2018年高考总复习数学(理科)基础知识反馈卡7-6双曲线Word版含解析

合集下载

2018年高考总复习数学(理科)基础知识反馈卡7-7抛物线Word版含解析

2018年高考总复习数学(理科)基础知识反馈卡7-7抛物线Word版含解析

基础知识反馈卡·7.7时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.抛物线y 2=-8x 的焦点坐标是( )A .(2,0)B .(-2,0)C .(4,0)D .(-4,0)2.(教材改编题)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( )A .x 2=-12yB .x 2=12yC .y 2=-12xD .y 2=12x3.在平面直角坐标系xOy 中,若抛物线x 2=4y 上的点P 到该抛物线焦点的距离为5,则点P 的纵坐标为( )A .3B .4C .5D .64.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( ) A .-2 B .2C .-4D .45.经过点P (4,-2)的抛物线标准方程为( )A .y 2=x 或x 2=-8yB .y 2=x 或y 2=8xC .y 2=-8xD .x 2=-8y6.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( ) A.12B .1C .2D .4 二、填空题(每小题5分,共15分)7.在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P (4,4),则该抛物线的方程是__________.8.抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________.9.焦点在直线x -2y -4=0上的抛物线标准方程为________________,对应的准线方程为________________.三、解答题(共15分)10.若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,求p 的值.基础知识反馈卡·7.71.B 2.A 3.B 4.D 5.A 6.C 7.y 2=4x 8.29.y 2=16x (或x 2=-8y ) x =-4(或y =2)10.解:设弦两端点P 1(x 1,y 1),P 2(x 2,y 2), 则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2.两式相减,得y 1-y 2x 1-x 2=2p y 1+y 2=2. ∵y 1+y 2=2,∴p =2.。

2018年高考总复习数学理科基础知识反馈卡 7-8轨迹与方

2018年高考总复习数学理科基础知识反馈卡 7-8轨迹与方

基础知识反馈卡·7.8时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 216+y 212=1B.x 212+y 216=1C.x 248+y 264=1D.x 264+y 248=1 2.已知双曲线中心在原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程为( )A.x 24-y 2=1 B .x 2-y 24=1 C.x 22-y 23=1 D.x 23-y 22=1 3.已知点F (1,0),直线l :x =-1,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线4.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0 5.已知两定点A (1,1),B (-1,-1),动点P 满足P A →·PB →=x 22,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .拋物线6.过点(2,-2)且与双曲线x 24-y 2=1有公共渐近线的双曲线方程是( ) A.y 212-x 23=1 B.y 23-x 212=1 C.x 212-y 23=1 D.x 23-y 212=1 二、填空题(每小题5分,共15分)7.在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P (2,4),则该抛物线的方程是________.8.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2,则椭圆C 的方程为________.9.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的焦点坐标为________________;渐近线方程为____________.三、解答题(共15分)10.已知两点M (-1,0),N (1,0),点P 为坐标平面内的动点,满足|MN →|·|NP →|=MN →·MP →.求动点P 的轨迹方程.基础知识反馈卡·7.81.A 2.B 3.D 4.D 5.B 6.B 7.y 2=8x 8.x 24+y 22=1 9.(-4,0),(4,0) y =±3x10.解:设P (x ,y ),则MN →=(2,0),NP →=(x -1,y ),MP →=(x +1,y ).由|MN →|·|NP →|=MN →·MP →,得2(x -1)2+y 2=2(x +1).化简,得y 2=4x .所以动点P 的轨迹方程为y 2=4x .。

2018版高考数学(理)一轮复习文档:第九章解析几何9.6 双曲线含解析

2018版高考数学(理)一轮复习文档:第九章解析几何9.6 双曲线含解析

1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a〉0,c〉0.(1)当2a〈|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a〉|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程错误!-错误!=1(a>0,b〉0)错误!-错误!=1(a〉0,b>0)图形【知识拓展】巧设双曲线方程(1)与双曲线错误!-错误!=1(a〉0,b>0)有共同渐近线的方程可表示为x2a2-错误!=t(t≠0).(2)过已知两个点的双曲线方程可设为错误!+错误!=1(mn〈0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ×)(2)方程错误!-错误!=1(mn〉0)表示焦点在x轴上的双曲线.( ×)(3)双曲线方程x2m2-错误!=λ(m>0,n〉0,λ≠0)的渐近线方程是错误!-错误!=0,即错误!±错误!=0。

( √)(4)等轴双曲线的渐近线互相垂直,离心率等于错误!.(√)(5)若双曲线错误!-错误!=1(a〉0,b〉0)与错误!-错误!=1(a>0,b〉0)的离心率分别是e1,e2,则错误!+错误!=1(此结论中两条双曲线称为共轭双曲线).(√)1.(教材改编)若双曲线错误!-错误!=1 (a〉0,b〉0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A。

