考查直线在平面内的射影的有关问题%两条异面直线在同一平面内的射影不可能出现共线情况,其它都有可能,故有%&’%$<D 本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质%$(%)’(5)=!%/345!%)!(5)=!%345!%!(!5)=%345%’$(5)=!%345!%!($(5)=%345%)’$!($/5)=%345%)’$#5)=!%/$!,所以函数$(%)的最小正周期是",最大值是*#,最小值是$#%$>D (理)本小题主要考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力%-(#’")’"%:!9"%6!’"%"8,-(#’$)’1$!9"%:!9"%6!/1$!9"%:!9"%#9"%6’"%*,-(#’!)’1!!9"%:!9"%6!/1$!1$!9"%:!9"%#9"%6/1!!9"%:!9"%#!’"%*<,-(#’*)’1!!1$!9"%:!9"%#9"%6/1$!1!!9"%:!9"%#!’"%!,-(#’#)’"%:!9"%#!’"%"#,于是得到随机变量#的概率分布列为:#"$!*#-"%"8"%*"%*<"%!"%"#所以1#’"9"%"8/$9"%*/!9"%*</*9"%!/#9"%"#’$%>%(文)本小题主要考查组合、概率等基本概念,独立事件和互斥事件的概率以及运用概率知识解决实际问题的能力%($)随机选出的*位同学中,至少有一位男同学的概率为$(1*61*$"’:6;(!)甲、乙被选中且能通过测验的概率为答案—$!"#!$"%&’(&$()’"*(+",-(理)本小题主要考查导数的概念和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想+函数!(")的导数:!.("))*"/#"0#"*/#")(*"0#"*)/#"+(1)当#)%时,若"2%,则!.(")2%,若"3%,则!.(")3%+所以当#)%时,函数!(")在区间(45,%)内为减函数,在区间(%,05)内为增函数+(11)当#3%时,由*"0#"*3%,解得"24*#或"3%,由*"0#"*2%,解得4*#2"2%+所以当#3%时,函数!(")在区间(45,4*#)内为增函数,在区间(4*#,%)内为减函数,在区间(%,05)内为增函数;(111)当#2%时,由*"0#"*3%,解得%2"24*#,由*"0#"*2%,解得"2%或"34*#+所以当#2%时,函数!(")在区间(45,%)内为减函数,在区间(%,4*#)内为增函数,在区间(4*#,05)内为减函数+(文)本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力+求函数!(")的导数:!.("))$#"*06"4"+(1)当!.(")2%("!!)时,!(")是减函数+$#"*06"4"2%("!!)"#2%且!)$60"*#2%"#24$+所以,当#24$时,由!.(")2%,知!(")("!!)是减函数;(11)当#)4$时,!("))4$"$0$"*4"0")4$("4"$)$0#,,由函数$)"$在!上的单调性,可知当#)4$时,!(")("!!)是减函数;(111)当#34$时,在!上存在一个区间,其上有!.(")3%,所以,当#34$时,函数!(")("!!)不是减函数+综上,所求#的取值范围是(45,4$]+*%-本小题主要考查棱锥、二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力+(")如图,作%&#平面’()*,垂足为点&+连结&(、&’、&*,&(与’*交于点+,连结%++7’*#%(,8’*#&(,7%’)%*,8&’)&*,于是&(平分’*,点+为’*的中点,所以%+#’*+由此知$%+(为面%’*与面’()*所成二面角的平面角,8$%+()"*%9,$%+&)6%9+由已知可求得%+%)$,8%&)%+・%:1;6%9)$&%$*)$*,即点%到平面’()*的距离为$*+(*)解法一:如图建立直角坐标系,其中&为坐标原点,"轴平行于*’+%(%,%,$*),((%,%$$*,%),%(中点,的坐标为(%,%$$’,$’),连结’,+又知’(",%$*,%),)(4*,%$$*,%)+由此得到:,’—&)(",4%$’,4$’),%(—&)(%,%$$*,4$*),()—&)(4*,%,%)+于是有,’—&・%(—&)%,()—&・%(—&)%,所以,’—&#%(—&,()—&#%(—&+,’—&,()—&的夹角"等于所求二面角的平面角,于是<=:"),’—&・()—&>,’—&>>()—&>)4%*??,所以所求二面角的大小为!4@A<<=:%*??+解法二:如图,取%(的中点,,%)的中点-,连结+,、’,、,-,则’,#%(,-,’(),-,)"*()+7’*#%(,8()#%(,-,#%(,8$’,-是所求二面角的平面角+7’*#面%&(,8’*#+,+又7%+)(+,8+,#%(,且$%+,)6%9+在BC (%+,中,+,)%+・<=:6%9)%$*,在BC (,’+中,’+)"*’*)",于是C@;,’+)+,’+)%$*,又$’,-)!4$,’+,所以所求二面角的大小为!4@A<C@;%$*+*"-本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力+(")由)与.相交于两个不同的点,故知方程组"*#*4$*)""0${)",有两个不同的实数解+消去$并整理得("4#*)"*0*#*"4*#*)%"+所以"4#*)%’#’0##*("4#*){3%,解得%2#%2*且#)"+双曲线的离心率/)"0#%*#)"#*%0",7%2#%2*且#)",8/3%6*且/)%*,即离心率/的取值范围为(%6*,%*)*(%*,05)+(*)设’("",$"),(("*,$*),%(%,")+7%’—&)("*%(—&,8("",$"4"))("*("*,$*4")+由此得"")("*"*,由于"","*都是方程"的根,且"4#*)%,所以"?"*"*)4*#*"4#*,("*"**)4*#*"4#*+消去"*,得4*#*"4#*)*#,6%,由#3%,所以#)"?"$+**-(理)本小题主要考查数列、等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力+(")#*)#"0(4")")%,#$)#*0$")$,#’)#$0(4")*)’,#()#’0$*)"$,所以,#$)$,#()"$+(*)#*00")#*00$0)#*04"0(4")00$0,所以#*00"4#*04")$00(4")0,同理#*04"4#*04$)$04"0(4")04",...,#$4#")$0(4")+所以(#*00"4#*04")0(#*04"4#*04$)0 0(#$4#"))($00$04"0…0$)0[(4")00(4")04"0 0(4")],由此得#*00"4#")$*($04")0"*[(4")04"],于是#*00")$00"*0"*(4")04"+#*0)#*04"0(4")0)$0*0"*(4")04"4"0(4")0)$0*"*(4")04"+{#1}的通项公式为:当1为奇数时,#1)$10"**0(4")14"*&"*4";当1为偶数时,#1)$1**0(4")1*&"*4"+(文)本小题主要考查等差数列的通项公式、求和公式,考查运算能力+(")由#1)#"0(14")2,#"%)$%,#*%)(%,得方程组#"0,2)$%#"0",2{)(%+解得#")"*,2)*+所以#1)*10"%+(*)由31)1#"01(14")*2,31)*’*得方程"*101(14")*&*)*’*+解得1)""或1)4**(舍去)+*%%’年普通高等学校招生全国统一考试(全国卷#)"+!