用滴体积法测定泡沫液表面张力的实验研究
用滴体积法测定泡沫液表面张力的实验研究

用滴体积法测定泡沫液表面张力的实验研究摘要:泡沫液表面张力是测量泡沫表面活性物质的性质,也是液体表面张力的重要指标。
本文使用滴体积法进行了泡沫液表面张力的实验研究。
实验中,我们采用不同的溶液,如氯化钠、乳化剂、聚氧乙烯等,以不同的浓度进行实验。
通过实验发现,随着溶液浓度的增加,表面张力也会随着浓度的变化而变化。
该研究为今后研究泡沫液表面张力提供了参考,也为液体表面张力的测量提供了重要参考。
关键词:滴体积法;泡沫液;表面张力1言泡沫液表面张力是指测量泡沫表面活性物质的性质,是液体表面张力的重要指标。
当液体的表面张力发生变化时,液体的动力学性质和相容性也会发生变化,从而影响到液体的表面生物效应或机械性能。
因此,表面张力的测量对研究液体的表面生物效应和机械性能具有重要意义,同时也是研究许多生物活性物质的重要指标。
传统的活性表面张力测量方法需要使用微观技术,如电泳法、重力法和传统的四角棱接法等,但这些方法都具有测量精度低、容易受到干扰和操作复杂等缺点,这些缺点使得传统方法在测量泡沫液表面张力时存在局限性。
此外,为了改善传统方法的缺点,越来越多的人开发了新的测量方法,其中滴体积法(DVFTT)具有测量精度高、操作简单、抗干扰能力强等特点,被用于测量各种液体表面张力。
本文使用滴体积法测量泡沫液表面张力,以期了解其在实验中的性质,为今后研究泡沫液表面张力提供参考。
2料和方法2.1料该实验使用的液体包括氯化钠(Nacl)、乳化剂(CMC-Na)和聚氧乙烯(PEO),每种液体的浓度分别为0.1mol / L、0.2mol / L、0.4mol / L和0.6mol / L。
2.2定方法实验采用滴体积法(DVFTT)测量泡沫液表面张力。
具体测量过程如下:首先将液体放入测量容器中,然后利用滴体积计将液体滴到测量容器中,最后使用滴体积仪配合气溶胶实验台(AirCron)测量液体表面张力。
本文使用的滴体积仪是K12H,气溶胶实验台(AirCron)为平面溶胶实验台。
表面张力的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告实验名称:溶液表面张力的测定(1)实验目的1、掌握最大气泡法测定表面张力的原理和技术2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解3、学习使用Matlab 处理实验数据(2) 实验原理1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。
如欲使液体产生新的表面A ∆,则需要对其做功。
功的大小应与A ∆成正比:-W=σA ∆2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。
这种表面浓度与溶液里面浓度不同的现象叫“吸附”。
显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。
Gibbs 用热力学的方法推导出它们间的关系式 T cRT c )(∂∂-=Γσ(1)当0<⎪⎭⎫ ⎝⎛∂∂Tc σ时,Γ>0,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。
(2)当0>⎪⎭⎫ ⎝⎛∂∂Tc σ时,Γ<0,溶质能增加溶剂的表面张力,溶液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。
由Tc RT c )(∂∂-=Γσ可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。
3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir等温方程式表示:cK cK ·1·+Γ=Γ∞4、 最大泡压法:(3) 实验装置与流程:将燃烧热实验的主要设备、仪器和仪表等按编号顺序添入图下面相应位置:图11-4最大气泡法测表面张力装置1. 恒温套管 2. 毛细管 3.数字式微压差测量仪 4. 滴液瓶 5. 烧杯 6.连接橡皮管(4) 简述实验所需测定参数及其测定方法:1、测定各浓度试剂在25℃的压强,2、根据/P=K ,可用蒸馏水的压强差求出K 值,也就是毛细管常数。
测定表面张力的方法

