2016第一轮复习理科数学教师用书配套习题:课时提升作业(二十七) 4.4平面向量的应用 Word版含答案

合集下载

【世纪金榜】人教版第一轮复习理科数学教师用书配套习题:课时提升作业(四) 2.1函数及其表示

【世纪金榜】人教版第一轮复习理科数学教师用书配套习题:课时提升作业(四) 2.1函数及其表示

【世纪金榜】人教版2016第一轮复习理科数学教师用书配套习题:课时提升作业(四)2.1函数及其表示work Information Technology Company.2020YEAR课时提升作业(四)函数及其表示(25分钟50分)一、选择题(每小题5分,共35分)1.已知集合A=[0,8],集合B=[0,4],则下列对应关系中,不能看作从A到B 的映射的是()A.f:x→y=xB.f:x→y=xC.f:x→y=xD.f:x→y=x【解析】选D.按照对应关系f:x→y=x,对集合A中某些元素(如x=8),集合B中不存在元素与之对应.选项A,B,C都符合题意.2.(2015·厦门模拟)函数f(x)=的定义域是( )A. B.C. D.【解析】选D.由题意得解得x>-且x≠1,故选D.3.(2015·宿州模拟)下列各组函数不是同一函数的是( )A.f(x)=与g(x)=-xB.f(x)=|x|与g(x)=C.f(x)=x0与g(x)=1D.f(x)=x2-2x-1与g(t)=t2-2t-1【解析】选C.A,B,D中两函数定义域与对应关系均相同故是同一函数,而C中的两函数定义域不同,故不是同一函数.【加固训练】下列函数中,与函数y=定义域相同的函数为( ) A.y= B.y= C.y=xe xD.y=【解析】选D.函数y=的定义域为(-∞,0)∪(0,+∞),而y=的定义域为{x|x∈R,x≠kπ,k∈Z},y=的定义域为(0,+∞),y=xe x的定义域为R,y=的定义域为(-∞,0)∪(0,+∞).4.(2015·西安模拟)已知函数f(x)=ln(-3x)+1,则f(lg2)+f等于( ) A.-1 B.0 C.1D.2【解析】选 D.函数f(x)=ln(-3x)+1,则f(lg2)+f=f(lg2)+f(-lg2)=ln(+3lg2)+1+ln(+3lg2)+1=ln+1+ln(+3lg2)+1=-ln(+3lg2)+1+ln(+3lg2)+1=2.【一题多解】令g(x)=ln(-3x),则g(x)是奇函数,且f(x)=g(x)+1,所以两式相加得f(lg2)+f(-lg2)=2,即f(lg2)+f=2.【加固训练】已知函数f(x)=且f(0)=2,f(-1)=3,则f(f(-3))=( )A.-2B.2C.3D.-3【解析】选B.f(0)=a0+b=1+b=2,解得b=1.f(-1)=a-1+b=a-1+1=3,解得a=.故f(-3)=+1=9,f(f(-3))=f(9)=log39=2.【方法技巧】求函数值的四种常考类型及解法(1)f(g(x))型:遵循先内后外的原则.(2)分段函数型:根据自变量值所在区间对应求值,不确定时要分类讨论.(3)已知函数性质型:对具有奇偶性、周期性、对称性的函数求值,要用好其函数性质,将待求值调节到已知区间上求解.(4)抽象函数型:对于抽象函数求函数值,要用好抽象的函数关系,适当赋值,从而求得待求函数值.5.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)=( )A.x-1B.x+1C.2x+1D.3x+3【解析】选B.由题意知2f(x)-f(-x)=3x+1.①将①中x换为-x,则有2f(-x)-f(x)=-3x+1.②①×2+②得3f(x)=3x+3,即f(x)=x+1.6.图中阴影部分的面积S是h的函数(0≤h≤H),则该函数的大致图像是( )【解析】选B.由图知,随着h的增大,阴影部分的面积S逐渐减小,且减小得越来越慢,结合选项可知选B.7.(2015·太原模拟)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( )A.75,25B.75,16C.60,25D.60,16【解析】选D.因为组装第A件产品用时15分钟,所以=15,①所以必有4<A,且==30.②联立①②解得c=60,A=16.二、填空题(每小题5分,共15分)8.函数y=+ln(2-x)的定义域为_______.【解析】由已知得解得-1≤x<2且x≠0,所以函数的定义域为[-1,0)∪(0,2).答案:[-1,0)∪(0,2)9.(2014·江西高考改编)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R),若f(g(1))=1,则a=__________.【解析】g(1)=a-1,f(g(1))=5|a-1|=1,解得|a-1|=0,所以a=1.答案:110.(2015·淮南模拟)若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域是________.【解析】要使函数g(x)=有意义,需满足即0≤x<1. 答案:[0,1)(20分钟40分)1.(5分)(2015·黄山模拟)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( )A.1个B.2个C.3个D.4个【解析】选C.由x 2+1=1得x=0,由x2+1=3得x=±,所以函数的定义域可以是{0,},{0,-},{0,,-},故值域为{1,3}的同族函数共有3个.【加固训练】具有性质:f=-f(x)的函数,我们称为满足“倒负”交换的函数,下列函数:①f(x)=x-;②f(x)=x+;③f(x)=满足“倒负”交换的函数是( )A.①②B.①③C.②③D.①【解析】选B.①f=-x=-f(x),满足.②f=+x=f(x),不满足.③0<x<1时,f=-x=-f(x),x=1时,f=0=-f(x),x>1时,f==-f(x),满足.2.(5分)下列函数中,不满足f(2x)=2f(x)的是( )A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【解析】选C.对于选项A,f(2x)=|2x|=2|x|=2f(x);对于选项B,f(x)=x-|x|=当x≥0时,f(2x)=0=2f(x),当x<0时,f(2x)=4x=2·2x=2f(x),恒有f(2x)=2f(x);对于选项D,f(2x)=-2x=2(-x)=2f(x);对于选项C,f(2x)=2x+1=2f(x)-1.3.(5分)(2015·吉安模拟)已知函数f(x)=若f(a)=,则a=________.【解析】当a>0时,log2a=,所以a=;当a≤0时,2a==2-1,所以a=-1,所以a=-1或.答案:-1或4.(12分)已知f(x)=x2-1,g(x)=(1)求f(g(2))与g(f(2)).(2)求f(g(x))与g(f(x))的表达式.【解析】(1)g(2)=1,f(g(2))=f(1)=0;f(2)=3,g(f(2))=g(3)=2.(2)当x>0时,f(g(x))=f(x-1)=(x-1)2-1=x2-2x;当x<0时,f(g(x))=f(2-x)=(2-x)2-1=x2-4x+3.所以f(g(x))=同理可得g(f(x))=5.(13分)(能力挑战题)若函数f(x)=.(1)求的值.(2)求f(3)+f(4)+…+f(2015)+f+f+…+f的值.【解析】(1)因为f(x)==1-,所以==-1.(2)由f(x)=1-得,f=1-=1-,所以,两式两边分别相加,得f(x)+f=0,所以,f(3)+f(4)+…+f(2015)+f+f+…+f=0×2013=0.。

人教版2016第一轮复习理科数学教师用书配套习题:课时提升作业(二十五) 4.2平面向量的坐标运算

人教版2016第一轮复习理科数学教师用书配套习题:课时提升作业(二十五) 4.2平面向量的坐标运算

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业(二十五)平面向量的坐标运算(25分钟50分)一、选择题(每小题5分,共35分)1.(2015·宜春模拟)已知a=(1,-2),|b|=2错误!未找到引用源。

,且a ∥b,则b= ( )A.(2,-4)B.(-2,4)C.(2,-4)或(-2,4)D.(4,-8)【解析】选C.由于a∥b,设b=k a=(k,-2k),|b|=错误!未找到引用源。

=2错误!未找到引用源。

,解得k=〒2,故b=(2,-4)或(-2,4).2.已知向量a,b满足|a|=错误!未找到引用源。

,b=(2,4),则“a=(-1,-2)”是“a∥b”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题提示】先看充分性,即a=(-1,-2)能否推出a∥b,再看必要性,即“a∥b”能否得出a=(-1,-2)即可.【解析】选A.若a=(-1,-2),则b=-2a,显然a∥b成立,故充分条件具备.反之,若a∥b,则b=λa,设a=(x,y),则必有错误!未找到引用源。

所以y=2x, ①又x2+y2=5, ②由①②得错误!未找到引用源。

或错误!未找到引用源。

得不出a=(-1,-2),故必要性不具备.因而是充分不必要条件.【加固训练】设向量a=(2,x-1),b=(x+1,4),则“x=3”是“a∥b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.由a∥b,得8-(x-1)(x+1)=0,即x2-9=0.解得x=〒3.所以x=3时,a∥b,而a∥b时,x还可以等于-3.故x=3是a∥b的充分不必要条件.3.(2015·合肥模拟)设向量a=(1,2),b=(2,3),若向量λa+b与向量c=(-4,-7)共线,则实数λ的值为( )A.1B.2C.3D.错误!未找到引用源。