本题考查解不等式和集合的运算+易知4:{">4*2"2*},5:{">4"2"2$}+4,5){">4"2"2*},故选!+*-(理)D 本题考查极限的求法+由"*0"4*"*0’"4()("0*)("4")("0()("4"))答案—*!!"!!#!$%&!"’!"!!("!"!)!(#*$%&!"’!!"!!#*’",故选+,(文)+本题考查反函数的求法,由"*’!!#(!#(#),"#-!!*’"(#!"*’!(#(!#-),"#(#,故选+,./(理)0本题考查复数的运算,由于’!!*’(’"!$."%*’"!$."%*’)!.)’"($."%*(’(’"!$."%*(’!,故选0,(文)1本题考查导数的几何意义,由题可得"2*.!"(3!,当!*’时,"24!*’*(.,则过(’,(’)处的切线方程为:"!’*(.(!(’)!"*(.!!",故选1,)/0本题考查两曲线关于"*(!对称的之间的关系,#(!,")*-关于!*("对称的曲线方程为#((",(!)*-!圆$为:(("(’)"!((!)"*’!("!’)"!!"*’,故选0,#/+本题考查三角函数的性质,由题可知:-*567("8!’"!")!"!!3*%!(%%!)!"*%!(!3(%%!),故选+,3/9本题考查两图象之间的对称关系,其中"*:!与"*(:!关于!轴对称,"*(:!与"*:(!关于原点对称,故选9,;/1本题考查点到平面距离的求法,由题易知:&&’(*&(’$*&$’&*!",’’2为’到平面&($的距离,则’4’’24"*’4’&4"!’4’(4"!’4’$4"!4’’24*$..,故选1,</(理)1本题考查数形结合能力,由右图可知:符合条件的直线为"*.,易知,连结&(交"*.于),则"*.关于直线&(对称的直线)*也满足题中条件,故共有"条,故选1,(文)0本题考查直线与平面所成的角,如下图所示,’为+在底面上的射影,则&+(’即为所求,4’(4*$"",4+(4*’,则在=5’+’(中,>?@+(’*4’(44+(4*$""!&+(’*)#A,B/(理)9本题考查向量的运算,由向量在已知向量上射影定义知:#*4"’&4・>?@C !,"’&$D *#・!・"’&4!4・4"’&4$*#・(()#,.#)・(’,(")’・$#*()#(3#*(",故选9,(文)9本题考查向量的运算,4"(#4*"!("(#)"*""(""・#!#"*""!""・#*()!""!#"*()!’!)*’!("!#)"*""!""・#!#"*’"!’!""*3!4"!#$4*3,故选9,’-/(理)1本题考查函数的求导及三角函数的增减性判断,由题知"2*>?@!(!@%7!(>?@!*(!@%7!,故函数"*!>?@!(@%7!的极值点为%!(%*’,",…)要求函数的增区间,即求"2D -,即!@%7!C -,当!%(!,"!)时,满足!@%7!C -,故选1,(文)1本题考查直线方程的求法,&(的中点为(’!.","!’")即(",."),&(的垂直平分线的斜率为%*(’(."(’*"!垂直平分线方程为:"(."*"(!(")!"*"!(#"!)!(""(#*-,故选1,’’/1本题考查函数的周期性,"*@%7)!!>?@"!*@%7)!(@%7"!!’*(@%7"!(’(@%7"!)!’*(@%7"!>?@"!!’*(’)@%7""!!’*’<(>?@)!(’)!’*’<>?@)!!;<E 周期,*"!)*!",故选1,’"/0本题考查排列组合的应用,由题可知小于等于".’)#的数有:+))!+..!’,大于等于).#"’的数为:+..!+))!’,则符合条件的数有:+##((+..!+))!’)((+..!+))!’)*#<,故选0,’./(理)-,’,-,3,-,.本题考查随机变量的概率分布:都不是红球的概率+($*-)*0""0"#*-,’,只有一个红球的概率+($*’)*0’.・0’"0"#*-,3,两个都是红球的概率+($*")*0".0"#*-,.,则概率分布为:$-’"+-,’-,3-,.(文)(’"本题考查二项式定理,展开式中的第-!’项为,-!’*0-’-・!’-(-・.-,易知:-*.时,得!;的系数为:0.’-..!0.’-..*(’#!..*(’<!.*(’",’)/#本题考查线性规划问题,!、"满足如右图所示的阴影部分,目标函数/为直线"!!"(/"*-在"轴上截距的一半,由图易知在过(’,’)点时,/最大即/*.8’!"8’*#,’#/!""!""*’本题考查圆锥曲线的基本量之间的关系,由题可知焦点为:(F ’,-),所求椭圆的离心率0*’$"!椭圆中的1.*’$"!.$*",2"*."(1"*"(’*’,则所求椭圆的方程为!""!""*’,’3/"#本题考查棱柱的定义,$错误,若四棱柱相邻的两个侧面与底面垂直,那么四棱柱为直四棱柱;不相邻的两个侧面与底面垂直,这样的四棱柱不一定是直棱柱,"是真命题,%假命题,#真命题,应填"#,’;/本小题主要考查三角函数概念,两角和、差的三角函数值以及应用、分析和计算能力,(’)证明:G @%7(&!()*.#,@%7(&(()*’#,E@%7&>?@(!>?@&@%7(*.#@%7&>?@((>?@&@%7(*{’#!@%7&>?@(*"#>?@&@%7(*{’#!567&567(*",所以567&*"567(,(")G !"C &!(C !,@%7(&!()*.#,E 567(&!()*(.),即567&!567(’(567&567(*(.),将567&*"567(代入上式并整理得"567"(()567((’*-,解得567(*$"F 3",舍去负值得567(*$"!3",E 567&*"567($*"!3,设&(边上的高为$3,则&(*&3!3(*$3567&!$3567(*.$3$"!3,由&(*.,得$3$*"!3,所以&(边上的高等于$"!3,’</本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用数学知识解决问题的能力,(’)解法一:三支弱队在同一组的概率为0’#0)<!0’#0)<*’;,故有一组恰有两支弱队的概率为’(’;*3;,解法二:有一组恰有两支弱队的概率0".0"#0)<!0".0"#0)<*3;,(")解法一:&组中至少有两支弱队的概率0"#0".0)<!0’#0..0)<*’",解法二:&、(两组有一组至少有两支弱队的概率为’,由于对&组和(组来说,至少有两支弱队的概率是相同的,所以&组答案—.中至少有两支弱队的概率为!"#!$%(理)本小题主要考查数列、等比数列的概念和性质,分析和推理能力#证明:(!)