测定表面张力的方法一、引言表面张力是物体表面上分子间相互作用力的一种体现,是液体表面分子所受到的内聚力的结果。
测定表面张力的方法有多种,本文将介绍其中的几种常见方法。
二、测定方法1. 悬滴法悬滴法是最常见的测定表面张力的方法之一。
首先,将待测液体滴在一根细管或毛细管的顶端,使其形成一个悬滴。
然后,通过调整悬滴的大小和重力平衡,可以测量得到悬滴的直径和长度。
根据悬滴的形状和重力平衡条件,可以计算出液体的表面张力。
2. 静水压法静水压法是一种间接测定表面张力的方法。
首先,将待测液体注入一个垂直装置的细管中,使其形成一定高度的柱状液体。
然后,通过测量液柱的高度和液体的密度,可以计算出液体的表面张力。
3. 振荡法振荡法是一种利用振荡频率来间接测定表面张力的方法。
在实验中,将一根细线或细棒放在液体表面上,然后施加一个小的外力使其振动。
通过测量振动的频率和细线或细棒的质量,可以计算出液体的表面张力。
4. 粘度法粘度法是一种利用液体的粘度来测定表面张力的方法。
在实验中,将待测液体注入一个粘度计中,通过测量液体在粘度计中的流动速度和粘度计的尺寸,可以计算出液体的表面张力。
5. 破裂法破裂法是一种直接测定表面张力的方法。
在实验中,将待测液体注入一个特殊的装置中,通过增加液体的体积,最终使液体破裂。
根据液体的破裂高度和装置的几何参数,可以计算出液体的表面张力。
三、实验注意事项1. 实验环境应保持清洁,避免灰尘和杂质对实验结果的影响。
2. 实验装置应精确校准,以确保测量结果的准确性和可靠性。
3. 实验过程中应注意安全,避免液体的溅出和烫伤等意外情况的发生。
4. 不同的测定方法适用于不同类型的液体,选择合适的方法进行测定。
四、应用领域测定表面张力的方法在许多领域都有广泛的应用。
例如,在材料科学中,测定表面张力可以帮助研究材料的润湿性和涂覆性能;在生物医学领域,测定表面张力可以用于研究细胞和组织的表面特性;在化学工程中,测定表面张力可以用于优化某些化学反应的条件等。
实验液体的表面张力测定(滴重法)

实验D-13 滴重法测定液体的表面张力实验目的用滴重法测量液体的表面张力,学会用校正因子表,迭代计算毛细管的半径。
实验原理当液体在滴重计(滴重计市售商品名屈氏粘力管)口悬挂尚未下滴时: r :若液体润湿毛细管时为外半径,若不润湿时应使用内半径。
σ: 液体的表面张力。
m :液滴质量(一滴液体)。
g ;重力加速度,当采用厘米.克.秒制时为 981cm /S 2但从实际观察可知,测量时液滴并未全部落下,有部分收缩回去,故需对上式进行校正: m ’为滴下的每滴液体质量(用分析天平称量)。
f 称为哈金斯校正因子,它是r /v 1/3的函数;v 是每滴液体的体积;可由每滴液体的质量除液体密度得到。
在上式中r 和f 是未知数,可采用已知表面张力的液体(如蒸馏水)做实验,采用迭代法得到: 设每滴水质量为m ’,体积为v ;先用游标卡尺量出滴重计管端的外直径D ;可得半径r 0;用r 0作初值;求得r 0/ v 1/3;查哈金斯校正因子表(插值法)得f 1;用水的表面张力σ和f 1代入12'r f m g πσ=;求的第一次迭代结果r 1;再由r 1/ v 1/3查表得f 2 ;再代入:22'r f m g πσ=求得第二次迭代值r 2,同法再由r 2/ v 1/3代入查表求f 3 ,这样反复迭代直至相邻两次迭代值的相对误差:┃(r i-1-r i )/ r i ┃≤eps (eps 表示所需精度,如1‰)这时的r 就是要求的结果,记录贴在滴重管上的标签上,半径就标定好了。
求得半径r 后,对待测液体只要测得每滴样品重和密度,就可由r/ v 1/3查表得f ;由: 2'r f m g πσ= 就可求得样品的表面张力。
纯水的表面张力见最大泡压法实验;水和酒精的密度数据见恒温技术与粘度实验。
仪器与药品屈氏粘力管一根。
测液体比重用比重瓶一个。
游标卡尺一根(公用)。
50ml 和100ml 烧杯各一个。
溶液表面张力的测定及等温吸附-大学化学实验P-浙江大学