5 B.5C.错误!D.2答案A解析由题意得b=2a,又a2+b2=c2,∴5a2=c2。

2018年高考总复习数学理科基础知识反馈卡 7-6双曲线

2018年高考总复习数学理科基础知识反馈卡 7-6双曲线

基础知识反馈卡·7.6时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.双曲线2x 2-y 2=8的实轴长是( )A .2B .2 2C .4D .4 22.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是( ) A .-1<m <3 B .m >-1C .m >3D .m <-13.若双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a 等于( ) A .2 B. 3 C.32D .1 4.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( ) A.x 24-y 25=1 B.x 24-y 25=1 C.x 22-y 25=1 D.x 22-y 25=1 5.若双曲线x 24-y 212=1上的一点P 到它的右焦点的距离为8,则点P 到它的左焦点的距离是( )A .4B .12C .4或12D .66.下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D .y 2-x 24=1 二、填空题(每小题5分,共15分)7.双曲线x 210-y 22=1的焦距为________. 8.双曲线x 216-y 2m =1的离心率为54,则m 等于________. 9.已知双曲线x 29-y 2a=1的右焦点的坐标为(13,0),则该双曲线的渐近线方程为________.三、解答题(共15分)10.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,求C 的焦距.基础知识反馈卡·7.61.C 2.B 3.D 4.B 5.C 6.C 7.4 3 8.9 9.2x ±3y =0 10.解:双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , 焦点(c,0)到渐近线的距离为d =|bc |a 2+b 2=|bc |c =b =3, 离心率为e =c a=2,b 2=c 2-a 2,∴3=4a 2-a 2,a 2=1,c =2,则C 的焦距等于4.。

2018年高考总复习数学(理科)基础知识反馈卡 8.3点、直线、平面之间的位置关系 Word版含解析

2018年高考总复习数学(理科)基础知识反馈卡 8.3点、直线、平面之间的位置关系 Word版含解析

基础知识反馈卡·时间:分钟分数:分一、选择题(每小题分,共分).已知,是异面直线,直线∥直线,则与( ).一定是异面直线.一定是相交直线.不可能是平行直线.不可能是相交直线.下列命题正确的个数为( )①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合......若直线不平行于平面α,且α,则( ).α内的所有直线与异面.α内不存在与平行的直线.α内存在唯一的直线与平行.α内的直线与都相交.在空间四边形的边,,,上分别取,,,四点,如果与交于点,那么( ).一定在直线上.一定在直线上.可能在直线上,也可能在直线上.既不在直线上,也不在直线上.已知正四棱柱-中,=,为的中点,则异面直线与所成的角的余弦值为( ).下列推断中,错误的是( ).∈,∈α,∈,∈α⇒⊂α.∈α,∈β,∈α,∈β⇒α∩β=.α,∈⇒α.,,∈α,,,∈β,且,,不共线⇒α,β重合二、填空题(每小题分,共分).如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线必在第一个平面内.用数学符号语言可叙述为:..若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成部分..正方体的表面展开图如图--,,,为其上的三个顶点,则在正方体中,∠的大小为.图--三、解答题(共分).长方体-中,==,=,点,,分别是,,的中点.求异面直线,所成角的大小.基础知识反馈卡·..α⊥β,∈α,∈,⊥β⇒⊂α°.解:连接,由对称性,知,则∠就是异面直线,所成角.在△中,==.在△中,==.在△中,==.在△中,+==,∴∠=°.。

2018年高考总复习数学(理科)基础知识反馈卡5.7数学归纳法含解析

2018年高考总复习数学(理科)基础知识反馈卡5.7数学归纳法含解析

基础知识反馈卡·5.7时间:20分钟分数:60分一、选择题(每小题5分,共30分)1.关于正整数n的不等式2n〉n2成立的条件是( )A.n∈N*B.n≥4C.n〉4 D.n=1或n〉42.用数学归纳法证明1+错误!+错误!+…+错误!<n(n∈N*,且n〉1)时,第一步即证下述哪个不等式成立()A.1〈2 B.1+1 2 <2C.1+错误!+错误!〈2 D.1+错误!〈23.若f(n)=1+错误!+错误!+…+错误!(n∈N*),则f(1)为()A.1 B.1 5C.1+错误!+错误!+错误!+错误!D.非以上答案4.在应用数学归纳法证明凸n边形的对角线为错误!n(n-3)条时,第一步检验n等于()A.1 B.2 C.3 D.05.对于不等式错误!〈n+1(n∈N*),某同学用数学归纳法证明的过程如下:(1)当n=1时,错误!<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即错误!〈k+1,则当n =k+1时,错误!=错误!<错误!=错误!=(k+1)+1.∴当n=k+1时,不等式成立,则上述证法( )A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确6.设nf(n)=n+f(1)+f(2)+…+f(n-1),用数学归纳法证明“n+f(1)+f(2)+…+f(n-1)=nf(n)”时,第一步要证的等式是()A.0=f(0) B.1=f(1)C.2=2f(2) D.2+f(1)=2f(2)二、填空题(每小题5分,共15分)7.设f(n)=62n-1+1,则f(k+1)用含有f(k)的式子表示为f(k +1)=____________.8.设S n=1+错误!+错误!+错误!+…+错误!,则S n+1-S n=____________________。