人教版2016第一轮复习理科数学教师用书配套习题:课时

人教版2016第一轮复习理科数学教师用书配套习题:课时

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业(十二)函数的应用(25分钟 60分)一、选择题(每小题5分,共25分)1.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( ),即相当于图像上的点(t,Q)与原【解析】选B.由题知运输效率即Qt点连线的斜率,即连线斜率逐步提高.由题知选项A,效率不变,选项C逐步减小,选项D先减小,再增大,选项B为逐步提高,故选B.2 (2015·咸宁模拟)某汽车运输公司,购买了一批豪华大客车投入客运,据市场分析,每辆客车营运总利润y(万元)与营运年数x的关系如图所示(近似抛物线的一段),则每辆客车营运多少年使其营运年平均利润最大( )A.3 B.4 C.5 D.6【解析】选C.求得:y=-(x-6)2+11,y25=-+≤-=12(x)12102,x x所以y有最大值2,此时x=5.x3.(2015·淮南模拟)某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A.108元 B.105元 C.106元 D.118元【解析】选A.设该家具的进货价为x元,由题意,得1.1x=0.9×132,解得x=108,即该家具的进货价是108元.4.(2015·岳阳模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按(p+2)%征税,有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是( )A.560万元B.420万元C.350万元D.320万元【解题提示】设年收入为x,构建分段函数模型求解.【解析】选D.设该公司的年收入为x,纳税额为y,则由题意,得y=()()x p%,x 280,280p%x 280p 2%,x 280,⨯≤⎧⎪⎨⨯+-⨯+>⎪⎩万万 依题意有, ()()280p%x 280p 2%x⨯+-⨯+ =(p+0.25)%,解之得x=320(万元).【加固训练】(2014·朝阳模拟)由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,现在价格为8 100元的计算机经过15年价格应降为( )A. 2 000元B. 2 400元C. 2 800元D. 3 000元【解析】选B.设经过3个5年,产品价格为y 元,则y =8 100×(1-13)3=2 400.5.图形M(如图所示)是由底为1,高为1的等腰三角形及高为2和3的两个矩形所构成,函数S =S(a)(a ≥0)是图形M 介于平行线y =0及y =a 之间的那一部分面积,则函数S(a)的图像大致是( )【解析】选C.依题意,当0≤a ≤1时,()()2a 2a 1S a 2a a 3a;22-=+=-+ 当1<a ≤2时,S(a)=12+2a ;当2<a ≤3时,S(a)=12+2+a =a +52; 当a>3时,S(a)=12+2+3=112,于是 S(a)=21a 3a,0a 1212a ,1a 2,25a ,2a 3,211,a 3.2⎧-+≤≤⎪⎪⎪+<≤⎪⎨⎪+<≤⎪⎪⎪>⎩由解析式可知选C.【一题多解】本题还可以采用如下方法选C.直线y =a 在[0,1]上平移时S(a)的变化量越来越小,故可排除选项A ,B.而直线y =a 在[1,2]上平移时S(a)的变化量比在[2,3]上的变化量大,故可排除选项D.二、填空题(每小题5分,共15分)6.有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形(如图所示),则围成场地的最大面积为_________(围墙厚度不计).【解题提示】根据题目中条件,建立二次函数模型,采用配方法求最高值即可.【解析】设矩形场地的宽度为x m,则矩形场地的长为(200-4x)m,面积S=x(200-4x)=-4(x-25)2+2 500.故当x=25时,S取得最大值2 500,即围成场地的最大面积为2 500 m2.答案:2 500 m27.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1 800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为_______人时,旅行社获得的利润最大.【解析】设旅游团的人数为x人,飞机票为y元,利润为Q元,依题意,①当1≤x≤30时,y =1 800元,此时利润Q=yx-30 000=1 800x-30 000,此时最大值是当x=30时,Q max =1 800×30-30 000=24 000(元);②当30<x ≤75时,y=1 800-20(x-30)=-20x+2 400,此时利润Q=yx-30 000=-20x 2+2 400x-30 000=-20(x-60)2+42 000,所以当x=60时,旅行社可获得的最大利润42 000元.综上,当旅游团的人数为60人时,旅行社获得的利润最大. 答案:608.(2015 ·武昌模拟)某地西红柿从2 月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系.Q=at+b,Q=at 2+bc+c,Q=a ·b t ,Q=a ·log b t利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________.(2)最低种植成本是________(元/100kg).【解析】根据表中数据可知函数不单调,所以Q=at 2+bt+c 且开口向上,对称轴b 60180t 120.2a 2+=-== 代入数据3600a 60b c 116,10000a 100b c 84,32400a 180b c 116,++=⎧⎪++=⎨⎪++=⎩得b 2.4, c224, a0.01.=-⎧⎪=⎨⎪=⎩所以西红柿种植成本最低时的上市天数是120.最低种植成本是14 400a+120b+c=14 400×0.01+120×(-2.4)+224=80. 答案:(1)120 (2)80三、解答题(每小题10分,共20分)9.(2015·上饶模拟)某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单价x元与日销售量y件之间有如下关系:(1)在所给坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定x与y的一个函数关系式y=f(x).(2)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x 的函数关系式,并指出销售单价x为多少时,才能获得最大日销售利润.【解析】(1)实数对(x,y)对应的点如图所示,由图可知y是x的一次函数.设f(x)=kx+b ,则6030k b,3040k b,=+⎧⎨=+⎩解得k 3,b 150.=-⎧⎨=⎩所以f(x)=-3x+150,30≤x ≤50,经检验成立.(2)P=(x-30)〃(-3x+150)=-3x 2+240x-4 500=-3(x-40)2+300,30≤x ≤50, 因为x=40∈[30,50],所以当销售单价为40元时,所获日销售利润最大.10.近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积x(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=k 20x 100+(x ≥0,k 为常数).记F(x)为该企业安装这种太阳能供电设备的费用与该企业15年共消耗的电费之和.(1)试解释C(0)的实际意义,并建立F(x)关于x 的函数关系式.(2)当x 为多少平方米时,F(x)取得最小值?最小值是多少万元?【解析】(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时的电费,即未安装太阳能供电设备时企业每年消耗的电费为C(0)=k100=24,得k=2 400,所以F(x)=15× 2 40020x100++0.5x=1 800x5++5+0.5x(x≥0).(2)因为F(x)=1 800x5++0.5(x+5)-2.5≥=57.5,当且仅当1 800x5+=0.5(x+5),即x=55时取等号,所以当x为55平方米时,F(x)取得最小值,最小值为57.5万元.【加固训练】围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数.(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【解析】(1)设矩形的另一边长为a m,则y=45x+180(x-2)+180×2a=225x+360a-360,由已知xa=360,得a=360x ,所以y=2360225xx+-360(x>2).(2)因为x>2,所以225x +2360x ≥10 800, 所以y =225x +2360x -360≥10 440.当且仅当225x =2360x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.(20分钟 40分)1.(5分)已知一容器中有A ,B 两种菌,且在任何时刻A ,B 两种菌的个数乘积为定值1010,为了简单起见,科学家用P A =lg(n A )来记录A 菌个数的资料,其中n A 为A 菌的个数,则下列判断中正确的个数为( )①P A ≥1;②若今天的P A 值比昨天的P A 值增加1,则今天的A 菌个数比昨天的A菌个数多了10个;③假设科学家将B 菌个数控制为5万个,则此时5<P A <5.5.A.0B.1C.2D.3【解析】选B.当n A =1时P A =0,故①错误;若P A =1,则n A =10,若P A =2,则n A =100,故②错误;设B 菌的个数为n B =5×104,所以n A =10410510⨯=2×105, 所以P A =lg(n A )=lg 2+5.又因为lg 2≈0.3,所以5<P A <5.5,故③正确.2.(5分)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的范围为( )A .[2,4]B .[3,4]C .[2,5]D .[3,5] 【解析】选B.根据题意知,12(AD +BC)h ,其中AD =BC +2×x 2=BC +x ,h=2x , 所以12(2BC +x),得BC =18x -x 2,由h x 18x BC 0x 2⎧=≥⎪⎪⎨⎪=->⎪⎩得2≤x<6.所以y =BC +2x =18x +3x 2(2≤x<6),由y =18x +3x2≤10.5解得3≤x ≤4.因为[3,4]⊆[2,6),所以腰长x 的范围是[3,4].故选B. 3.(5分)(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p q2+ B.()()p 1q 112++-【解析】选D.设该市这两年生产总值的年平均增长率为x,则由已知,列得(1+x)2=(1+p)(1+q),解得-1.4.(12分)(2015·蚌埠模拟)某产品原来的成本为1 000元/件,售价为1 200元/件,年销售量为1万件,由于市场和顾客要求提高,公司计划投入资金进行产品升级,据市场调查,若投入x万元,每件产品的成本将降低34x,在售价不变的情况下,年销售量将减少2x万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润为f(x)(单位:万元).(1)求f(x)的函数解析式.(2)求f(x)的最大值,以及f(x)取得最大值时x的值.【解题提示】(1)求出升级后每件的成本、利润及年销售量,则利润的函数解析式可求.(2)利用基本不等式求出f(x)的最大值.【解析】(1)依题意,产品升级后,每件的成本为1 000-3x4元,利润为200+3x4元,年销售量为1-2x万件,纯利润为f(x)=3x2(200)(1)x4x+--=198.5-400xx4-.(2)f(x)=198.5-400xx4-≤198.5-2=178.5.等号当且仅当400xx4=,即x=40时成立.所以f(x)取最大值时的x的值为40.【加固训练】如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知|AB|=3米,|AD|=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长度应在什么范围内?(2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小值. 【解析】设AN 的长为x(x >2)米, 由DN DC ,ANAM=得|AM|=3xx 2-, 所以S 矩形AMPN =|AN|〃|AM|=23x x 2-.(1)由S 矩形AMPN >32,得23x x 2->32,又x >2,于是3x 2-32x +64>0, 解得2<x <83或x >8,即AN 长的取值范围为(2,83)∪(8,+≦).(2)S 矩形AMPN =()()223x 212x 2123x x 2x 2-+-+=--=()123x 21212x 2-++≥-=24, 当且仅当3(x -2)=12x 2-,即x =4时,y =23x x 2-取得最小值24.所以当AN=4米时,矩形AMPN 的面积最小,最小为24平方米. 5.(13分)(2015·合肥模拟)为了保护环境,某工厂在政府部门的鼓励下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似表示为:y=321x 640,x 1030)25x 40x 1 600,x 3050⎧+∈⎪⎨⎪-+∈⎩[,,[,],且每处理一吨二氧化碳可得价值为20万元的某种化工产品.(1)当x ∈[30,50]时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?【解析】(1)当x ∈[30,50]时,设该工厂获利为S ,则S=20x-(x 2-40x+1 600)=-(x-30)2-700,所以当x ∈[30,50]时,S <0,因此,该工厂不会获利,所以国家至少需要补贴700万元,该工厂才不会亏损.(2)由题意可知,二氧化碳的每吨平均处理成本为P(x)=21640x ,x 1030)y 25x1 600x x 40,x 3050x⎧+∈⎪⎪=⎨⎪+-∈⎪⎩[,,[,],①当x ∈[10,30)时,P(x)=21640x 25x+, 所以P ′(x)=()3222x 8 0002640x 25x 25x--=, 因为x ∈[10,30),所以当x ∈[10,20)时,P ′(x)<0,P(x)是减少的;当x ∈[20,30)时,P ′(x)≥0,P(x)是增加的,所以当x=20时,P(x)取得极小值P(20)=2206402520+=48.②当x ∈[30,50]时,P(x)=x+1 600x -40≥,当且仅当x=1 600x,即x=40∈[30,50]时,P(x)取最小值P(40)=40, 因为48>40,所以当处理量为40吨时,每吨的平均处理成本最少. 【加固训练】某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设f(n)表示前n 年的纯利润总和(f(n)=前n 年的总收入-前n 年的总支出-投资额). (1)该厂从第几年开始盈利?(2)若干年后,投资商为开发新项目,对该厂有两种处理方法: ①年平均纯利润达到最大时,以48万元出售该厂,②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?【解析】(1)由题意,第一年共支出12万元,以后每年支出增加4万元,可知每年的支出构成一个等差数列,用g(n)表示前n 年的总支出, 所以g(n)=12n+()n n 12-×4=2n 2+10n(n ∈N *), 因为f(n)=前n 年的总收入-前n 年的总支出-投资额,所以f(n)=50n-(2n2+10n)-72=-2n2+40n-72.由f(n)>0,即-2n2+40n-72>0,解得2<n<18. 由n∈N*知,从第三年开始盈利.(2)方案①:年平均纯利润为()f nn=40-2(n+36n)≤16,当且仅当n=6时等号成立.故方案①共获利6×16+48=144(万元),此时n=6.方案②:f(n)=-2(n-10)2+128.当n=10时,f(n)max=128.故方案②共获利128+16=144(万元).比较两种方案,获利都是144万元,但由于方案①只需6年,而方案②需10年,故选择方案①更合算.关闭Word文档返回原板块。