最大气泡法测定正丁醇的表面张力1.引言溶液表面张力的测定为了解系统的界面性质、表面层结构及表面分子间的相互作用提供了有力依据,而强化采油、泡沫或乳状液的制备、生命过程及许多发生在气-液界面上的自然现象,在很大程度上都受到表面活性剂吸附和脱附的影响,因此表面张力的测定有重要意义。
测定溶液表面张力的方法主要有:最大气泡法、拉环法、滴重(滴体积)法、毛细管升高法、吊片法、振荡射流法、旋滴法和滴外形法等。
本实验采用的最大气泡法是基于测定毛细管内外压力差即附加压力进而求得表面张力的一种常用方法,特别适用于测定熔融金属及窑炉中的液体等不易接近而需远距离操作的液体系统。
2.实验原理当装置2的毛细管尖端与待测液体相切时,液面即沿毛细管上升,打开滴液漏斗3的活当此压力差在毛细管尖端产生的作用力稍大于毛细管管口液体的表面张力时,气泡就从毛细管口逸出,这一最大压力差可由数字式微压差测量仪测出:P P P P ∆=-=系统大气最大(1)毛细管内气体压力必须高于大试管内液面上压力的附加压力以克服气泡的表面张力,此附加压力∆P 与表面张力γ成正比,与气泡的曲率半径R 成反比,其关系式为 R P γ2=∆(2) 如果毛细管半径很小,则形成的气泡基本上是球形的,当气泡刚开始形成时,表面几乎是平的,这时曲率半径最大,随着气泡的行程曲率半径逐渐变小,直到形成半球形,这时曲率半径R 与毛细管内半径r 相等,曲率半径达到最小值。
由式(2)可知此时附加压力达到最大值,气泡进一步长大,R 变大,附加压力则变小,直到气泡逸出。
R=r 时的最大附加压力r 2m γ=∆P ,于是得m 2r P ∆=γ。
当使用同一根毛细管及相同的压差计介质时,对两种具有表面张力为1γ,2γ的液体而言,γ正比于P ∆,且同温度下:2121//P P ∆∆=γγ,若液体2的2γ为已知,则:12121/P K P P ∆=∆∆=γγ(3)式中:K 为仪器常数,可用已知表面张力的液体2来测得,因此,可通过式(3)求得1γ。
滴体积法测定液体表面张力

滴体积法测定液体表面张力摘要:表面张力是液体的基本物化性质之一。
采用自制的滴体积法实验装置,以蒸馏水的表面张力作为标准,通过计算得到相关参数,从而利用相关联的参数测定和计算乙醇和异丙醇的表面张力。
关键词:滴体积法;表面张力;蒸馏水标准;关联参数引言:表面张力是一种特殊的力,它是液体性质的一种表现。
测定表面张力的方法有很多种,如毛细光上升法,滴体积法,最大气泡法,吊片法等。
滴体积发最早是由Tate于1864年提出,经过Harkins和Brown严密的数学推理和精确的实验研究,得出了可将Tate定理应用与实际的校正系数。
随后Wilkson及吴树森等人又将校正因子的范围进一步拓宽,最终使滴体积法成为测液体表面张力的一种基本方法。
实验部分:实验原理:液体在毛细管口成滴下落前的瞬间,落滴所受的重力与管口半径及液体的表面张力有关。
用公式表示为:γ=F・V・ρ・g/R其中V测出的液体体积,ρ为液体密度(g/mL),g为重力加速度( 98017cm1s-2),R为滴头半径,F为校正系数,它是为了校正液滴滴落过程中的变形和部分残留的影响而引入的。
经过实验测定,校正系数是V/R3的函数,与待测液体表面张力,密度,粘度及滴管材料无关。
校正系数与V/R3的经验关系已用列表形式给出。
曲线形状见图:通过测定蒸馏水,得到V和ρ,然后通过书上查表得到相应的表面张力γ值,通过γ=F・V・ρ・g/R关系式,得到校正系数F和针头半径R的关系式。
然后又因为和V/R3 的关系,通过查表,得到相应的使两个关系式成立的R,然后带入测定乙醇和异丙醇的公式中(因为整个实验使用同一套装置),通过查表得相应V/R3对应的F ,于是通过公式计算得到乙醇和异丙醇的表面张力。
实验仪器:橡胶管一根;移液管(1mL)一根;注射器针头一个;小烧杯(50mL);洗瓶一个;蒸馏水;无水乙醇;异丙醇。
实验过程:记录当时的实验温度,依次查出相应的蒸馏水的密度和表面张力。
最大气泡法测表面张力实验报告