&!"’!(#"’!)#",!"’!("’""#",*("’")#"("(#"’!)#"),整理得"#"’!("("’!)#",所以#"’!"’!("#""#故{#""}是以"为公比的等比数列#(")由(!)知#"’!"’!(+・#")!")!("!")#于是#"’!(+("’!)・#")!")!(+!"("!")#又!"(,#!(,#故#"(!!’!"(+#因此对于任意正整数"!!,都有#"’!(+!"#(文)本小题主要考查等差、等比数列的概念和性质,考查运算能力#(!)设数列{!"}的公差为$,依题意得方程组!!’$($!!’+${("!,解得!!(-,$(+#所以{!"}的通项公式为!"(+"’!#(")由!"(+"’!得%"("+"’!,所以{%"}是首项%!("-,公比&("+的等比数列#于是得{%"}的前"项和#"("-.("+")!)"+)!(,".("+")!)!-#"/%本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力#解法一:(!)如图,连结’(!、(’!、’),则’(!"("#&’*(’(!"(",*#’*(!为等腰三角形#又知+为其底边(!*的中点,*’+$(!*#&(!’!(!,’!*!"(",*(!*!"(,#又**!(!,*(!*("#&#(!’*为直角三角形,+为(!*的中点,*’+(!"(!*(!,’+(’’!#又+)(!"(’!(""",+)(’!)#*#’+)%#’’!)#&’+)(&’’!)($/0,即’+$+)#因为(!*、+)为平面*+)内两条相交直线,所以’+$平面*+)#(")设,、-分别为*’、*+的中点,连结*!-、,-、*!,,则,-’’+,,-(!"’+#*,-(!",,-$*+#由侧面矩形**!(!(的对角线的交点为+知*+(*!+(!"(!*(!#所以#**!+是边长为!的正三角形,于是*!-$*+,*!-(","#*&*!-,是所求二面角的平面角#又*!,"(*!*"’*,"(!’(""")"(,",*123*!-,(*!-"’,-")*!,""*!-・,-((",")"’(!")"),""・","・!"()",,#即所求二面角的大小为!)451123",,#解法二:如图,以’为原点建立坐标系#(!)*("",/,/),*!("",!,/),(!(/,!,!),+(""",!",!"),)(""",!,/),’+—(((""",!",!"),(!*—((("",)!,)!)#+)—(((/,!",)!"),则’+—(・(!*—((/,’+—(・+)—((/,*’+$(!*,’+$+),因为(!*、+)为平面*+)内两条相交直线,所以’+$平面*+)#(")设*+中点为-,连结*!-,则-(","+,!+,!+),*+—((()""",!",!"),*!-—((()""+,),+,!+),**+—(・*!-—((/,**+$*!-#又’+$*+,*’+—(与*!-—(的夹角!等于所求二面角的平面角#123!(’+—(・*!-—(6’+—(66*!-—(6()",,#所以所求二面角的大小为!)451123",,#"!%本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和综合解题能力#(!)’的焦点为,(!,/),直线.的斜率为!,所以.的方程为/(0)!#将/(0)!代入方程/"(+0,并整理得0")70’!(/#设((0!,/!),*(0",/"),则有0!’0"(7,0!0"(!#1(—(・1*—(((0!,/!)・(0",/")(0!0"’/!/"("0!0")(0!’0")’!(),#61(—(661*—(6(0"!’/""!・0""’/"""(0!0"[0!0"’+(0!’0")’!7"]"(+!#123〈1(—(,1*—(〉(1(—(・1*—(61(—(661*—(6()",+!+!,所以1(—(与1*—(夹角的大小为!)451123",+!+!#(")由题设,*—(("(,—(得(0")!,/")("(!)0!,)/!),即0")!("(!)0!)"/"()"/!{#,由#得/""(""/"!#&/"!(+0!,/""(+0",*0"(""0!$,联立"、$解得0"(",依题意有"8/#**(","""),或*(",)"""),又,(!,/),得直线.方程为(")!)/("""(0)!)或(")!)/()"""(0)!)#当")[+,$]时,.在/轴上的截距为"""")!或)"""")!#由"""")!("""’!’"")!,可知"""")!在[+,$]上是递减的,*,+*"""")!*+,,)+,*)"""")!*),+#直线.在/轴上截距的变化范围为[)+,,),+]+[,+,+,]#""%(理)本小题主要考查导数的基本性质和应用、对数函数性质和平均值不等式等知识以及综合推理论证的能力#(!)函数2(0)的定义域为()!,’9)#2:(0)(!!’0)!#令2:(0)(/,解得0(/#当)!;0;/时,2:(0)8/,当08/时,2:(0);/#又2(/)(/,故当且仅当0(/时,2(0)取得最大值,最大值为/#(")证法一:3(!)’3(%))"3(!’%")(!<=!’%<=%)(!’%)<=!’%"(!<="!!’%’%<="%!’%#由(!)结论知<=(!’0))0;/(08)!,且0,/),由题设/;!;%,得%)!"!8/,)!;!)%"%;/,因此<="!!’%()<=(!’%)!"!)8)%)!"!,<="%!’%()<=(!’!)%"%)8)!)%"%#所以!<="!!’%’%<="%!’%8)%)!")!)%"(/#又"!!’%;!’%"%#!<="!!’%’%<="%!’%;!<=!’%"%’%<="%!’%((%)!)<="%!’%;(%)!)<="#综上,/;3(!)’3(%))"3(!’%");(%)!)<="#证法二:3(0)(0<=0,3:(0)(<=0’!#设,(0)(3(!)’3(0))"3(!’0"),则,:(0)(3:(0))"[3(!’0")]:(<=0)<=!’0"#当/;0;!时,,:(0);/,因此,(0)在(/,!)内为减函数#当08!时,,:(0)8/,因此,(0)在(!,’9)上为增函数#从而,当0(!时,,(0)有极小值,(!)#因此,(!)(/,%8!,所以,(%)8/,即/;3(!)’3(%))"3(!’%")#设-(0)(,(0))(0)!)<=",则-(0)(<=0)<=!’0")<="(<=0)<=(!’0)#当08/时,-:(0);/#因此-(0)在(/,’9)上为答案—+减函数!因为!(")"#,#$",所以!(#)%#!即$(")&$(#)’($("&#()%(#’"))*(!(文)本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力!函数%(&)的导数%+(&)"&(’"&&"’,,令%+(&)"#,解得&",或&""’,!当"’,!,即"!(时,函数%(&)在(,,&-)上为增函数,不合题意!当"’,$,即"$(时,函数%(&)在(’-,,]上为增函数,在(,,"’,]内为减函数,在("’,,&-)上为增函数!依题意应有,当&"(,,.)