人教版2016第一轮复习理科数学教师用书配套习题:课时

人教版2016第一轮复习理科数学教师用书配套习题:课时

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

课时提升作业(十一)函数与方程(25分钟 50分)一、选择题(每小题5分,共25分)1.(2015·安康模拟)函数f(x)=2x +x 3-4的零点所在区间为( ) A.(-1,0) B.(0,1) C.(1,2) D.(2,3) 【解析】选C.因为f(1)〃f(2)=-1〓8<0,所以选C.2.已知函数f(x)=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,3)内近似解的过程中,取区间中点x 0=2,那么下一个有根区间为( )A .(1,2)B .(2,3)C .(1,2)或(2,3)都可以D .不能确定【解析】选A.因为f(1)=-2<0,f(2)=7>0,f(3)=28>0.所以f(1)〃f(2)<0,所以下一个有根区间为(1,2). 3.(2015·合肥模拟)函数f(x)=24x 4,x 1,x 4x 3,x 1-≤⎧⎨-+>⎩的图像和函数g(x)=log 2x的图像的交点个数是( )A.4B.3C.2D.1【解析】选B.画出函数f(x)与g(x)的图像,由图可知,两函数图像有3个交点.4.(2014·湖北高考)已知f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2-3x.则函数g(x)=f(x)-x+3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3}【解题提示】考查函数的奇偶性、零点及函数的方程思想.首先根据f(x)是定义在R 上的奇函数,求出函数在R 上的解析式,再求出g(x)的解析式,根据函数的零点就是方程的解,问题得以解决. 【解析】选D.由f(x)是定义在R 上的奇函数, 当x ≥0时,f(x)=x 2-3x ,所以f(x)=22x 3x,x 0,x 3x,x 0.⎧-≥⎪⎨--<⎪⎩所以g(x)=22x 4x 3,x 0,x 4x 3,x 0.⎧-+≥⎪⎨--+<⎪⎩由2x 0,x 4x 30≥⎧⎨-+=⎩解得x 1=3,x 2=1,由2x 0,x 4x 30<⎧⎨--+=⎩解得故选D.5.已知函数f(x)=x+2x ,g(x)=x+ln的零点分别为x 1,x 2,x3,则x1,x2,x3的大小关系是( )A.x2<x1<x3B.x1<x2<x3C.x1<x3<x2D.x3<x2<x1【解析】选B.依据零点的意义,转化为函数y=x分别和y=-2x,y=-ln的交点的横坐标大小问题,作出草图,易得x1<0<x2<1<x3.二、填空题(每小题5分,共15分)6.(2015·南昌模拟)不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2+x-c的零点为____________.【解析】因为不等式ax2-x-c>0的解集为{x|-2<x<1},所以-2,1是ax2-x-c=0的两根,则11,ac2,a⎧=-⎪⎪⎨⎪-=-⎪⎩解得a1,c2=-⎧⎨=-⎩,则y=ax2+x-c可化为y=-x2+x+2=-(x2-x-2)=-(x-2)(x+1),所以函数y=ax2+x-c的零点为-1和2.答案:-1和27.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 015x+log2 015x,则在R上,函数f(x)零点的个数为__________.【解析】函数f(x)为R上的奇函数,因此f(0)=0,当x>0时,f(x)=2 015x+log2 015x在区间(0,12 015)内存在一个零点,又f(x)在(0,+≦)上是增加的,因此在(0,+≦)内有且仅有一个零点.根据对称性可知函数在(-≦,0)内有且仅有一解,从而函数f(x)在R上的零点的个数为3.答案:38.函数f(x)=3x-7+ln x的零点位于区间(n,n+1)(n∈N)内,则n =_____.【解析】求函数f(x)=3x-7+ln x的零点,可以大致估算两个相邻自然数的函数值,如f(2)=-1+ln 2,由于ln 2<ln e=1,所以f(2)<0,f(3)=2+ln 3,由于ln 3>1,所以f(3)>0,所以函数f(x)的零点位于区间(2,3)内,故n=2.答案:2【加固训练】若函数f(x)=a x-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是( )A.(1,+∞) B.(0,1)C.(-1,0) D.(-∞,-1)【解析】选A.令g(x)=a x(a>0,且a≠1),h(x)=x+a,分0<a<1,a>1两种情况,在同一坐标系中画出两个函数的图像,如图,若函数f(x)=a x-x-a有两个不同的零点,则函数g(x),h(x)的图像有两个不同的交点,根据画出的图像只有当a>1时符合题目要求.三、解答题9.(10分)已知二次函数f(x)=x2+(2a-1)x+1-2a:(1)判断命题:“对于任意的a∈R,方程f(x)=1必有实数根”的真假,并写出判断过程.(2)若y =f(x)在区间(-1,0)及(0,12)内各有一个零点,求实数a 的范围.【解析】(1)“对于任意的a ∈R ,方程f(x)=1必有实数根”是真命题; 依题意:f(x)=1有实根,即x 2+(2a -1)x -2a =0有实根, 因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f(x)=1必有实根.(2)依题意:要使y =f(x)在区间(-1,0)及(0,12)内各有一个零点,只需()()f 10,f 00,1f()0,2⎧⎪->⎪<⎨⎪⎪>⎩即34a 0,12a 0,3a 0,4⎧⎪->⎪-<⎨⎪⎪->⎩解得:13a 24<<.故实数a 的取值范围为13{a |a }24<<. 【方法技巧】二次函数零点问题的解题技巧对于二次函数零点问题常转化为二次方程根的分布问题来解决,结合二次函数的图像从判别式,根与系数的关系、对称轴、端点函数值、开口方向等方面去考虑使结论成立的所有条件,这里涉及三个“二次”问题的全面考虑和“数形结合思想”的灵活运用.【加固训练】1.是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围;若不存在,说明理由.【解析】因为Δ=(3a -2)2-4(a -1)=289(a )9-+89>0,所以若存在实数a满足条件,则只需f(-1)〃f(3)≤0即可.f(-1)〃f(3)=(1-3a+2+a-1)〃(9+9a-6+a-1)=4(1-a)(5a+1)≤0,所以a≤-15或a≥1.检验:①当f(-1)=0时,a=1.所以f(x)=x2+x.令f(x)=0,即x2+x=0,得x=0或x=-1.方程在[-1,3]上有两根,不合题意,故a≠1.②当f(3)=0时,a=-15,此时f(x)=x2-135x-65.令f(x)=0,即x2-135x-65=0,解得x=-25或x=3.方程在[-1,3]上有两根,不合题意,故a≠-15.综上所述,a的取值范围是(-≦,-15)∪(1,+≦).2.已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.【解析】因为f(x)=4x+m〃2x+1有且仅有一个零点,即方程(2x)2+m〃2x +1=0仅有一个实根.设2x=t(t>0),则t2+mt+1=0.当Δ=0时,即m2-4=0,m=〒2,所以m=-2时,t=1;m=2时,t=-1(不合题意,舍去).所以2x=1,x=0符合题意.当Δ>0时,即m>2或m<-2时,t2+mt+1=0有两正或两负根,即f(x)有两个零点或没有零点.所以这种情况不符合题意.综上可知:m=-2时,f(x)有唯一零点,该零点为x=0.(20分钟 40分)1.(5分)(2015·合肥模拟)已知[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.2]=-2.x0是函数f(x)=ln x-2x的零点,则[x0]等于( )A.2B.1C.0D.-2【解析】选A.因为f(x)=ln x-2x,则函数f(x)在(0,+≦)上是增加的,所以f(1)=ln 1-2=-2<0,f(2)=ln 2-1<0,f(3)=ln 3-23>0,所以f(2)f(3)<0,所以函数f(x)=ln x-2x在区间(2,3)内存在唯一的零点,因为x0是函数f(x)=ln x-2x的零点,所以2<x0<3,所以[x0]=2,故选A.2.(5分)已知函数f(x)=kx1,x0,ln x,x0,+≤⎧⎨>⎩则下列关于函数y=f(f(x))+1的零点个数的判断正确的是( )A.当k>0时,有3个零点;当k<0时,有2个零点B.当k>0时,有4个零点;当k<0时,有1个零点C.无论k为何值,均有2个零点D .无论k 为何值,均有4个零点【解析】选B.当k>0时,f(f(x))=-1,结合图(1)分析,则f(x)=t 1∈(-≦,-1k)或f(x)=t 2∈(0,1).对于f(x)=t 1,存在两个零点x 1,x 2;对于f(x)=t 2,存在两个零点x 3,x 4.此时共计存在4个零点.当k<0时,f(f(x))=-1,结合图(2)分析,则f(x)=t ∈(0,1),此时仅有1个零点x 0.3.(5分)(2015·九江模拟)设函数f(x)=2x bx 2,x 02x x 0⎧++≤⎪⎨->⎪⎩,,,若f(-4)=f(0),则函数y=f(x)-ln(x+2)的零点个数有_________个.【解析】因为函数f(x)=2x bx 2,x 02x x 0⎧++≤⎪⎨->⎪⎩,,,f(-4)=f(0),所以b=4,所以f(x)= 2x 4x 2,x 02x x 0⎧++≤⎪⎨->⎪⎩,,,f(x)=2x 4x 2,x 02x x 0⎧++≤⎪⎨->⎪⎩,,,与y=ln(x+2)的图像如图所示,所以函数y=f(x)-ln(x+2)的零点个数有4个.答案:44. (12分)(2015·郑州模拟)已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.(1)写出函数y=f(x)的解析式.(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.【解析】(1)当x∈(-≦,0)时,-x∈(0,+≦).因为y=f(x)是奇函数,所以f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,所以f(x)=22x2x,x0,x2x,x0.⎧-≥⎪⎨--<⎪⎩(2)当x∈[0,+≦)时,f(x)=x2-2x=(x-1)2-1,最小值为-1;当x∈(-≦,0)时,f(x)=-x2-2x=1-(x+1)2,最大值为1.所以据此可作出函数y=f(x)的图像(如图所示),根据图像,若方程f(x)=a恰有3个不同的解,则a的取值范围是(-1,1).5.(13分)(能力挑战题)已知函数f(x)=-x2+2ex+m-1,g(x)=x+2ex(x>0).(1)若y=g(x)-m有零点,求m的取值范围.(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.≥2e,【解析】(1)因为x>0时g(x)=x+2ex等号成立的条件是x=e,故g(x)的值域是[2e,+≦),因而只需m≥2e,则y=g(x)-m就有零点.所以m的取值范围是[2e,+≦).【一题多解】本题(1)还可以采用如下解法:(x>0)的大致图像如图:作出g(x)=x+2ex可知若使y=g(x)-m有零点,则只需m≥2e.所以m的取值范围是[2e,+≦).(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图像有两个不同的交点,作出g(x)=x+2e(x>0)的大致图像.因为f(x)=-x2+2ex+m-1=x-(x-e)2+m-1+e2,所以其图像的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.所以m的取值范围是(-e2+2e+1,+≦).关闭Word文档返回原板块。