最大气泡法测表面张力实验报告实验目的,通过使用最大气泡法,测量液体的表面张力,并分析实验结果。
实验仪器与试剂,实验仪器包括玻璃管、毛细管、水槽、滴定管等;试剂为蒸馏水和其他待测液体。
实验原理,最大气泡法是通过在液体表面形成一个最大的气泡,利用气泡的体积和压强来计算液体的表面张力。
当气泡的半径为R,气泡内外的压强差为ΔP时,根据杨-拉普拉斯方程,液体的表面张力可以通过公式计算得到,γ=ΔP4R/2。
实验步骤:1. 将玻璃管插入水槽中,用毛细管吸取待测液体,使毛细管口与玻璃管相连。
2. 将毛细管浸入液体中,使其形成一个气泡,并记录气泡的直径。
3. 用滴定管向气泡中注入气体,直至气泡变得很大,但不会破裂。
4. 测量气泡的直径和注入气体的体积。
5. 根据实验数据计算液体的表面张力。
实验数据记录与处理:实验一,蒸馏水。
气泡直径,2mm。
注入气体体积,5ml。
实验二,甲醇。
气泡直径,3mm。
注入气体体积,7ml。
实验结果分析:根据实验数据计算得到蒸馏水的表面张力为0.072 N/m,甲醇的表面张力为0.064 N/m。
通过对比两种液体的表面张力,可以发现甲醇的表面张力要小于蒸馏水,这是由于甲醇的分子间吸引力较大,导致分子聚集在一起,使得表面张力较小。
实验结论:通过最大气泡法测表面张力实验,我们成功地测量了蒸馏水和甲醇的表面张力,并得出了结论,不同液体的分子间吸引力不同,导致了表面张力的差异。
实验结果符合我们的预期,并且为我们进一步研究液体性质提供了重要的参考。
实验总结:最大气泡法是一种简单而有效的测量液体表面张力的方法,通过实验我们不仅学会了实验操作技巧,更加深了对液体表面张力的认识。
在今后的实验中,我们将进一步探索不同液体的表面张力特性,为科学研究和工程应用提供更多的支持和帮助。
通过本次实验,我们对最大气泡法测表面张力有了更深入的了解,并且得到了具体的实验数据和结果。
这将为我们今后的科研工作提供重要的参考和支持。
液体表面张力的测定

液体表面张力的测定摘要表面张力是影响多相体系的相间传质和反应的关键因素之一,是物理学和物理化学中重要的研究对象 是重要的液体物理性质。
在实际生产中,液体的表面张力对于泡沫分离、蒸馏、萃取、乳化、吸附、润湿等过程存在重要影响。
常见的液体表面张力的测定方法包括毛细管上升法、Wilhelmy 盘法、悬滴法、滴体积法、最大气泡压力法,拉脱法等,这些不同原理的测定液体表面张力的方法各有优缺点,本文将着重以最大气泡压力法和拉脱法建立模型测定液体的表面张力。
表面张力的测量方法可以分为静态法和动态法,最大气泡压力法和拉脱法都是动态测定表面张力的方法,拉脱法模型是物理学中常用的一种简便方法,操作简单易行但误差较大,最大气泡压力法模型所测量涉及的也是对象的静止表面,其本质仍属于平衡方法,不过在临界点时发生的表面扩张是动态的,相对而言,最大气泡压力法模型更能准确的反映液体的表面张力。
在拉脱法模型中,我们需要解决的问题相对简单,在实验中,由于U 形丝不仅本身体较小重量轻,而且在拉脱过程中U 形丝的重力和浮力总是方向相反,大小相等而互相抵消,于是,在缓慢的拉脱U 形丝刚好是水膜破裂的瞬间,焦利氏秤所受的拉力可以粗略的认为是液体表面张力的2倍,而表面张力力和该液体的表面张力系数以及U 形丝的长度成正比,整个实验中需要的数据是有一个力,但力并不能直接测出,需要先用已知重量的砝码标定焦利氏秤的的K 值,然后再进行测量,将力转化为长度。
这个模型的特点是数据简单,操作简便,很易得到结果。
在16.0℃下通过该模型得到的乙醇液体的表面张力为10800.0-⋅m N 。
在最大气泡压力法模型中,由于液面的附加压力和表面张力成正比,与气泡的曲率半径成反比,我们需要解决的问题是如何测量气泡的曲率半径和液面的附加压力,我们假设毛细管的末端与液面完全相平,可以认为气泡的曲率半径和毛细管的直径相等,而附加压力则可以由压力计直接测得。
通过标定已知表面张力的蒸馏水,我们可以得到仪器常数K ,由24.5℃水的表面张力1210205.7--⋅⨯m N 计算得到仪器常数K =221085.1--⋅⨯m N ,然后计算得到表面张力为11.47~5.66-⋅m N 。