时,%+(&)%#,当&"(/,&-)时,%+(&)$#!所以.!"’,!/,解得0!"!1,所以"的取值范围是[0,1]!(##.年普通高等学校招生全国统一考试(全国卷!),2(理)3本题考查集合的运算!由题知’"{#,(,.}#($’"{#,,,(}${#,(,.}"{#,(},故选3!(文)4本题考查集合的运算!%)’"{#,(,5}#($(%)’)"{#,5,0}${#,(,5}"{#,5},故选4!(26本题考查反函数的求法!由*"7(&$##(&")**#&",()**#*",()*&(&$#),故选6!52(理)8本题考查两直线的位置关系!与&’(*&5"#垂直的直线的斜率+"’(,则过点(’,,5)的直线方程为:*’5"’((&&,)#*&(&’,"#,故选8!(文)3本题考查求圆的方程,设圆心为(",#),且"$#,则(",#)到直线5&&.*&."#的距离为(,即95:"&.:#&.95(&.&("(#5"&.";,##""(或""’,.5(舍去),则圆的方程为:(&’()(&(*’#)("((即&(&*(’.&"#,故选3!.!(理)3本题考查复数的运算!原式"(&,’5<,&<)("&,’(5<’5(<&"’5&<,故选3!(文)3本题考查导数的求法!易知*+"((&&,)(&’,)&(&&,)("(&(’(&&(&(&&,"5&(&(&’,,在&",处的导数为:5:,(&(:,’,".,故选3!02(理)8本题考查不等式的解法!原不等式等价于(&&()&(&’5)%#,令(&&()&(&’5)"#得&,"’(,&("#,&5"5,将数轴分成四部分,可见,不等式的解集为:{&9#%&%5或&%’(},故选8!(文)3本题考查函数图象的平移!*"5:(,5)&"(,5)&’,,则只需把*"(,5)&的图象向右平移,个单位,故选3!/24本题考查等差数列的性质,由已知可得(",&"(&"5)&(",=&",>&"(#)"’(.&1=#(",&"(#)&("(&",>)&("5&",=)"0.#",&"(#",=#,(#"",&"(#(:(#",=(:(#",=#,故选4!12(理)6本题考查简单多面体中线面位置关系的判定!8中-与!关系不确定,4同8,6为真命题,3中.与-也可能相交,故选6!(文)8本题考查几何体的体积!由题易知正三棱柱的侧面为正方形并且底面边长为&(,则三棱柱的体积为:&5.(&()(&:("&/(,故选8!=2(理)8本题考查圆锥曲线的基本性质,亦知抛物线的焦点为(’,,#),则椭圆/",,由/"",(得""(##""(’/&(&"5#标准方程为&(.&*(5",,故选8!(文)6本题考查诱导公式和三角函数的求值!原式"(?@A("/&&)’?@A ("/&&)"?@A ("/&&)’’,,故选6!>24本题考查排列组合的应用!(#)全为女班主任有:85.,($)全为男班主任有:850,5位班主任中男女都有为:85>’85.’850"0#.’(.’/#".(#种,应选4!,#2(理)8本题考查球的有关性质,由题可知球的半径0满足."0("(#"#0&"0!由题易知(123",(#B ,如下图,4为球心,2、1、3为球面上的点,44+)面213于4+,易知4+2为(123的平分线,C (124+"/#B ,C *214+为正三角形,则在*244+中44+的长度为42(’4+2&("(&0)(’(&(",,故选8!(文)2本题考查球的有关性质,由题易知球的半径0满足."0("(#"#0&"0!如图,4为球心,44+)面213于4+,因*213为等边三角形,4+必为*213的中心,则在DE *244+中,4+2"&5521"(,所以44+"24(’4+2&("(&0)(’(&(",,故选82,,!4本题考查解三角形!由"、#、/成等差数列则"&/"(##"(&("/&/(".#(,由余弦定理可得#(""(&/(’("/・?@A 1,,("/A<*1"5(#("/",(,综合以上三式可得#(&,(・?@A 5#B &,(".#(##(&"(5&."(&5&,)(##&"5&,,故选4!,(2(理)6本题考查函数的性质!由题可知%(,)"%(’,&()"%(’,)&%(()"’%(,)&%(()#%(,)"’%(,)&%(()#%(()"(%(,)"(:,(",,则%(&&()"%(&)&,#%(0)"%(5&()"%(5)&,"%(,&()&,"%(,)&("(,故选6!(文)8本题考查直线与对数函数间的关系,由于2点在*")@F ,.&的图象上,则2点满足*")@F ,.("’,(#2((,’,(),又2在*"+&上#’,("+:(#+"’,.,故选8!,52(=本题考查二项式定理!则(&’,&&)=的第5&,项为65&,"65=・&=’5・&’5((’,)5"65=(’,)5・&=’5(5,当=’5(5"0时,得5"(,则&0系数为6(=(’,)("1:=("(=!,.2’,(本题考查向量的数量积的应用!由(!’")((!&")"’.#(!(’!・"’"("’.,又9!9"(,9"9".#’!・""’.&.(’(:((".,由?@A 〈!,"〉"!・"9!9・9"9"’.(:."’,(!,02(理)5.本题考查三角函数的最值求法!%(&)"?@A &’,(?@A (&"?@A &’,(((?@A (&’,)"’?@A (&&?@A &&,("’(?@A &’,()(&5.!5.!(文)5(本题考查正弦函数的周期性!*",(A<*&&"2",(A<*(,2&&"2),其最小正周期为(",2"(2""5",所以2"5(!,/2(本题考查线性规划方面的问题!&、*满足的约束条件,如右图阴影部分,目标函数7"(&&*表示直线(&&*’7"#在*轴上的截距,可见当直线过(,,#)时截距最大#7"(:,&#"(!,12本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等基础知识和基本技能!A<*(!&".)A<*(!&?@A (!&,"&(((A<*!&?@A !)(A<*!?@A !&(?@A (!"&((A<*!&?@A !).?@A !(A<*!&?@A !)!当!为第二象限角,且A<*!"&,0.时,答案—0!"#!$%&!!!’,%&!!()*+,所以!"#(!$!+)!"#,!$%&!,!$*(",+%&!!"(),-*./(理)本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力-!0(")(**$")*,",令**$")*,"(’,化简为",$"),(’,解得"*(),(舍去),",(*-当’#"1*时,!0(")2’,!(")单调增加;当*1"#,时,!0(")1’,!(")单调减小;所以!(*)(3#,)*+为函数!(")的极大值-又因为!(’)(’,!(,)(3#4)*2’,!(*)2!(,),所以!(’)(’为函数!(")在[’,,]上的最小值,!(*)(3#,)*+为函数!