人教版2016第一轮复习理科数学教师用书配套习题:课时提升作业(十五) 2.12定积分与微积分基本定理

人教版2016第一轮复习理科数学教师用书配套习题:课时提升作业(十五) 2.12定积分与微积分基本定理

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业(十五)定积分与微积分基本定理(25分钟 50分)一、选择题(每小题5分,共25分)1.(2014·陕西高考)定积分的值为( )A.e+2B.e+1C.eD.e-1【解析】选C.=e.2.(2015·萍乡模拟)由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为( )B.2-ln 3A.329C.4+ln 3D.4-ln 3,3),由xy=1,y=x可【解析】选D.由xy=1,y=3可得交点坐标为(13得交点坐标为(1,1),由y=x,y=3可得交点坐标为(3,3),所以由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为4-ln 3,故选D.3.(2015·南昌模拟)已知函数f(x)=2 x ,2x 0,x 1,0x 2,⎧-≤≤⎨+<≤⎩则22-⎰f(x)dx 的值为( )A.43B.4C.6D.203【解析】选D.22-⎰f(x)dx=02-⎰x 2dx+2⎰(x+1)dx3202118120x (x x)(0)(420).2032323=++=++⨯+-=-4.一质点运动时速度与时间的关系为v(t)=t 2-t+2,质点做直线运动,则此质点在时间[1,2]内的位移为( )17141311A.B. C. D.6366【解析】选A.质点在时间[1,2]内的位移为21⎰(t 2-t+2)dt=3221117(t t 2t)1326-+=. 5.由直线x+y-2=0,曲线y=x 3以及x 轴围成的图形的面积为( )4553A. B. C. D.3464【解析】选D.由题意得3x y 20,y x ,+-=⎧⎨=⎩解得交点坐标是(1,1). 故由直线x+y-2=0,曲线y=x 3以及x 轴围成的图形的面积为1⎰x 3dx+21⎰(2-x)dx=421211113x (2x x )0142424+-=+=.【方法技巧】求平面几何图形面积的技巧求平面几何图形的面积,需根据几何图形的形状进行适当分割,然后通过分别求相应区间上的定积分求出各自的面积,再求和. 二、填空题(每小题5分,共15分)6.(2015·西安模拟)若函数f(x)在R 上可导,f(x)=x 3+x 2f ′(1),则()2f x dx ⎰=_______.【解析】由题意可知f ′(x)=3x 2+2f ′(1)x ,所以f ′(1)=3+2f ′(1),所以f ′(1)=-3,f(x)=x 3-3x 2,x 3-3x 2的一个原函数为14x 4-x 3,所以()232432001x3x dx x x |4-=-⎰=-4. 答案:-4【加固训练】设函数f(x)=ax 2+b(a ≠0),若3⎰f(x)dx=3f(x 0),则x 0等于( )A.±1C. D.2【解析】选C.30⎰f(x)dx=30⎰(ax 2+b)dx=331(ax bx)9a 3b 03+=+,所以9a+3b=3(ax 02+b),即x 02=3,x 0=故选C.7.由曲线y=sin x ,y=cos x 与直线x=0,x=2π所围成的平面图形(图中的阴影部分)的面积是_________.【解析】由图可得阴影部分面积S=240π⎰(cos x-sinx)dx=()2sin x cos x 40π+答案:8.(2013·湖南高考)若x 2dx=9,则常数T 的值为__________.【解析】x 2dx=33T 11(x )T 9033==,所以T=3.答案:3 三、解答题9.(10分)如图,求直线y=2x 与抛物线y=3-x 2所围成的阴影部分的面积.【解析】S=13-⎰(3-x 2-2x)dx()()()3213321(3x x x )|31132(311)[3333].333-=--=⨯---⨯--⨯---=【加固训练】设变力F(x)作用在质点M 上,使M 沿x 轴正向从x=1运动到x=10,已知F(x)=x 2+1且方向和x 轴正向相同,求变力F(x)对质点M 所做的功.【解析】变力F(x)=x 2+1使质点M 沿x 轴正向从x=1运动到x=10所做的功为()()()2310110101W F x dx x 1dx (x x)342J .113==+=+=⎰⎰(20分钟 40分)1.(5分)(2015·抚州模拟)图中阴影部分的面积是( )A.16B.18C.20D.22 【解析】选B.由2y x 4,y 2x,=-⎧⎨=⎩得x 2,y 2=⎧⎨=-⎩或x 8,y 4,=⎧⎨=⎩ 则阴影部分的面积为S=2⎰dx+82⎰332222811638x (x x 4x)18.0233233=+-+=+=2.(5分)若f(x)=()xf x 4,x 02cos 3tdt,x 060->⎧⎪⎪π⎨+≤⎪⎪⎩⎰,,则f(2 014)=_________. 【解析】当x>0时,f(x)=f(x-4), 则f(x+4)=f(x),所以f(2 014)=f(2)=f(-2),又因为60π⎰cos 3tdt=11(sin 3t),633π=所以f(2 014)=f(-2)=2-2+13=712. 答案:7123.(5分)(2015·南昌模拟)由曲线y=x-2及y 轴所围成的图形的面积为________.【解析】如图所示,联立y x 2,y =-⎧⎪⎨=⎪⎩解得x 4,y 2=⎧⎨=⎩,所以M(4,2).由曲线直线y=x-2及y 轴所围成的图形的面积S=()34242002116x 2dx (x x 2x)|.323-=-+=⎰] 答案:1634.(12分)汽车以54 km/h 的速度行驶,到某处需要减速停车,设汽车以等加速度-3 m/s 2刹车,问从开始刹车到停车,汽车走了多远? 【解析】由题意,得v 0=54 km/h=15 m/s. 所以v(t)=v 0+at=15-3t.令v(t)=0,得15-3t=0.解得t=5.所以开始刹车5 s 后,汽车停车. 所以汽车由刹车到停车所行驶的路程为 s=5⎰v(t)dt=5⎰(15-3t)dt=253(15t t )02-=37.5(m). 故汽车走了37.5 m.5.(13分)(能力挑战题)求由抛物线y 2=x -1与其在点(2,1),(2,-1)处的切线所围成的面积.【解析】y .y ′x. 因为过点(2,1)的直线斜率为y ′|x=2=12,直线方程为y -1=12(x -2),即y =12x.同理,过点(2,-1)的直线方程为y =-12x ,抛物线顶点在(1,0).如图所示:由抛物线y 2=x -1与两条切线y =12x ,y =-12x 围成的图形面积为:S =S △AOB -12⎰=12〓2〓2-2〓23〓3221(x 1)|-=2-43(1-0)=23. 【加固训练】曲线C :y=2x 3-3x 2-2x+1,点P(12,0),求过P 的切线l 与C 围成的图形的面积.【解析】设切点坐标为(x 0,y 0),y ′=6x 2-6x-2, 则f ′(x 0)=6x 02-6x 0-2,切线方程为y=(6x 02-6x 0-2)(x-12), 则y 0=(6x 02-6x 0-2)(x 0-12),即2x 03-3x 02-2x 0+1=(6x 02-6x 0-2)·(x 0-12), 整理得x 0(4x 02-6x 0+3)=0,解得x 0=0,则切线方程为y=-2x+1.解方程组32y 2x 1,y 2x 3x 2x 1,=-+⎧⎨=--+⎩ 得x 0,y 1=⎧⎨=⎩或3x ,2y 2.⎧=⎪⎨⎪=-⎩ 由y=2x 3-3x 2-2x+1与y=-2x+1的图像可知S=320⎰[(-2x+1)-(2x 3-3x 2-2x+1)]dx=320⎰(-2x 3+3x 2)dx=2732.关闭Word 文档返回原板块。

2016届高考数学(理)一轮复习作业手册第27讲数系的扩充与复数的引入

2016届高考数学(理)一轮复习作业手册第27讲数系的扩充与复数的引入

课时作业(二十七) [第27讲 数系的扩充与复数的引入](时间:45分钟 分值:100分)基础热身1.已知a 是实数,若a +i 1-i是纯虚数,则a 等于( ) A .-1B .1C . 2D .- 22.[2014·石家庄模拟] 复数z =1-i ,则1z+z 在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若i (x +y i )=3+4i ,x ,y ∈R ,则复数x +y i 的模是( )A .2B .3C .4D .54.复数z =11-i(i 为虚数单位)的共轭复数z 是( ) A .1-iB .1+iC .12+12i D .12-12i 5.若(1-2i )i =a +b i (a ,b ∈R ,i 为虚数单位),则ab =________.6.已知平行四边形ABCD 的三个顶点A ,B ,C 对应的复数分别为3+3i ,-2+i ,-5i ,则第四个顶点D 对应的复数为________.能力提升7.复数i 3(1+i )21-i-i 等于( ) A .1 B .-1C .iD .-i8.[2014·浙江名校联考] 已知i 是虚数单位,且复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( )A .6B .-6C .0D .169.在复平面内,O 是原点,向量OA →对应的复数是2-i (其中i 是虚数单位),如果点A 关于实轴的对称点为点B ,则向量OB →对应的复数是( )A .-2-iB .-2+iC .2+iD .1-2i10.定义:若z 2=a +b i (a ,b ∈R ,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,复数-3+4i 的平方根是( )A .1-2i 或-1+2iB .1+2i 或-1-2iC .-7-24iD .7+24i11.[2014·长沙模拟] 已知集合M ={i ,i 2,1i ,(1+i )2i },i 是虚数单位,Z 为整数集,则集合Z ∩M 中元素的个数是( )A .3B .2C .1D .012.设i 为虚数单位,则1-i +i 2-i 3+i 4-…+i 20=________.13.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若复数x =1-i 1+i ,y =⎪⎪⎪⎪⎪⎪4i x i 2 x +i ,则y =________. 14.(10分)设复数z 满足|z|=1,且(3+4i )z 是纯虚数,求z.15.(13分)已知z 是复数,z +2i ,z 2-i均为实数(i 为虚数单位),且复数(z +a i )2在复平面上对应的点在第一象限,求实数a 的取值范围.难点突破16.(1)(6分)设x ,y 均是实数,i 是虚数单位,若复数x -y i 1+2i+i 的实部大于0,虚部不小于0,则复数z =x +y i 在复平面上对应的点用阴影部分表示为下图中的( )图K 27­1(2)(6分)对任意复数ω1,ω2,定义ω1*ω2=ω1ω2,其中ω2是ω2的共轭复数,对任意复数z 1,z 2,z 3有如下四个命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3);②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3);③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1.则真命题的个数是( )A .1B .2C .3D .4课时作业(二十七)1.B 2.D 3.D 4.D 5.2 6.5-3i 7.A8.A 9.C 10.B 11.B 12.1 13.-214.z =45-35i 或z =-45+35i 15.2<a <6 16.(1)A (2)B。