9.设f(n)=错误!+错误!+…+错误!,n∈N*,则f(n+1)-f(n)=________。

2018年高考数学(理)总复习教师用书第十四单元椭圆、双曲线、抛物线Word版含答案

2018年高考数学(理)总复习教师用书第十四单元椭圆、双曲线、抛物线Word版含答案

第十四单元 ⎪⎪⎪椭圆、双曲线、抛物线教材复习课“椭圆、双曲线、抛物线”相关基础知识一课过1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)当2a >|F 1F 2|时,P 点的轨迹是椭圆; (2)当2a =|F 1F 2|时,P 点的轨迹是线段; (3)当2a <|F 1F 2|时,P 点不存在. 2.椭圆的标准方程和几何性质[小题速通]1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10解析:选D 由椭圆的定义知:|PF 1|+|PF 2|=2×5=10.2.(2016·天津红桥一模)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 24+y 28=1 D.x 28+y 24=1 解析:选 C 由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =()222-22=2,因为焦点在y 轴上,故选C.3.(2017·临沂一中模拟)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解析:选D 在Rt △PF 2F 1中,令|PF 2|=1,因为∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.故e =2c 2a =|F 1F 2||PF 1|+|PF 2|=33.故选D.4.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m =________.解析:因为焦点在x 轴上,所以0<m <2,所以a 2=2,b 2=m ,c 2=a 2-b 2=2-m .椭圆的离心率为e =12,所以e 2=14=c 2a 2=2-m 2,解得m =32.答案:32[清易错]1.椭圆的定义中易忽视2a >|F 1F 2|这一条件,当2a =|F 1F 2|其轨迹为线段F 1F 2,当2a <|F 1F 2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x 2a 2+y 2b2=1(a >b >0).1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1 B.x 24+y 25=1 C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1, ∴a 2=5,所求椭圆标准方程为y 25+x 24=1.2.已知椭圆x 29+y 24-k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或-21解析:选D 当9>4-k >0,即4>k >-5时,a =3,c 2=9-(4-k )=5+k ,∴5+k 3=45,解得k =1925. 当9<4-k ,即k <-5时,a =4-k ,c 2=-k -5, ∴-k -54-k=45,解得k =-21,所以k 的值为1925或-21. 双曲线1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. (1)当2a <|F 1F 2|时,P 点的轨迹是双曲线; (2)当2a =|F 1F 2|时,P 点的轨迹是两条射线; (3)当2a >|F 1F 2|时,P 点不存在. 2.标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0);(2)中心在坐标原点,焦点在y 轴上的双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0).3.双曲线的性质[小题速通]1.(2017·邢台摸底)双曲线x 2-4y 2=-1的渐近线方程为( ) A .x ±2y =0 B .y ±2x =0 C .x ±4y =0D .y ±4x =0解析:选A 依题意,题中的双曲线即y 214-x 2=1,因此其渐近线方程是y 214-x 2=0,即x ±2y=0,选A.2.(2017·江南十校联考)已知双曲线的焦距为23,离心率为3,则双曲线的标准方程是( )A .x 2-y 22=1 B.x 24-y 28=1C .x 2-y 22=1或y 2-x 22=1 D.y 22-x 2=1解析:选C 因为双曲线的焦距为23,所以2c =23,c =3,因为双曲线的离心率为3,所以c a=3,a =1,因为a 2+b 2=c 2,所以b 2=2,由题意无法判断焦点的位置,故有两个标准方程,故选C.3.(2016·甘肃张掖一诊)如图,F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A .若△ABF 2为等边三角形,则双曲线的离心率为( )A.7 B .4 C.233D. 3解析:选 A 依题意得|AB |=|AF 2|=|BF 2|,结合双曲线的定义可得|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,根据等边三角形,可知∠F 1BF 2=120°,应用余弦定理,可得4a 2+16a 2+2×2a ×4a ×12=4c 2,整理得c a=7,故选A.4.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题意得,|FP |-|PA |=6,|FQ |-|QA |=6,两式相加,利用双曲线的定义得|FP |+|FQ |=28,所以△PQF 的周长为|FP |+|FQ |+|PQ |=44.答案:44[清易错]1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|,则轨迹不存在.2.注意区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.3.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x 轴上,渐近线斜率为±ba,当焦点在y 轴上,渐近线斜率为±a b.1.双曲线x 236-m 2-y 2m2=1(0<m <3)的焦距为( )A .6B .12C .36D .236-2m 2解析:选B c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 2.双曲线x 24-y 212=1的焦点到渐近线的距离为( )A .2 3B .2 C. 3D .1解析:选A 由题意知双曲线的渐近线方程为y =±3x ,焦点为(±4,0),故焦点到渐近线的距离d =2 3.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程与几何性质[小题速通]1.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) A .(-1,0) B .(1,0) C .(0,-1)D .(0,1)解析:选B 抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).2.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716B.1516C.78D .0解析:选B M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,∴y =1516.3.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .4B .2C .1D .8解析:选C 由y 2=x ,得2p =1,即p =12,因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线方程为l :x =-14.设A 点到准线的距离为d ,由抛物线的定义可知d =|AF |,从而x 0+14=54x 0,解得x 0=1,故选C.4.