(")在[’,,]上的最大值-(文)本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力-(*)#0(,"$*-直线$*的方程为#(4")4-设直线$,过曲线#(",$"),上的点%(&,&,$&),),则$,的方程为#((,&$*)")&,),-因为$*$$,,则有,&$*()*4,&(),4-所以直线$,的方程为#()*4"),,5-(,)解方程组#(4")4#()*4"),,{5得"(*6#(){7,-所以直线$*和$,的交点的坐标为(*6,)7,)-$*、$,与"轴交点的坐标分别为(*,’)、(),,4,’)-所以所求三角形的面积’(*,8,7489)7,9(*,7*,-*5/(理)本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解决实际问题的能力-(*)"的可能取值为)4’’,)*’’,*’’,4’’-(("()4’’)(’-,4(’-’’.,(("()*’’)(48’-,,8’-.(’-’56,(("(*’’)(48’-,8’-.,(’-4.+,(("(4’’)(’-.4(’-7*,,所以"的概率分布")4’’)*’’*’’4’’(’-’’.’-’56’-4.+’-7*,根据"的概率分布,可得"的期望)"(()4’’)8’-’’.$()*’’)8’-’56$*’’8’-4.+$4’’8’-7*,(*.’-(,)这名同学总得分不为负的概率为(("%’)(’-4.+$’-7*,(’-.56-(文)本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力-记“这名同学答对第*个问题”为事件+*(*(*,,,4),则((+*)(’-.,((+,)(’-:,((+4)(’-6-(*)这名同学得4’’分的概率(*(((+*+,—+4)$((+*—+,+4)(((+*)((+,—)((+4)$((+*—)((+,)((+4)(’-.8’-48’-6$’-,8’-:8’-6(’-,,.-(,)这名同学至少得4’’分的概率(,((*$((+*+,+4)(’-,,.$((+*)((+,)((+4)(’-,,.$’-.8’-:8’-6(’-76+-,’/本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力-(*)如图,取+,的中点),连结(),则()$+,-作(-$平面+%./,,垂足为-,连结-)-根据三垂线定理的逆定理得-)$+,,所以&()-为侧面(+,与底面所成二面角的平面角-由已知条件可知&()-(6’;,()(6,所以(-"(44,四棱锥(—+%/,的体积0(—+%/,(*4""8.8+4844(56-(,)解法一:如上图以-为原点建立空间直角坐标系-通过计算可得((’,’,"44),+(",4,)4,’),%(",4,7,’),,("),4,)4,’),所以(+—’((",4,)4,")44),%,—’((")+4,).,’),因为(+—’・%,—’(),+$,+$’(’,所以(+$%,-解法二:如图所示,连结+-,延长+-交%,于点1-通过计算可得)-(4,+)"(,4,又知+,("+4,+%(.,得)-+)(+,+%-所以<=(+)-)<=(%+,-得&)+-(&+%,-得&)+-$&+,1(5’;,所以+1$%,-因为直线+1为直线(+在平面+%/,内的射影,所以(+$%,-,*/本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力-直线$的方程为"2$#&(*,即&"$2#)2&(’-由点到直线的距离公式,且22*,得到点(*,’)到直线$的距离3*(&(2)*)2,$&",,同理得到点()*,’)到直线$的距离3,(&(2$*)2,$&",,4(3*$3,(,2&2,$&",(,2&5-由4%+75,得,2&5%+75,即725,)2",%,5,-于是得76,")*%,6,,即+6+),76,$,7#’-解不等式,得7+#6,#7-由于62*2’,所以6的取值范围是"7,#6#"7-,,/(理)本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力-(*)!0(")()>)"(%&!"$!"#")$>)"()!"#"$%&!")(),>)"!"#"-由!0(")(’,得),>)"!"#"(’-解出"(7!,7为整数-从而"7(7!,7(*,,,4,…,!("7)(()*)7>)7!,!("7$*)!("7)()>)!-所以数列{!("7)}是公比8()>)!的等比数列,且首项!("*)(8-(,)’7("*!("*)$",!(",)$…$"7!("7)(!8(*$,8$…$787)*),8’7(!8(8$,8,$…$787),’7)8’7(!8(*$8$…$87)*)787)(!8(*)87*)8)787),从而’7(!8*)8(*)87*)8)787)-’*$’,$…$’77(!8(*)8),)!8,7(*)8)4(*$8$…$87)*))!8,7(*)8)(*$,8$…$787)*)(!8(*)8),)!8,7(*)8),*)87*)8)!8,7(*)8),(*)87*)8)787)(!8(*)8),),!8,7(*)8)4(*)87)$!87$,(*)8),-因为989(>)!1*,3"?7’@87(’,所以3"?7’@’*$’,$…$’77(!8(*)8),()!>!(>!$*),-(文)本小题主要考查等比数列的概念,前7项和公式等基础知识,考查学生综合运用基础知识进行运算的能力-(*)设等比数列{27}的公比为8,则2,(2*8,27(2*8+-依题意,得方程组2*8(62*8+{(*6,-解此方程组,得2*(,,8(4-故数列{27}的通项公式为27(,・47)*-(,)’7(,(*)47)*)4(47)*,’7・’7$,’,7$*(4,7$,)(47$47$,)$*4,7$,),・47$*$*#4,7$,),47・47"$,$*4,7$,),・47$*$*(*,即’7・’7$,’,7$*#*-,’’+年普通高等学校招生全国统一考试(全国卷")*-A 本题考查集合的运算-9表示单位圆上的点的集合-:表示抛物线上的点的集合-9*:表示圆与抛物线交点的个数,即为",$#,(*",)#{(’解的个数,消去"得#,$#)*(’,#2’,有两个解一个正、一个负,又#%’,则负根舍去-代入原方程"有两个,则方程组有两组解,故对应两个交点,则应选A-另解:数形结合,抛物线顶点(’,’)在圆内部,则抛物线与圆有两个交点,故选A-答案—6!"#本题考查三角函数的周期"!(")$%&’("!%!!(!!)")$%&’(!!)"!%$%&’((!)"!)%$%*&’("!%$%&’("!%,!(!)")$%&’(!)"!%$%&’((!!)"!)%$%+,&"!%"!("),则最小正周期为!!,另解数形结合求解"-"(理).本题考查数列的性质"由题可知,数列的公差#$$/*$!/*!$0*(*0)0$!,然后根据前%项和公式求出&1、&2、&0,可得."另解:由$!)$/$3!$2$3,则前1项和与前2项和相等,故选."(文).本题考查等比数列的前%项和公式,设公比为’则’-$$2$!$!1-4$!5!’$-,则前1项的和为:-)4)!5)/6$6!3,故选."1"7本题考查圆的切线的有关问题"易知圆心((!,3),则()连线的斜率为*+,$#-*36*!#$*-!切)点的切线斜率*$*6*+,$6#-!过)点切线方程-#*-$6#-("*6)!"