2016第一轮复习理科数学教师用书配套习题:课时提升作

2016第一轮复习理科数学教师用书配套习题:课时提升作

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业(十四)导数与函数的单调性、极值、最值(25分钟 60分)一、选择题(每小题5分,共25分)1.(2015·许昌模拟)函数f(x)=xln x,则( )A.在(0,+∞)上是增加的B.在(0,+∞)上是减少的C.在(0,1e)上是增加的D.在(0,1e)上是减少的【解析】选D.因为函数f(x)=xln x,所以f′(x)=ln x+1,f′(x)>0,解得x>1e ,则函数的单调增区间为(1e,+≦),又f′(x)<0,解得0<x<1e,则函数的单调减区间为(0,1e),故选D.2.函数f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2B.0C.2D.4【解析】选C.f′(x)=3x2-6x=3x(x-2),因为-1≤x≤1,所以令f′(x)>0得-1≤x<0,令f′(x)<0得0<x≤1,所以函数f(x)在(-1,0)上是增加的,在(0,1)上是减少的.所以x=0时函数f(x)取得极大值同时也是最大值,即f(x)max=f(0)=2,故C正确.3.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=16x3-12mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上( )A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值【解析】选C.由题设可知:f″(x)<0在(-1,2)上恒成立,由于f′(x)=12x2-mx+1,从而f″(x)=x-m,所以有x-m<0在(-1,2)上恒成立,故知m≥2,又因为m≤2,所以m=2;从而f(x)=16x3-x2+x,令f′(x)=12x2-2x+1=0得x1(-1,2),x2 (-1,2);且当x∈时f′(x)>0,当x∈时f′(x)<0,所以在(-1,2)上f(x)在.4.(2015·合肥模拟)已知f′(x)是定义在R上的函数f(x)的导函数,且f(x)=f(5-x),(52-x) f′(x)<0,若x1<x2,x1+x2<5,则下列结论中正确的是( )A.f(x1)<f(x2)B.f(x1)+f(x2)>0C.f(x1)+f(x2)<0D.f(x1)>f(x2)【解析】选D.因为函数f(x)满足f(x)=f(5-x),则函数f(x)的图像关于x=52对称,又因为(52-x)f′(x)<0,所以当x>52,f′(x)>0,故函数f(x)在(52,+≦)上是增加的,在(-≦,52)上是减少的,在x=52处取得最小值,又因为x1<x2,x1+x2<5,故|x1-52|>|x2-52|,所以f(x1)>f(x2).5.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)【解析】选D.由图像知,f′(-2)=f′(2)=0,且当x<-2时,f′(x)>0,-2<x<1,1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故f(-2)是极大值,f(2)是极小值.二、填空题(每小题5分,共15分)6.已知函数f(x)=(ax2+x)-xln x在[1,+∞)上是增加的,则实数a的取值范围是_________.【解题提示】求导利用导数大于等于0转化为恒成立问题,再构造函数求解.【解析】由题意知:f′(x)=2ax+1-(ln x+1)≥0,即a≥ln x2x在x∈[1,+≦)上恒成立;设g(x)=ln x2x ,令g′(x)=21ln x2x=0,解得x=e,当x∈(e,+≦)时,g′(x)<0,g(x)是减少的,当x∈[1,e)时,g′(x)>0,g(x)是增加的,故g(x)的最大值为g(e)=12e ,即a≥12e.答案:a≥12e7.(2015·银川模拟)函数f(x)=x(x-m)2在x=1处取得极小值,则m=_______.【解析】f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3时,f′(x)<0;x<1或x>3时,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.答案:1【误区警示】本题易出现求出m值后不进行验证能否在x=1处取得极小值,导致解题错误.8.已知函数f(x)的定义域为[-1,5],部分对应值如表:f(x)的导函数y=f′(x)的图像如图所示,则f(x)的极小值为________.【解析】由y=f′(x)的图像可知,f′(x)与f(x)随x的变化情况如表:所以f(2)为f(x)的极小值,f(2)=0.答案:0三、解答题(每小题10分,共20分)9.(2015·安庆模拟)已知函数f(x)=a(x-1)2+ln x+1.(1)当a=-14时,求函数f(x)的极值.(2)若函数f(x)在区间[2,4]上是减少的,求实数a的取值范围.【解析】(1)当a=-14时,f(x)=-14(x-1)2+ln x+1=-14x2+12x+lnx+34(x>0),f′(x)=-12x+1x+12=-()()x2x12x-+(x>0),由f′(x)>0解得0<x<2,由f′(x)<0解得x>2,故f(x)在(0,2)上是增加的,在(2,+≦)上是减少的.所以当x=2时,函数f(x)取得极大值f(2)= 34+ln 2.(2)f′(x)=2a(x-1)+1x,因为函数f(x)在区间[2,4]上是减少的,所以f ′(x)=2a(x-1)+1x ≤0在区间[2,4]上恒成立,即2a ≤21x x-+在[2,4]上恒成立,只需2a 不大于21x x-+在[2,4]上的最小值即可. 而21x x -+=2111(x )24--+(2≤x ≤4),则当2≤x ≤4时,21x x -+∈11[,]212--,所以2a ≤-12,即a ≤-14,故实数a 的取值范围是(-≦,- 14].10.(2014·安徽高考)设函数f(x)=1+(1+a)x-x 2-x 3,其中a >0. (1)讨论f(x)在其定义域上的单调性.(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时x 的值. 【解析】(1)f(x)的定义域为(-≦,+≦), f ′(x)=1+a-2x-3x 2, 令f ′(x)=0得x 1, x 2,x 1<x 2, 所以f ′(x)=-3(x-x 1)(x-x 2), 当x<x 1或x>x 2时f ′(x)<0; 当x 1<x<x 2时f ′(x)>0. 所以f(x)在1(,3--∞和1()3-+∞上是减少的,在上是增加的. (2)因为a>0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1,由(1)知,f(x)在[0,1]上是增加的,所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x 2<1,由(1)知,f(x)在[0,x 2]上是增加的,在[x 2,1]上是减少的.所以f(x)在x=x 2. 又f(0)=1,f(1)=a,所以当0<a<1时,f(x)在x=1处取得最小值; 当a=1时,f(x)在x=0和x=1处同时取得最小值; 当1<a<4时,f(x)在x=0处取得最小值.【加固训练】(2015·马鞍山模拟)已知函数f(x)=ln x-ax 2+(a-2)x. (1)若f(x)在x=1处取得极值,求a 的值. (2)求函数y=f(x)在[a 2,a ]上的最大值.【解析】(1)因为f(x)=ln x-ax 2+(a-2)x ,所以函数的定义域为(0,+≦),所以f ′(x)= ()()()()212ax a 2x 2x 1ax 112ax a 2.x x x-+---+-+-== 因为f(x)在x=1处取得极值, 即f ′(1)=-(2-1)(a+1)=0,所以a=-1.