(2017·唐山模拟)已知抛物线的焦点F (a,0)(a <0),则抛物线的标准方程是( ) A .y 2=2ax B .y 2=4ax C .y 2=-2axD .y 2=-4ax解析:选B 以F (a,0)为焦点的抛物线的标准方程为y 2=4ax .[清易错]1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视只有p >0,才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.1.抛物线y =ax 2的准线方程是y =1,则a 的值为( ) A.14B .-14C .4D .-4解析:选B 由题意知抛物线的标准方程为x 2=1a y ,所以准线方程y =-14a =1,解得a=-14.2.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________. 解析:设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .答案:y 2=4x[过双基]1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y =0,消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=1+1k 2·|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.[小题速通]1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:选A 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.2.(2017·福州质检)抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2x C .x 2=2yD .y 2=-2x解析:选B 设A (x 1,y 1),B (x 2,y 2),抛物线方程为y2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1, ∴抛物线C 的方程为y 2=2x .3.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:c =5,设过点F 平行于一条渐近线的直线方程为y =43(x -5),即4x -3y -20=0,联立直线与双曲线方程,求得y B =-3215,则S =12×(5-3)×3215=3215.答案:3215[清易错]1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).2.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.[双基过关检测] 一、选择题1.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则抛物线的方程是( )A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8x解析:选D 设抛物线的方程为y 2=2px ,则由抛物线的定义知1+p2=3,即p =4,所以抛物线方程为y 2=8x .2.(2017·济南第一中学检测)抛物线y =4x 2的焦点坐标是( )A.⎝ ⎛⎭⎪⎫116,0 B .(1,0) C.⎝ ⎛⎭⎪⎫0,116 D .(0,1)解析:选C 抛物线的标准方程为x 2=14y ,则p =18,所以焦点坐标是⎝ ⎛⎭⎪⎫0,116.3.(2017·贵州七校联考)已知双曲线x 2+my 2=1的虚轴长是实轴长的两倍,则实数m 的值是( )A .4B .-14C.14D .-4解析:选B 由双曲线的方程知a =1,b =-1m ,又b =2a ,所以-1m=2,解得m =-14,故选B.4.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解析:选B 由左焦点为F 1(-4,0)知c =4.又a =5, ∴25-m 2=16,解得m =3或-3.又m >0,故m =3.5.(2016·甘肃张掖一诊)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( )A .9B .8C .7D .6解析:选B 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:选A 由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,又∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1,故选A.7.椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab =( ) A.32 B.233 C.932D.2327解析:选A 设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),结合题意,由点差法得,y 2-y 1x 2-x 1=-a b ·x 1+x 2y 1+y 2=-a b ·x 0y 0=-a b ·23=-1,∴a b =32. 8.已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33 B.()-3,3C.⎣⎢⎡⎦⎥⎤-33,33 D.[]-3,3解析:选 C 由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.二、填空题9.(2016·北京高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________.解析:因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,即y =-2x ,所以b a=2.①又双曲线的一个焦点为(5,0),所以a 2+b 2=5.② 由①②得a =1,b =2. 答案:1 210.(2016·山东高考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析:如图,由题意知|AB |=2b2a,|BC |=2c .又2|AB |=3|BC |, ∴2×2b2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). 答案:211.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 答案:⎝⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 12.(2017·西安中学模拟)如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x2+(y -1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.解析:不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB ―→=(1,0),DC ―→=(-1,0),所以AB ―→·DC ―→=-1.答案:-1 三、解答题13.(2017·揭阳一中期末)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解:(1)依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得a =2,b =1,所以椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2), ①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意;②当MN 不垂直于x 轴时, 设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k x -,消去y ,整理得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 所以x 1+x 2=4k21+2k2,x 1x 2=k 2-1+2k2. 所以y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k21+2k 2.