*#--)!$3,故选7"2"(理)8本题考查函数的定义域"由题易知39"!*6$6!69"!$!!#*!$"9*6或69"$#!,故选8"(文).本题考查原函数与反函数之间的关系"设.(63)$$!!($)$63!6)-*$$63!-*$$-!!$$*!,故选."0"8本题考查复数的三角形式"设其三角形式为:/$0(+,&!-!)’&’(!-!)$*6!0)#-!0’,由题知:#-!0#$-!0$!,则/#$*6)-’!/!#$*!*!-’,故选8"5"#本题考查双曲线的性质"由题可知1$$6!!$$!1,又+!$$!)1!$$!)$!1$21$!!+$$#2!,故选#"/"7本题考查绝对值不等式的解法"原不等式等价于")6%369"{)69-或")693*-9"{)69*6!"%*639"{9!或"9*6*19"{9*!!39"9!或*19"9*!,故选7"4"#本题考查几何体体积的求法,易知正三棱锥的侧棱长为#!,则其体积为60(#!)-$#!-,故选#"(若一个三棱锥的三条侧棱两两相互垂直且侧棱长分别为$、1、+,则其体积为6$1+)63".本题考查三角形的解法"由余弦定理可得:+,&2$2(!)23!*3(!!2(・23$1!)-!*(#6-)!!:-:1$6!";&’(2$#-!,则2(边上的高4$23・&’(2$-:#-!$-!#-,故选."66"(理)8本题考查不等式的解法"使得!(")%6成立,有"96(")6)!%{6或"%61*"#*6%{6!"96%")6%%{6或"%6"#*6${-!"96")6%6或")6${*6或"%63$"*6${4!3$"96或"$*!或6$"$63!"$*!或3$"$63,故选8"(文)8本题考查二项式定理"由题可知展开式中第0)6项为:50)6$#00・(#")0*0・(*6")0$#00・"-*0!・(*6)0・"*0$(*6)0・#00"-*-!0,当0$!时,即第-项为常数项,其值为:(*6)!・#!0$0:2!$62,故选8"6!"#本题考查排列组合的应用"首先将四名老师进行分成-组有#!1,然后将其进行全排列有8--,由乘法原理有#!18--$-0"6-"-60本题考查球的性质"由题易知,如右图截面半径0为:0$6!*(6!)#!$#-!6,截面的面积&截$!0!$!:(#-!6)!$-1!6!"球的表面积为&球$1!6!,则:&截<&球$-1!6!<1!6!$-<60$-60"61"(理)6本题考查三角函数的最值"则-$&’("#)-+,&"$!(6!&’(")#-!+,&")$!・&’((")!-),由"&[3,!!],;!-$")!-$2!0,;-%!&’(!0$6"(文)#2!本题考查三角函数的最值"由题可知,-$#2!&’((")!)(其中!$=>+?=((*!)),其最大值为#2!"62"(理)*!本题考查函数的性质"设"93,则*"@3,!(*")$-*"*6"又!(*")$*!(")!!(")$*-*")6,A !(")与.(")互为反函数!设.(*/)$$!!($)$*/,又当"%3时,!(")%3,当"93,!(")93!*-*$)6$*/!-*$$-!!$$*!"(文){"%69"$!}本题考查函数的定义域"由题可知39"*6$6!69"$!"60"(理)#2本题考查抛物线的性质"由定义可知,)点到-轴的距离等于)点到7(!,3)的距离,即)点到2点与到-轴的距离之和等于%)2%)%)7%,又%)2%)%)7%%%27%,即2、)、7三点共线时最小,即最小值为%27%$(!*3)!)(3*6)#!#$2"(文)6本题考查数形结合能力"由下(右)图可知,设圆心到直线的距离为#!#$%3*3*63%-!)1#!$!@6,则圆上的点到直线的最小值为:!*6$6"(理)(文)65B 本小题主要考查同角三角函数的基本关系、二倍角公式等基础知识以及三角恒等变形的能力"原式$&’("+,&!"!&’("+,&"+,&!",因为?=("$6!时,&’(""3,+,&!""3,所以原式$6!+,&""因为"为锐角,由?=("$6!得+,&"$!#2,;原式$#21"6/B(理)本小题主要考查解带绝对值的方程以及指数和对数的概念与运算"当6*!"%3,即"$3时,原方程化为1"*!")6$66,(!"*6!)!$161,解得!"$6!C #16!"!"$6!*#16!93,无解"由!"$6!)#16!@6知"@3,舍去"当6*!"93,即"@3时,原方程化为1")!"*6$66,(!")6!)!$141,解得!"$*6!C5!,!"$*6!*5!93,无解"!"$*6!)5!,"$D,E !-@3"原方程的解为"$D,E !-"(文)本小题主要考查指数和对数的性质以及解方程的有关知识"(!")!*1(!")*6!$3"(!"*0)(!")!)$3"故!"$0,!"$*!(无解)"所以"$D,E !0"64B本小题主要考查把实际问题抽象为数学问题,应用不等式等基础知识和方法解决问题的能力"设矩形温室的左侧边长为$F ,后侧边长为1F ,则$1$/33"蔬菜的种植面积&$($*1)(1*!)$$1*11*!$)/$/3/*!($!)!1)"所以&$/3/*1!#$1$01/(F !)"当$$!1,即$$13(F ),1$!3(F )时,&最大值$01/(F !)"答:当矩形温室的左侧边长为13F ,后侧边长为!3F 时,蔬菜的种植面积最大,最大种植面积为01/F !"!3B 本小题主要考查两个平面垂直的性质,直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力"(6)如图6,取2(中点8,连结)8、38"因为)2$)(,所以)8’2(,又已知面)2(’面23(,所以)8’面23(,8为垂足"答案—5。
2004-数一标准答案及解析

一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上) (1)曲线 y=lnx 上与直线 x + y = 1 垂直的切线方程为 y = x − 1 . 【分析】 本题为基础题型, 相当于已知切线的斜率为 1, 由曲线 y=lnx 的导数为 1 可确定切点的坐标. 【详解】 由 y ′ = (ln x) ′ =
(A)
0 1 0 1 0 0 . 1 0 1
0 1 0 (B) 1 0 1 . (C) 0 0 1
0 1 0 1 0 0 . 0 1 1
(D)
0 1 1 1 0 0 . 0 0 1
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 8 - 页 共 21 页
变量 t. 【详解】 交换积分次序,得
F (t ) = ∫ dy ∫ f ( x)dx = ∫ [ ∫ f ( x)dy ]dx = ∫ f ( x)( x − 1)dx
1 y
1 1 1
t
t
t
x
t
于是, F ′(t ) = f (t )(t − 1) ,从而有 F ′( 2) = f ( 2) ,故应选(B). 【评注】 在应用变限的积分对变量 x 求导时,应注意被积函数中不能含有变量 x:
x −x
x = x0
=
1 得 x0 = 1 , = 1, x0
,且 f(1)=0, 则 f(x)=
1 (ln x) 2 2
.