当a=-1时,在(12,1)内f ′(x)<0,在(1,+≦)内f ′(x)>0, 所以x=1是函数f(x)的极小值点,所以a=-1. (2)因为a 2<a ,所以0<a<1,f ′(x)= ()()()()212ax a 2x 2x 1ax 112ax a 2.x x x-+--+-+-==- 因为x ∈(0,+≦),所以ax+1>0,所以f(x)在(0,12)上是增加的;在(12,+≦)上是减少的.①当0<a ≤12时,f(x)在[a 2,a ]上是增加的, 所以f(x)max =f(a)=ln a-a 3+a 2-2a.②当21a ,21a ,2⎧>⎪⎪⎨⎪<⎪⎩即1a 22<<时,f(x)在21(a ,)2上是增加的,在1(,a)2上是减少的,所以f(x)max =f(12)=a a 2aln21ln2424---+=--; ③当12≤a 2,即2≤a<1时,f(x)在[a 2,a ]上是减少的,所以f(x)max =f(a 2)= 2ln a-a 5+a 3-2a 2.综上所述,当0<a ≤12时,函数y=f(x)在[a 2,a ]上的最大值是ln a-a 3+a 2-2a; 当12y=f(x)在[a 2,a ]上的最大值是a 4-1-ln 2;≤a <1时,函数y=f(x)在[a 2,a ]上的最大值是2ln a-a 5+a 3-2a 2. (20分钟 40分)1.(5分)若函数f(x)=13x 3-12ax 2+(a-1)x+1在区间(1,4)上是减少的,在区间(6,+∞)上是增加的,则实数a 的取值范围是( ) A.(-∞,2] B.[5,7]C.[4,6]D.(-∞,5]∪[7,+∞)【解题提示】求出原函数的导函数,求得导函数的零点1,a-1,然后讨论1与a-1的大小,分析导函数在不同区间内的符号,从而得到原函数在不同区间内的单调性,最后借助已知条件得到a-1与4和6的关系,则答案可求.【解析】选B.由函数f(x)=13x3-12ax2+(a-1)x+1,得f′(x)=x2-ax+a-1.令f′(x)=0,解得x=1或x=a-1.当a-1≤1,即a≤2时,f′(x)在(1,+≦)上大于0,函数f(x)在(1,+≦)上是增加的,不合题意;当a-1>1,即a>2时,f′(x)在(-≦,1)上大于0,函数f(x)在(-≦,1)上是增加的,f′(x)在(1,a-1)内小于0,函数f(x)在(1,a-1)上是减少的,f′(x)在(a-1,+≦)内大于0,函数f(x)在(a-1,+≦)上是增加的.依题意应有:当x∈(1,4)时,f′(x)<0,当x∈(6,+≦)时,f′(x)>0,所以4≤a-1≤6,解得5≤a≤7,所以a的取值范围是[5,7],故选B.2.(5分)(2015·淮南模拟)设函数f(x)=6x3+3(a+2)x2+2ax,若f(x)有两个极值点x1,x2且x1·x2=1,则a的值为( )A.6B.7C.8D.9【解析】选D.因为f′(x)=18x2+6(a+2)x+2a,令f′(x)=0得18x2+6(a+2)x+2a=0,由题意知x1,x2是方程f′(x)=0的两根,故x1x2=2a18=1,因此a=9.3.(5分)(2014·辽宁高考)当x ∈[-2,1]时,不等式ax 3-x 2+4x+3≥0恒成立,则实数a 的取值范围是( ) A.[-5,-3] B.[-6,-98] C.[-6,-2] D.[-4,-3]【解析】选C.当x ∈(0,1]时,不等式ax 3-x 2+4x+3≥0⇒a ≥23x 4x 3x --,x∈(0,1]恒成立.令g(x)=23x 4x 3x --,x ∈(0,1],则g ′(x)=24x 8x 9x -++,x ∈(0,1],设h(x)=-x 2+8x+9,h(x)在(0,1]上是增加的, h(x)>h(0)=9>0,所以x ∈0,1时,g ′(x)=24x 8x 9x -++>0,则g(x)=23x 4x 3x--在(0,1]上是增加的, g(x)=23x 4x 3x --,x ∈(0,1]的最大值g(x)max =g(1)=-6,从而a ≥-6.当x=0时,a ∈R.当x ∈[-2,0)时,不等式ax 3-x 2+4x+3≥0⇒a ≤23x 4x 3x --,x ∈[-2,0)恒成立.()24x 8x 9g x 0,x x [2,0)⎧-++'=>⎪⎨⎪∈-⎩⇒-1<x<0,()24x 8x 9g x 0,x x [2,0)⎧-++'=<⎪⎨⎪∈-⎩⇒-2≤x<-1. 所以g(x)= 23x 4x 3x--在[-2,-1)上是减少的,在(-1,0)上是增加的, 故g(x)min =g(-1)=-2,则a ≤-2.综上所述,-6≤a ≤-2.4.(12分)(2015·九江模拟)已知函数f(x)=x 2+2x+aln x(a ∈R).(1)当a=-4时,求f(x)的最小值.(2)若函数f(x)在区间(0,1)上是增加的,求实数a 的取值范围.(3)当t ≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a 的取值范围.【解析】(1)因为f(x)=x 2+2x-4ln x(x>0),所以f ′(x)=2x+2-4x =()()2x 2x 1x+-, 当x>1时,f ′(x)>0,当0<x<1时,f ′(x)<0,所以f(x)在(0,1)上是减少的,在(1,+≦)上是增加的,所以f(x)min =f(1)=3.(2)f ′(x)=2x+2+2a 2x 2x a x x++=, 若f(x)在(0,1)上是增加的,则2x 2+2x+a ≥0在x ∈(0,1)上恒成立⇒a ≥-2x 2-2x 恒成立,令u=-2x 2-2x,x ∈(0,1),则u=2112(x )22-++,u max =0,所以a ≥0.(3)(2t-1)2+2(2t-1)+aln(2t-1)≥2t 2+4t+2aln t-3恒成立,a[ln(2t-1)-2ln t ]≥-2t 2+4t-2⇒a [ln(2t-1)-ln t 2]≥2[(2t-1)-t 2],当t=1时,不等式显然成立,当t>1时,a ≤()()2222t 1t ln 2t 1ln t----[]在t>1时恒成立, 令v=()()2222t 1t ln 2t 1ln t ----[],即求v 的最小值. 设A(t 2,ln t 2),B(2t-1,ln(2t-1)),k AB =()()22ln 2t 1ln t 2t 1t----, 且A ,B 两点在y=ln x 的图像上,又因为t 2>1,2t-1>1,故0<k AB <1,所以v=2·AB1k >2,故a ≤2, 即实数a 的取值范围为(-≦,2].5.(13分)(能力挑战题)(2014·山东高考)设函数f(x)= x 2e 2k(lnx)x x-+(k 为常数,e=2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f(x)的单调区间.(2)若函数f(x)在(0,2)内存在两个极值点,求k 的取值范围.【解析】(1)函数y=f(x)的定义域为(0,+≦).f ′(x)=2x x 42x e 2xe 21k()x x x---+ ()()()x x x 323x 2e kx k x 2xe 2e .x x x----=-= 由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x)<0,函数y=f(x)是减少的,x ∈(2,+≦)时,f ′(x)>0,函数y=f(x)是增加的.所以f(x)的单调减区间为(0,2),单调增区间为(2,+≦).(2)由(1)知,k≤0时,函数f(x)在(0,2)上是减少的,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x-kx,x∈(0,+≦).因为g′(x)=e x-k=e x-e ln k,当0<k≤1时,当x∈(0,2)时,g′(x)=e x-k>0,y=g(x)是增加的,故f(x)在(0,2)内不存在两个极值点;当k>1时,x∈(0,ln k)时,g′(x)<0,函数y=g(x)是减少的,x∈(ln k,+≦)时,g′(x)>0,函数y=g(x)是增加的.所以函数y=g(x)的最小值为g(ln k)=k(1-ln k),函数f(x)在(0,2)内存在两个极值点,当且仅当()()g00,g(lnk)0,g20,0lnk 2.>⎧⎪<⎪⎨>⎪⎪<<⎩解得e<k<2e2.综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,2e2).关闭Word文档返回原板块。