因为OM ⊥ON , 所以OM ―→·ON ―→=0,所以x 1x 2+y 1y 2=k 2-21+2k2=0,所以k =±2,即直线l 的方程为y =±2(x -1).14.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22x -,y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0), 所以k GA =22-02--=223,k GB =-2-012--=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.高考研究课(一)————————————————————————————————————— 椭圆命题3角度——求方程、研性质、判关系————————————————————————————————————— [全国卷5年命题分析][典例] (1)若椭圆C :9+2=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 1|=4,则∠F 1PF 2=( )A.π6 B.π3 C.2π3D.5π6(2)(2017·大庆模拟)如图,已知椭圆C :x 2a 2+y 2b2=1(a >b >0),其中左焦点为F (-25,0),P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1C.x 230+y 210=1 D.x 245+y 225=1 [解析] (1)由题意得a =3,c =7,则|PF 2|=2. 在△F 2PF 1中,由余弦定理可得 cos ∠F 2PF 1=42+22-722×4×2=-12.又∵∠F 2PF 1∈(0,π),∴∠F 2PF 1=2π3.(2)设椭圆的焦距为2c ,右焦点为F 1,连接PF 1,如图所示. 由F (-25,0),得c =2 5. 由|OP |=|OF |=|OF 1|, 知PF 1⊥PF .在Rt △PF 1F 中,由勾股定理, 得|PF 1|=|F 1F |2-|PF |2=()452-42=8.由椭圆定义,得|PF 1|+|PF |=2a =4+8=12, 从而a =6,得a 2=36,于是b 2=a 2-c 2=36-(25)2=16, 所以椭圆C 的方程为x 236+y 216=1.[答案] (1)C (2)B [方法技巧]求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.[即时演练]1.(2016·西安质检)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 23=1 D.x 24+y 2=1解析:选C 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12⇒a =2,b 2=a2-c 2=3,因此椭圆C 的方程是x 24+y 23=1.2.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1―→⊥PF 2―→.若△PF 1F 2的面积为9,则b =________.解析:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2,∴2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 又∵S △PF 1F 2=12r 1r 2=b 2=9,∴b =3.答案:3[典例] (1)(2017·兰州一模)已知椭圆a 2+b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆上,O 为坐标原点,若|OP |=12|F 1F 2|,且|PF 1||PF 2|=a 2,则该椭圆的离心率为( )A.34B.32C.22D.12(2)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.①若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; ②若|PQ |=λ|PF 1|,且34≤λ<43,求椭圆离心率e 的取值范围.[解析] (1)由|OP |=12|F 1F 2|,且|PF 1||PF 2|=a 2,可得点P 是椭圆的短轴端点,即P (0,±b ),故b =12×2c =c ,故a =2c ,即c a =22,故选C. 答案:C(2)①由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=+22+-22=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.②如图,由PF 1⊥PQ , |PQ |=λ|PF 1|, 得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,进而|PF 1|+|PQ |+|QF 1|=4a . 于是(1+λ+1+λ2)|PF 1|=4a , 解得PF 1=4a 1+λ+1+λ2,故|PF 2|=2a -|PF 1|=2aλ+1+λ2-1+λ+1+λ2.由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎡⎦⎥⎤2a λ+1+λ2-1+λ+1+λ22=4c 2, 两边除以4a 2,得4+λ+1+λ22+λ+1+λ2-2+λ+1+λ22=e 2.若记t =1+λ+1+λ2, 则上式变成e 2=4+t -2t 2=8⎝ ⎛⎭⎪⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ单调递增,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.[方法技巧]椭圆几何性质的应用技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆相关量的范围时,要注意应用这些不等关系.[即时演练]1.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为 F 1,F 2,过F 2 作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.解析:由题意知F 1(-c,0),F 2(c,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x =c ,由椭圆的对称性可设它与椭圆的交点为A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a .因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,所以点D 的坐标为⎝⎛⎭⎪⎫0,-b 22a ,又AD ⊥F 1B ,所以k AD ·kF 1B =-1,即b 2a -⎝ ⎛⎭⎪⎫-b 22a c -0×-b 2a -0c --c=-1,整理得3b 2=2ac ,所以3(a 2-c 2)=2ac ,又e =c a,0<e <1,所以3e 2+2e -3=0,解得e =33(e =-3舍去). 答案:332.(2017·安徽黄山质检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为 F 1,F 2,点P 为椭圆C 与y 轴的交点,若以F 1,F 2,P 三点为顶点的等腰三角形一定不可能为钝角三角形,则椭圆C 的离心率的取值范围是________.解析:∵点P 为椭圆C 与y 轴的交点,以F 1,F 2,P 三点为顶点的等腰三角形一定不可能为钝角三角形,即∠F 1PF 2≤90°,∴tan ∠OPF 2≤1,∴cb≤1,c ≤b ,c 2≤a 2-c 2,∴0<e ≤22. 答案:⎝ ⎛⎦⎥⎤0,22[典例] (2016·四川高考)已知椭圆E :a 2+b2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P ⎝⎛⎭⎪⎫3,12在椭圆E 上. (1)求椭圆E 的方程;(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |.[解] (1)由已知,a =2b ,又椭圆x 2a 2+y 2b 2=1过点P ⎝ ⎛⎭⎪⎫3,12, 故34b 2+14b2=1,解得b 2=1. 