【分析】 先求出 f ′( x) 的表达式,再积分即可. 【详解】 令 e = t ,则 x = ln t ,于是有
x
f ′(t ) =
2004年高考数学试题(全国1理)及答案

2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a ρ、b ρ均为单位向量,它们的夹角为60°,那么|a ρ+3b ρ|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A)I (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=BC PB GA 于是有所以θ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772cos -==θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=Y Θ的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得Θ 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年高考数学试题(全国4文)及答案

2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。
2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)及答案

2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -=( ) A .–3 B .3 C .-3i D .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1D 4.不等式221x x +>+的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .26.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为 ( )A .2B .4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A .0a <B .0a >C .1a <-D .1a > 8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为( )A .B .C .D .9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( ) A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A .43 B .53 C .2 D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( )A .110B .120C .140 D .112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是( )(C ) (D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x =-=-与在交点处切线的夹角是______,(用幅度数作答) 15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..,P n ,…,记纸板P n 的面积为n S ,则lim ______n x S →∞=.16.对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数44sincos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间。
04-05高等数学试卷B答案

04-05高等数学试卷B答案高等数学试卷(B 卷) 第 2 页 共 14 页广州大学2004-2005学年第二学期考试卷答案与评分标准课 程:高等数学(90学时) 考 试 形 式:闭卷 考试题 号 一 二 三 四 五 六 七 总 分 分 数 15 15 20 20 15 7 8 100 评 分 评卷人一.填空题(本题共5小题,每小题3分,满分15分)1.设y x xy z +=,则=dz dy yx x dx y y ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+21 2.设),(v u f z =具有一阶连续偏导数,y x u +=2,┋┋┋┋┋装 ┋┋┋┋┋┋┋订┋┋┋┋┋┋┋┋线┋┋┋┋┋┋┋┋┋装┋┋┋┋┋┋┋┋┋订┋┋┋┋┋┋线┋┋┋┋┋┋┋学院领导 审批并签名B 卷高等数学试卷(B 卷) 第 3 页 共 14 页xyv = , 则=∂∂xzvuf y f+23.L 为圆周122=+y x,则2Lx ds =⎰π4.若级数∑∞=1n nu 收敛,则=∞→nn ulim 05.微分方程02=-ydx xdy 的通解是2y c x =二.单项选择题(本题共5小题,每小题3分,满分15分)1.函数),(y x f z =在点),(y x 处可微是),(y x f 在该点偏导数x z∂∂及y z ∂∂存在的【 A 】 (A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )无关条件.2.曲线2t x =,12+=t y ,3t z =在点)1,1,1(--处的 法平面方程为【 B 】(A )3322-=++z y x (B )7322=--z y x高等数学试卷(B卷)第 4 页共 14 页(C)当10≤<p时,级数∑∞=--11)1(npnn绝对收敛(D)当10≤<p时,级数∑∞=--11)1(npnn条件收敛高等数学试卷(B卷)第 5 页共 14 页高等数学试卷(B 卷) 第 6 页 共 14 页三.解答下列各题(本题共3小题,第1、2小题6分,第3小题8分,满分20分) 1.求函数2221)ln(y x x y z --+-= 的定义域,并画出其区域图解:要使函数有意义,须满足⎪⎩⎪⎨⎧≥-->-010222y x x y 即⎪⎩⎪⎨⎧≤+>1222y x x y所求定义域为}1|),{(222≤+>=y x x y y x D 且 ┉┉┉┉┉ 3分区域D 的图形如左图阴影部分┉┉┉┉┉┉┉┉┉ 6分2.函数),(y x z z =是由方程0=+-xy yz e z确定,求xz ∂∂及22x z ∂∂ 解:令=),,(z y x F xyyz ez+- 则 yFx=, ye Fz z-=┋┋┋┋┋ 装┋┋┋┋┋┋┋订┋┋┋┋┋┋┋┋线┋┋┋┋┋┋┋┋┋装┋┋┋┋┋┋┋┋┋订┋┋┋┋┋┋线┋┋┋┋┋┋┋高等数学试卷(B 卷) 第 7 页 共 14 页zyx e y yFF x z-=-=∂∂ ┉┉┉┉┉┉┉┉┉┉┉┉ 3分22x z ∂∂2)(z z e y x z e y -⎪⎭⎫ ⎝⎛∂∂--= ┉┉┉┉┉┉┉┉┉┉┉┉┉ 5分 32)(z z e y e y -= ┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 6分3.求表面积为36而体积最大的长方体 解:设长方体的三棱长为z y x ,,,则体积xyz V =,且 18=++xz yz xy令)18(),,(-+++=xz yz xy xyz z y x L λ ┉┉┉┉┉┉┉┉┉ 3分 由⎪⎪⎩⎪⎪⎨⎧=++=++==++==++=180)(0)(0)(xz yz xy y x xy L z x xz L z y yz L z y x λλλ ┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 5分得6===z y x ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 7分由实际问题可知,当棱长为6的正方体时体积最大 ┉┉┉┉ 8分高等数学试卷(B 卷) 第 8 页 共 14 页四.计算下列积分(本题共3小题,第1、2小题6分,第3小题8分,满分20分)1.计算dxdy y x D⎰⎰,其中D 由直线x y =,1=y 及0=x 围成的闭区域 解:dxdy y x D⎰⎰⎰⎰=101xdyxy dx ┉┉┉┉┉┉┉┉┉┉┉┉┉ 3分dx y x x ⎰=1012|21 ┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 4分dx x x ⎰-=13)(21 ┉┉┉┉┉┉┉┉┉┉┉┉┉ 5分81= ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 6分2.计算⎰⎰⎰Ωdz dy dx z ,其中Ω是由平面1=++z y x 及三个坐标面 所围成的闭区域高等数学试卷(B 卷) 第 9 页 共 14 页解:⎰⎰⎰Ωdz dy dx z ⎰⎰⎰---=y x x dzz dy dx 10101┉┉┉┉┉┉┉┉ 3分 dy y x dx x ⎰⎰---=10102)1(21 ┉┉┉┉┉┉┉ 4分⎰--=103)1(61dx x ┉┉┉┉┉┉┉┉┉┉┉ 5分=241┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 6分3.