人教版2016第一轮复习理科数学教师用书配套习题:课时提升作业(十七) 3.2诱导公式

人教版2016第一轮复习理科数学教师用书配套习题:课时提升作业(十七) 3.2诱导公式

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业(十七)诱导公式(25分钟50分)一、选择题(每小题5分,共35分)1.sin错误!未找到引用源。

π+cos错误!未找到引用源。

π= ( )A.-1B.1C.0D.错误!未找到引用源。

-错误!未找到引用源。

【解析】选A.原式=sin错误!未找到引用源。

+cos错误!未找到引用源。

=-sin错误!未找到引用源。

+cos错误!未找到引用源。

=-错误!未找到引用源。

-cos错误!未找到引用源。

=-错误!未找到引用源。

-错误!未找到引用源。

=-1.2.(2015²铜川模拟)错误!未找到引用源。

化简的结果是( )A.sin3-cos3B.cos3-sin3C.±(sin3-cos3)D.以上都不对【解析】选A.sin(π-3)=sin3,cos(π+3)=-cos3,所以原式=错误!未找到引用源。

=错误!未找到引用源。

=|sin3-cos3|.因为错误!未找到引用源。

<3<π,所以sin3>0,cos3<0,所以原式=sin3-cos3,选A.【误区警示】解答本题容易忽略讨论3的范围而导致错解.3.(2015²上饶模拟)如果cos(π+A)=-错误!未找到引用源。