所以椭圆E 的方程是x 24+y 2=1.(2)证明:设直线l 的方程为y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =12x +m ,得x 2+2mx +2m 2-2=0,由Δ=4(2-m 2)>0,解得-2<m < 2. 由根与系数的关系得x 1+x 2=-2m ,x 1x 2=2m 2-2,所以M 点坐标为⎝⎛⎭⎪⎫-m ,m 2,直线OM 的方程为y =-12x .由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =-12x ,得C ⎝ ⎛⎭⎪⎫-2,22,D ⎝⎛⎭⎪⎫2,-22. 所以|MC |·|MD |=52(-m +2)·52(2+m ) =54(2-m 2). 又|MA |·|MB |=14|AB |2=14[(x 1-x 2)2+(y 1-y 2)2]=516[(x 1+x 2)2-4x 1x 2]=516[4m 2-4(2m 2-2)] =54(2-m 2), 所以|MA |·|MB |=|MC |·|MD |. [方法技巧](1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y 22-4y 1y 2](k 为直线斜率).[提醒] 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.[即时演练]1.若对任意k ∈R ,直线y -kx -1=0与椭圆x 22+y 2m=1恒有公共点,则实数m 的取值范围是( )A .(1,2]B .[1,2)C .[1,2)∪(2,+∞)D .[1,+∞)解析:选C 联立直线与椭圆的方程,消去y 得(2k 2+m )x 2+4kx +2-2m =0,因为直线与椭圆恒有公共点,所以Δ=16k 2-4(2k 2+m )(2-2m )≥0,即2k 2+m -1≥0恒成立,因为k ∈R ,所以k 2≥0,则m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).2.(2017·辽宁质检)已知离心率为63的椭圆x 2a 2+y2b 2=1(a >b >0)的一个焦点为F ,过F且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233.(1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c , ∵e =c a =63,a 2=b 2+c 2, ∴b a =33, 由|AB |=233,易知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程, 得(1+3k 2)x 2+12kx +9=0,又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,若以CD 为直径的圆过E 点,则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0, 而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 则(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=k 2+1+3k 2-12k k +1+3k2+5=0,解得k =76,满足k 2>1.1.(2016·全国乙卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b=1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B.2.(2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,证明:3<k <2. 解:(1)设M (x 1,y 1),则由题意知y 1>0.由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明:设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0.由x 1·(-2)=16k 2-123+4k2,得x 1=-4k23+4k2,故|AM |=|x 1+2|1+k 2=121+k23+4k 2.由题意,设直线AN 的方程为y =-1k(x +2),故同理可得|AN |=12k 1+k23k 2+4. 由2|AM |=|AN |,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0.设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2.3.(2015·全国卷Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0, 故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M=-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9kx .设点P 的横坐标为x P . 由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km3k 2+9. 将点⎝ ⎛⎭⎪⎫m3,m 的坐标代入直线l 的方程得b =m-k 3,因此x M =k k -mk 2+.四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×k k -mk 2+,解得k 1=4-7,k 2=4+7. 因为k i >0,k i ≠3,i =1,2,所以当直线l 的斜率为4-7或4+7时, 四边形OAPB 为平行四边形. [高考达标检测] 一、选择题1.如果x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,1) B .(0,2) C .(1,+∞)D .(0,+∞)解析:选A x 2+ky 2=2转化为椭圆的标准方程,得x 22+y 22k=1,∵x 2+ky 2=2表示焦点在y 轴上的椭圆,∴2k>2,解得0<k <1.∴实数k 的取值范围是(0,1).故选A.2.(2017·济南质检)已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A.x 24+y 23=1B.x 216+y 212=1 C.x 24+y 2=1 D.x 216+y 24=1 解析:选A 由x 2+y 2-2x -15=0, 知r =4=2a ,所以a =2.又e =c a =12,所以c =1,则b 2=a 2-c 2=3. 因此椭圆的标准方程为x 24+y 23=1.3.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12 B.23 C.34D.45解析:选C 由题意可得|PF 2|=|F 1F 2|,所以2⎝ ⎛⎭⎪⎫32a -c =2c , 所以3a =4c ,所以e =34.4.(2017·厦门模拟)椭圆E :x 2a 2+y 23=1(a >0)的右焦点为F ,直线y =x +m 与椭圆E交于A ,B 两点,若△FAB 周长的最大值是8,则m 的值等于( )A .0B .1 C. 3D .2解析:选B 设椭圆的左焦点为F ′,则△FAB 的周长为AF +BF +AB ≤AF +BF +AF ′+BF ′=4a =8,所以a =2,当直线AB 过焦点F ′(-1,0)时,△FAB 的周长取得最大值,所以0=-1+m ,所以m =1.故选B.5.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P ―→·F 2A ―→的最大值为( )A.32B.332 C.94D.154解析:选 B 设向量F 1P ―→,F 2A ―→的夹角为θ.由条件知|AF 2|=b 2a =32,则F 1P ―→·F 2A ―→=32|F 1P |―→cos θ,于是F 1P ―→·F 2A ―→要取得最大值,只需F 1P ―→在向量F 2A ―→上的投影值最大,易知此时点P 在椭圆短轴的上顶点,所以F 1P ―→·F 2A ―→=32|F 1P |―→cos θ≤332,即F 1P ―→·F 2A ―→的最大值为332.6.