利用格林公式计算22()()yxLI xy e dy x y e dx =+-+⎰,其中L 为圆周422=+y x ,取逆时针方向 解:记4:22≤+yx D ,由格林公式⎰⎰+=Ddydx y x I )(22 ┉┉┉┉┉┉┉┉┉┉┉ 3分 ⎰⎰⋅=πρρρθ20202d d ┉┉┉┉┉┉┉┉┉┉┉6分高等数学试卷(B 卷) 第 10 页 共 14 页420|2πρ=┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 7分π8= ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 8分五.解答下列级数(本题共3小题,第1小题5分,第2小题10分,满分15分) 1.判别级数∑∞=123n nn 的敛散性 解:nn n nn n n n uu 33)1(lim lim 2)1(21+∞→+∞→+= ┅┅┅┅┅┅┅┅┅┅ 2分211lim 31⎪⎭⎫⎝⎛+=∞→nn131<=┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分该级数收敛 ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分2.求幂级数∑∞=+1)1(n nx n n 的收敛域及其和函数解:nn n aa 1lim +∞→=ρ)1()2)(1(lim+++=∞→n n n n n ⎪⎭⎫⎝⎛+=∞→n n 21lim 1= ┅┅ 2分故11==ρR ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 3分当1-=x 时,级数∑∞=+-1)1()1(n nn n 发散 ┅┅┅┅┅┅┅┅┅ 4分 当1=x 时,级数∑∞=+1)1(n n n 发散 ┅┅┅┅┅┅┋┋┋┋┋ 装┋┋┋┋┋┋┋订┋┋┋┋┋┋┋┋线┋┋┋┋┋┋┋┋┋装┋┋┋┋┋┋┋┋┋订┋┋┋┋┋┋线┋┋┋┋┋┋┋┅┅┅┅┅┅ 5分幂级数的收敛域为)1,1(- ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 6分 记=)(x S ∑∞=+1)1(n nx n n 11<<-x=⎰x dx x S 0)(∑∞=+11n n nx2x=∑∞=-11n n nx又设=)(x g ∑∞=-11n n nx ,11<<-x ,=⎰xdx x g 0)(∑∞=1n nx=xx-1 ┅┅ 8分 知2)1(11)(x x x x g -='⎪⎭⎫⎝⎛-=()3222)1(2)1()()(x xx x x g x x S -='⎪⎪⎭⎫ ⎝⎛-='= (11<<-x )┉┉┅┅ 10分六.(本题满分7分)设有连结点(0,0)O 和点(1,1)A 的一段向上凸 的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围成的图形的面积为2x ,求曲线弧OA 的方程解:设曲线弧OA 的方程为()y y x =,依题意21()2xy t dt xy x -=⎰ ┅┅┅┅┅┅┅┅┅┅┅┅ 2分两边关于x 求导,得1()()22y x y xy x '-+= 即14y y x '-=- ┅┅┅┅┅┅┅┅┅┅ 3分该方程为一阶线性微分方程,由常数变易公式得(4)dxdx xxy e e dx C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰┅┅┅┅┅┅┅┅┅┅┅ 4分14x dx C x ⎡⎤=-+⎢⎥⎣⎦⎰(4ln )x x C =-+ ┅┅┅┅┅┅┅┅┅┅┅┅┅ 6分 由1|1x y ==得,1C =所求方程为4ln y x x x =-+┅┅┅┅┅┅┅┅┅┅┅┅ 7分 七.(本题满分8分)求微分方程2xy y y xe '''--=的通解解:该方程为二阶常系数非齐次线性微分方程,且()f x 为()xmP x e λ型 (其中()mP x x =,1λ=)与所给方程对应的齐次方程为20y y y '''--= 它的特征方程 220r r --=┅┅┅┅┅┅┅┅┅┅┅┅ 2分特征根11r =-,22r =齐次方程的通解为212xxY C e C e -=+┅┅┅┅┅┅┅┅┅ 4分由于1λ=不是特征根,设()xy ax b e *=+ ┅┅┅┅┅┅ 5分代入原方程得 22ax a b x -+-=由比较系数法得2120a ab -=⎧⎨-=⎩,解得11,24a b =-=-, 1(21)4xy x e *=-+,┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 7分 所求通解为2121(21)4xx xy C eC e x e -=+-+┅┅┅┅┅┅8分。
2004—数一真题标准答案及解析

2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd y d x x d y L]s i n 2s i n 22c o s 2c o s 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dx y d ax=++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{ =.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0c o s 2t a n lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x xxx x tan 221sin lim tan sin lim lim 230302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT =,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有2(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+ =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(tt t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCe v -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx-=0,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知d x d y d z z y x d x d y z d z d x y d y d z x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ(I ) 由于梅花香自苦寒来,岁月共理想,人生齐高飞!第 - 21 - 页 共 21 页 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽工业大学2004级高等数学B1期末考试乙卷参考答案与评分标准
考试日期:2005.1.4
一、(48⨯分)(只要填入所选答案序号)
二、1. 2
2
1)1(t t t
--; 2. 1+=+πy x ; 3. 0=y ; 4.;
5. C
x +-
2
1; 6.
2
2b
a ; 7.),2
1
(+∞;
8.. )(")(2)('22x f x f x f + 三、 1. 原式=dx
x x x x ⎰
-+-22
)
1(2)1( …………………………………2分
=⎰
⎰
-+2
)1(21x dx dx x
………………………………4分
=C
x x +--1
2
ln . …………………………………6分
2.由于⎪⎪⎩
⎪⎪
⎨⎧<<≤≤<≤---<<--=.31,1;10,
;
01,;
13,1)(x x x x x x x f …………………………3分
所以函数)(x f 在1-=x 处间断。
………………………6分 3. 原式=dx
x
x
x xarc ⎰++2
1cot ……………………………3分 =⎰
+++
1
)1(2
1cot 2
2
x x d x xarc …………………………4分
=.)1ln(2
1cot 2
C x x xarc +++
(6)
分
4.x x e x y e x y )2(",)1('+-=+-=, ………………………3分 令 0'=y ,得唯一驻点,1-=x 且,0)1("<-y ……………5分 所以,1-=x 时,y 取极大值.1
e ……………………6分
5. ,sin ),cos 1(t a y t a x
=-= ……………………………3分 t
t dx
dy cos 1sin -=
∴
.………………………………………6分
6. 令,t x =原式=⎰dt e t t 32………………………………2分 =⎰+⎰-=-dt te e t e t dt e t e t t t t t t 1262622323 =C t t t e t +-+-)663(223 ………………4分 =.)663(2C x x x x e
x
+-+-…………6分
7. 方程两边对x 求导,得
2
2
2
2
)
(1''x
y
x
y x
y y
x yy x ++-=
++,……………………………3分
化简得''xy y yy x +-=+,……………………………5分
因此 y
x y x y -+='.……………………………………6分
四、
五、
证明:)(x f 显然在任意区间内满足拉格朗日中值定理的条
件,存在介于b a ,之间的ξ,使得
))(1221
1()()(2
a b a f b f -+-
=-ξ
ξ
,……………………2分
由于,2
3122112
1,
1122
2
≤
ξ
+ξ
-
≤≤ξ
+ξ……………………4分
因此
.2
3)()(2
1a b a f b f a b -≤
-≤- …………………5分。