,那么sin 错误!未找到引用源。

= ( )A.-错误!未找到引用源。

B.错误!未找到引用源。

C.-错误!未找到引用源。

D.错误!未找到引用源。

【解析】选 B.因为cos(π+A)=-cosA=-错误!未找到引用源。

,所以cosA=错误!未找到引用源。

,所以sin错误!未找到引用源。

=cosA=错误!未找到引用源。

.4.(2015²南昌模拟)已知sin错误!未找到引用源。

=错误!未找到引用源。

,则cos错误!未找到引用源。

= ( )A.错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时提升作业(二十七)平面向量的应用(25分钟50分)一、选择题(每小题5分,共35分)1.(2015·南昌模拟)已知向量=(2,2),=(4,1),在x轴上一点P使·有最小值,则点P的坐标为( )A.(-3,0)B.(2,0)C.(3,0)D.(4,0)【解析】选 C.设点P(x,0),则=(x-2,-2),=(x-4,-1),故·=(x-2)(x-4)+2=x2-6x+10=(x-3)2+1,因此当x=3时取最小值,此时P(3,0).2.(2015·宿州模拟)已知直线x+y=a与圆x2+y2=4相交于A,B两点且满足|+|=|-|,O为原点.则正实数a的值为( )A.1B.2C.3D.4【解题提示】利用向量加减法的几何意义找到与的关系,然后转化求解.【解析】选B.由|+|=|-|可得⊥,又||=||=2,故||=2,所以点O到AB的距离d=,所以=,得|a|=2,又a>0,故a=2.3.(2015·赣州模拟)已知向量a=(cosα,-2),b=(sinα,1),且a∥b,则2sinαcosα等于( )A.3B.-3C.D.-【解析】选D.由a∥b得cosα=-2sinα,所以tanα=-.所以2sinαcosα===-.4.圆C:x2+y2=1,直线l:y=kx+2,直线l与圆C交于A,B,若|+|<|-|(其中O为坐标原点),则k的取值范围是( )A.(0,)B.(-,)C.(,+∞)D.(-∞,-)∪(,+∞)【解题提示】利用|+|<|-|⇔(+)2<(-)2进行转化.【解析】选 D.由|+|<|-|两边平方化简得·<0,所以∠AOB是钝角,如图,作OM⊥AB,交AB于点M,则AM=BM,∠AOM=∠BOM>45°,令OM=d,在Rt△AMO中,∠AOM>45°,所以AM>d,又AM2+d2=1,所以1>2d2,即d2<,d<.所以O(0,0)到kx-y+2=0的距离小于,所以<,所以k<-或k>,故选D.5.若||=1,||=4,·=2,+=,则△ABC的面积是( )A.1B.2C.D.2【解析】选C.因为+=,所以=-=,=-=,又||=1,||=4,所以||=1,||=4,·=2即·=2,设与的夹角为θ,易知θ与∠BCA为对顶角,所以θ=∠BCA.·=||·||cosθ=1×4cosθ=2,得cosθ=,所以cos∠BCA=,sin∠BCA=,所以S△ABC=||·||sin∠BCA=.6.在△ABC中,a,b,c分别为角A,B,C所对应的三角形的边长,若4a+2b+3c=0,则cosB= ( )A.-B.C.D.-【解题提示】将其中一个向量转化为用另外两个向量来表示,利用两向量不共线得边a,b,c的关系,再利用余弦定理求解.【解析】选A.由4a+2b+3c=0得4a+2b+3c(+)=(4a-3c)+(2b-3c)=0,又与不共线,故所以b=2a,c=a,所以cosB===-.7.(2015·宝鸡模拟)在平行四边形ABCD中,E,F分别是边CD和BC的中点,若=λ+μ(λ,μ∈R),则lo(λμ)的值为( )A.-2B.-1C.1D.2【解析】选A.如图,令=a,=b,则=a+b,①=+=a+b,=+=a+b,所以=λ+μ==a+b,②因为a,b不共线,由①,②得解得λ=μ=,故lo(λμ)=lo=2lo=-2.二、填空题(每小题5分,共15分)8.在长江南岸渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地渡过长江,则航向为.【解析】如图所示,渡船速度为,水流速度为,船实际垂直过江的速度为,依题意知||=,||=25.因为=+,所以·=·+,因为⊥,所以·=0,所以25×cos(∠BOD+90°)+=0,所以cos(∠BOD+90°)=-,所以sin∠BOD=,所以∠BOD=30°,所以航向为北偏西30°.答案:北偏西30°9.(2015·九江模拟)在锐角△ABC中,AC=BC=2,=x+y(其中x+y=1),函数f(λ)=|-λ|的最小值为,则||的最小值为.【解析】如图所示:设λ=,所以|-λ|=|-|=||,由于=λ,所以点D在直线BC上,所以f(λ)=||,结合图形知:当AD⊥BC时,f(λ)取最小值,即f(λ)min=||sin∠ACB=2sin∠ACB=,所以sin∠ACB=,由于∠ACB为锐角,所以∠ACB=,因为CA=CB,所以△ABC为等边三角形,因为=x+y,且x+y=1,所以点O,A,B三点共线,所以当CO⊥AB时,||取最小值,所以||min=||sin∠BAC=2sin=.答案:10.已知非零向量a,b满足|a|=2|b|,若函数f(x)=x3+|a|x2+a·b x在R上有极值,设向量a,b的夹角为θ,则θ的取值范围是. 【解题提示】把问题转化为导函数的零点问题,利用一元二次方程判别式求解.【解析】因为f′(x)=x2+|a|x+a·b,由题意,得关于x的一元二次方程x2+|a|x+a·b=0有两个不同实数根,所以Δ=|a|2-4a·b>0,因为|a|=2|b|≠0,所以4|b|2-4×2|b||b|cos θ>0,即cosθ<,因为θ∈[0,π],y=cosx在[0,π]上是减函数,所以<θ≤π.答案:【误区警示】解答本题易误填,出错的原因是由题意误得关于x 的方程x2+|a|x+a·b=0有实数根,即Δ≥0.事实上,当Δ=0时,方程的实数根并不是函数f(x)的极值点.(20分钟40分)1.(5分)已知△ABC的外接圆圆心为O,若+=2,则△ABC是( )A.钝角三角形B.锐角三角形C.直角三角形D.不能确定【解题提示】利用已知判断O点的位置,再依据O为外心可解.【解析】选C.由+=2可得O为BC边的中点.又O为△ABC的外心,故BC为△ABC外接圆的直径,故∠BAC=90°,故△ABC为直角三角形.2.(5分)在平面直角坐标系中,O为原点,=(1,0),若|-|=|·|,=(-5,0),则||的最小值为( )A.3.5B.4.5C.5.5D.6.5【解析】选C.设P(x,y),则=(x,y).又因为|-|=|·|,所以(x-1)2+y2=x2,得y2=2x-1,又=(-5,0),所以||=|-|===. 因为2x-1≥0,所以x≥,所以当x=时,||min====5.5.3.(5分)(2015·西安模拟)已知向量a=,=a-b,=a+b,若△OAB是等边三角形,则△OAB的面积为.【解析】因为a=,=a-b,=a+b,所以+=(a-b)+(a+b)=2a=(-1,),所以|+|==2.所以等边三角形OAB的高为1,边长为,因此其面积为×=.答案:4.(12分)(2015·南昌模拟)已知向量a=(,sinx+cosx)与b=(1,y)共线,设函数y=f(x).(1)求函数f(x)的最小正周期及最大值.(2)已知锐角△ABC的三个内角分别为A,B,C,若有f=,边BC=,sinB=,求△ABC的面积.【解析】(1)因为a与b共线,所以y-=0,则y=f(x)=2sin,所以f(x)的最小正周期T=2π,当x=2kπ+,k∈Z时,f(x)max=2.(2)因为f=,所以2sin=,所以sinA=.因为0<A<,所以A=.由正弦定理得=,又sinB=,所以AC==2,且sinC=,所以S△AC·BC·sinC=.ABC=【加固训练】(2015·成都模拟)已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量m=(a+c,b-a),n=(a-c,b),且m⊥n.(1)求角C的大小.(2)若向量s=(0,-1),t=,试求|s+t|的取值范围.【解析】(1)由题意得m·n=(a+c,b-a)·(a-c,b)=a2-c2+b2-ab=0,即c2=a2+b2-ab.由余弦定理得cosC==.因为0<C<π,所以C=.(2)因为s+t==(cosA,cosB),所以|s+t|2=cos2A+cos2B=cos2A+cos2=-sin+1.因为0<A<,所以-<2A-<,所以-<sin≤1.所以≤|s+t|2<,故≤|s+t|<.5.(13分)(能力挑战题)已知点A(-1,0),B(1,0),动点M的轨迹曲线C 满足∠AMB=2θ,||·||cos2θ=3,过点B的直线交曲线C于P,Q两点.(1)求||+||的值,并写出曲线C的方程.(2)设直线PQ的倾斜角是,试求△APQ的面积.【解题提示】(1)先根据向量的运算确定点M的轨迹,然后根据相关的值写出曲线C的方程.(2)写出直线PQ的方程,与曲线C的方程组成方程组,根据根与系数的关系求△APQ的面积.【解析】(1)设M(x,y),在△MAB中,|AB|=2,∠AMB=2θ,根据余弦定理得||2+||2-2||·||cos2θ=4.即(||+||)2-2||·||(1+cos2θ)=4.(||+||)2-4||·||cos2θ=4.而||·||cos2θ=3,所以(||+||)2-4×3=4.所以||+||=4.又||+||=4>2=|AB|,因此点M的轨迹是以A,B为焦点的椭圆(点M在x轴上也符合题意), a=2,c=1.所以曲线C的方程为+=1.(2)由题意得直线PQ的方程为:y=x-1.设P(x1,y1),Q(x2,y2),由得7x2-8x-8=0,所以x1+x2=,x1x2=-,y1+y2=x1+x2-2=-,y1y2=(x1-1)(x2-1)=x1x2-(x1+x2)+1=-,因为A(-1,0),B(1,0),所以|AB|=2.所以S△APQ=S△ABP+S△ABQ=|AB||y1|+|AB||y2|=|y1-y2|===.即△APQ的面积是.。

相关文档
最新文档