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解析:选C 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a,由于OP ∥AB ,∴-y 0c =-b a ,y 0=bc a ,把P ⎝⎛⎭⎪⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1,即⎝ ⎛⎭⎪⎫c a 2=12,∴e =ca =22.选C. 二、填空题7.若F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________________.解析:设点A 在点B 上方,F 1(-c,0),F 2(c,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1―→=3F 1B ―→,故⎩⎪⎨⎪⎧-2c =x 0+c ,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得-b 29+19b 2=1, 解得b 2=23,故椭圆方程为x 2+3y22=1.答案:x 2+3y22=18.已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线方程是______. 解析:设过M (1,1)点的方程为y =kx +b , 则有k +b =1,即b =1-k ,即y =kx +(1-k ),联立方程组⎩⎪⎨⎪⎧x 2+2y 2-4=0,y =kx +-k ,则有(1+2k 2)x 2+(4k -4k 2)x +(2k 2-4k -2)=0,所以x 1+x 22=12·4k 2-4k1+2k2=1,解得k =-12,故b =32,所以y =-12x +32,即x +2y -3=0.答案:x +2y -3=09.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a2+c a-1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,1三、解答题10.(2016·洛阳一模)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.解:(1)将(0,4)代入C 的方程得16b 2=1,∴b =4,由e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 将直线方程y =45(x -3)代入椭圆C 的方程,得x 225+x -225=1,即x 2-3x -8=0,由根与系数的关系得x 1+x 2=3, ∴x 0=x 1+x 22=32, y 0=y 1+y 22=25(x 1+x 2-6)=-65,即线段AB 的中点坐标为⎝ ⎛⎭⎪⎫32,-65.11.(2017·广州五校联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,且经过点(6,1),O 为坐标原点.(1)求椭圆E 的标准方程;(2)圆O 是以椭圆E 的长轴为直径的圆,M 是直线x =-4在x 轴上方的一点,过M 作圆O 的两条切线,切点分别为P ,Q ,当∠PMQ =60°时,求直线PQ 的方程.解:(1)由题意可得e =c a =22, ∵椭圆E 经过点(6,1),∴6a 2+1b2=1,又a 2-b 2=c 2,解得a =22,b =2, ∴椭圆E 的标准方程为x 28+y 24=1.(2)连接OM ,OP ,OQ ,OM 与PQ 交于点A , 依题意可设M (-4,m ).由圆的切线性质及∠PMQ =60°,可知△OPM 为直角三角形且∠OMP =30°, ∵|OP |=22,∴|OM |=42, ∴-2+m 2=42,又m >0,解得m =4,∴M (-4,4), ∴直线OM 的斜率k OM =-1, 由MP =MQ ,OP =OQ 可得OM ⊥PQ , ∴直线PQ 的斜率k PQ =1, 设直线PQ 的方程为y =x +n , ∵∠OMP =30°,∴∠POM =60°, ∵∠OPA =30°,由|OP |=22知|OA |=2,即点O 到直线PQ 的距离为2, ∴|n |12+-2=2,解得n =±2(舍去负值),∴直线PQ 的方程为x -y +2=0.12.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |+|CD |=3 2.(1)求椭圆的方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围. 解:(1)由题意知,e =c a =22,则a =2c ,b =c . 当直线AB 的斜率为0时,|AB |+|CD |=2a +2b2a=22c +2c =32,∴c =1.∴椭圆的方程为x 22+y 2=1.(2)①当直线AB 与直线CD 中有一条的斜率为0时,另一条的斜率不存在. 由题意知S 四边形=12|AB |·|CD |=12×22×2=2.②当两条直线的斜率均存在且不为0时, 设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -1),则直线CD 的方程为y =-1k(x -1).将直线AB 的方程代入椭圆方程,并整理得 (1+2k 2)x 2-4k 2x +2k 2-2=0, ∴x 1+x 2=4k21+2k 2,x 1x 2=2k 2-21+2k2,∴|AB |=k 2+1|x 1-x 2| =k 2+1·22k 2+11+2k2=22k 2+1+2k2.同理,|CD |=22⎝ ⎛⎭⎪⎫1k 2+11+2k 2=22k 2+k 2+2.∴S 四边形=12·|AB |·|CD |=12·22k 2+1+2k 2·22k 2+k 2+2=k 2+22k 4+2+5k2=4⎝⎛⎭⎪⎫k +1k 22⎝ ⎛⎭⎪⎫k +1k 2+1=2-22⎝ ⎛⎭⎪⎫k +1k 2+1. ∵2⎝⎛⎭⎪⎫k +1k 2+1≥2⎝⎛⎭⎪⎫2k ·1k 2+1=9, 当且仅当k =±1时取等号,∴S 四边形∈⎣⎢⎡⎭⎪⎫169,2. 综合①与②可知,S 四边形∈⎣⎢⎡⎦⎥⎤169,2.高考研究课(二)————————————————————————————————————— 双曲线命题3角度——用定义、求方程、研性质—————————————————————————————————————[全国卷5年命题分析][典例] (1)设F 1,F 2是双曲线x 2-24=1的两个焦点,P 是双曲线上的一点,且|PF 1|=43|PF 2|,则△PF 1F 2的面积等于( ) A .4 2 B .8 3 C .24D .48(2)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=180202080[解析] (1)由双曲线定义||PF 1|-|PF 2||=2, 又|PF 1|=43|PF 2|,∴|PF 1|=8,|PF 2|=6, 又|F 1F 2|=2c =10,∴|PF 1|2+|PF 2|2=|F 1F 2|2,△PF 1F 2为直角三角形.△PF 1F 2的面积S =12×6×8=24.(2)依题意⎩⎪⎨⎪⎧a 2+b 2=25,1=ba×2,解得⎩⎪⎨⎪⎧a 2=20,b 2=5,∴双曲线C 的方程为x 220-y 25=1.[答案] (1)C (2)A [方法技巧]双曲线定义及标准方程问题求解中的2个注意点(1)应用双曲线的定义需注意的问题:在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时注意定义的转化应用.(2)求双曲线方程时一是标准形式判断;二是注意a ,b ,c 的关系易错易混. [即时演练]1.若双曲线x 24-y 212=1的左焦点为F ,点P 是双曲线右支上的动点,A (1,4),则|PF |+|PA |的最小值是( )A .8B .9C .10D .12解析:选B 由题意知,双曲线x 24-y 212=1的左焦点F 的坐标为(-4,0),设双曲线的右焦点为B ,则B (4,0),由双曲线的定义知,|PF |+|PA |=4+|PB |+|PA |≥4+|AB |=4+-2+-2=4+5=9,当且仅当A ,P ,B 三点共线且P 在A ,B 之间时取等号.2.(2016·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )。

2018年高考总复习数学(理科)基础知识反馈卡 6.4简单的线性规划 Word版含解析

2018年高考总复习数学(理科)基础知识反馈卡 6.4简单的线性规划 Word版含解析

基础知识反馈卡·时间:分钟分数:分一、选择题(每小题分,共分).不在+<表示的平面区域内的点是( ).() .() .() .().下列命题中正确的是( ).点()在区域+≥内.点()在区域++<内.点()在区域>内.点()在区域-+>内.不等式->表示的平面区域是( ).设,满足约束条件(\\(-+≥,+-≥,≤,))则=-的最小值是( ).-.-.-.-.不等式组(\\(≥,+≥,+≤))所表示的平面区域的面积等于( ).已知点()和(-)在直线-+=的两侧,则的取值范围是( ).<-或>.-<<.-<<.<-或>二、填空题(每小题分,共分).如果一个二元一次不等式组表示的平面区域是图--中的阴影部分(包括边界),那么这个不等式组是.图--.若实数,满足(\\(-+≤,>,≤,))则的最小值是..设为不等式组(\\(≥,-≤,+-≤))表示的平面区域,区域上的点与点()之间的距离的最小值为.三、解答题(共分).某企业生产甲、乙两种产品,已知生产每吨甲产品要用原料吨,原料吨;生产每吨乙产品要用原料吨,原料吨,销售每吨甲产品可获得利润万元,每吨乙产品可获得利润万元.该企业在一个生产周期内消耗原料不超过吨,原料不超过吨,求该企业可获得的最大利润.基础知识反馈卡·.(\\(≤,≥-,-+≥))()).解:设生产甲、乙两种产品分别为吨、吨,由题意,得(\\(+≤,+≤,≥,≥,))且获得利润=+.画出可行域如图,图由(\\(+=,+=,))解得().由图可知,当直线+=经过点时,=.故该企业可获得的最大利润为万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础知识反馈卡·7.6
时间:20分钟 分数:60分
一、选择题(每小题5分,共30分)
1.双曲线2x 2-y 2=8的实轴长是( )
A .2
B .2 2
C .4
D .4 2
2.若方程y 24-x 2
m +1
=1表示双曲线,则实数m 的取值范围是( ) A .-1<m <3 B .m >-1
C .m >3
D .m <-1
3.若双曲线x 2a 2-y 23
=1(a >0)的离心率为2,则a 等于( ) A .2 B. 3 C.32
D .1 4.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( ) A.x 24-y 25=1 B.x 24-y 25=1 C.x 22-y 25=1 D.x 22-y 2
5=1 5.若双曲线x 24-y 212
=1上的一点P 到它的右焦点的距离为8,则点P 到它的左焦点的距离是( )
A .4
B .12
C .4或12
D .6
6.下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D .y 2-x 24
=1 二、填空题(每小题5分,共15分)
7.双曲线x 210-y 2
2
=1的焦距为________. 8.双曲线x 216-y 2m =1的离心率为54,则m 等于________. 9.已知双曲线x 29-y 2a
=1的右焦点的坐标为(13,0),则该双曲线的渐近线方程为________.
三、解答题(共15分)
10.双曲线C :x 2a 2-y 2
b
2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,求C 的焦距.
基础知识反馈卡·7.6
1.C 2.B 3.D 4.B 5.C 6.C 7.4 3 8.9 9.2x ±3y =0 10.解:双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a
x , 焦点(c,0)到渐近线的距离为d =|bc |a 2+b 2=|bc |c =b =3, 离心率为e =c a
=2,b 2=c 2-a 2,∴3=4a 2-a 2,a 2=1,c =2,则C 的焦距等于4.。

相关文档
最新文档