热式质量流量计原理与概述
热式质量流量计原理及概述

精品整理热式质量流量计原理及概述编辑:潘东升江苏瑞特仪表有限公司2010-5-31)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外TME 热式质量流量计(以下简称加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。
当前主要用于测量气体。
年代中期销售量估万台。
国内90销售金额约占流量仪表的8%,约4.590 20世纪年代初期,世界范围TMF 台左右。
过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。
计每年1000 1. 原理和结构利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式1)热式流量仪表用得最多有两类,即。
TMF(效应的金氏定律King s Iaw)thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)(流量计)。
有些在使用intrusion type又由于结构上检测元件伸入测量管内,也称浸入型(immersion type )或侵入型()。
时从管外插入工艺管内的仪表称作插入式(insertion typeTMF 热分布式1.1)(1cp -------被测气体的定压比热容;式中A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数;K -------仪表常数。
页脚内容.精品整理TMF 1.2基于金氏定律的浸入型金氏定律的热丝热散失率表述各参量间关系,如式所示。
2)2(单位长度热散失率,H/L -------J/m?h; 式中--------ΔT热丝高于自由流束的平均升高温度,K;--------λ流体的热导率,J/h?m?K; cV---------定容比热容,J/kg?k;3kg/m密度,---------ρ;m/h; U---------流体的流速,m.页脚内容.精品整理;另一细管经功T如图5所示,两温度传感器(热电阻)分别置于气流中两金属细管内,一热电阻测得气流温度增加,气流带走更多热量,ρU高于气流温度,气体静止时Tv最高,随着质量流速率恒定的电热加热,其温度Tv 。
热式气体质量流量计-360百科

热式气体质量流量计-360百科热式气体质量流量计是利用热扩散和热分布的原理,利用气体带走热量的多少来计算流量。
其测量结果受温度、压力变化影响较小,量程比可达到30∶1,安装方式为插入式,基本没有压力损失,适用于测量介质组分比较稳定的干燥气体的流量。
1、工作原理:大流量:热扩散原理,利用气体带走多少热量决定流量;小流量:热分布原理;2、系统组成:简单无活动部件、常温一体化、高温分体式;3、适用测量介质:干燥气体,介质组分稳定;4、系统误差:±1% 质量流量精度;5、系统智能化:多项参数修改,智能化;6、检定:工厂标定数据储存在仪表里,可以现场检定仪表性能,结果可溯源;7、量程比:大量程比,保证精度的前提下30∶1;8、流量结果:质量流量,温度、压力变化影响小;9、温压补偿:不需要;10、安装:小口径:管道式;大口径:插入式;安装简单快捷:不需要保温\导压管路,前后;直管段:3D/5D;安装成本低:在管道360范围内任何角度都可以安装;11、维护:属于免维护型,如需维护,可以实现在线不停产插拔维护;12、工厂标定:密闭环路模拟实际工况标定每一台都要实际标定;13、响应时间:1s;14、压力损失:插入式基本没有压力损失;15、系统重复性:重复性较好;16、温度对测量系统精度的影响:在±25℃范围内,±0.04 %FS;在±25~50℃范围内,±0.06 %FS;17、压力对测量系统精度的影响:压力变化0.006895MPa,精度影响0.02% FS;18、系统造价:性价比非常高,小口径相对价格高,大口径比孔板产品还便宜。
热式气体质量流量计-百度百科

热式气体质量流量计-百度百科一、概述嘉可仪表JK系列热式气体质量流量计是利用热传导原理测流量的仪表。
热式气体质量流量计采用恒温差法对气体质量流量进行准确测量。
具有体积小、数字化程度高、安装方便,测量准确等优点。
二、工作原理热式质量流量计由传感器和信号分析、处理与控制单元两部分构成。
传感器一部分测量温度,而另一部分用于加热。
前者监控实际过程温度值;后者维持一恒定温度值,使其总是高于实际过程温度且与该过程温度保持恒定的温度差。
气体的质量流量越大,冷却效应就越大,维持差分温度所需的能量也就越大。
因此,通过测量加热器的能量便可得出被测气体的质量流量。
三、热式气体质量流量计产品特点:1、真正的质量流量计,对气体流量测量无需温度和压力补偿,测量方便、准确。
可得到气体的质量流量或者标准体积流量。
2、宽量程比,可测量流速高至100Nm/s底至0.5Nm/s的气体,可以用于气体检漏。
3、抗震性能好使用寿命长。
传感器无活动部件和压力传感部件,不受震动对测量精度的影响。
4、安装维修简便。
在现场条件允许的情况下,可以实现不停产安装和维护。
(请参见安全注意事项)5、数字化设计。
整体数字化电路测量,测量准确、维修方便。
6、采用RS-485通讯,或HART通讯,可以实现工厂自动化、集成化。
四、适用范围1、压缩空气2、锅炉房或干燥机中的天然气3、酿酒厂中的二氧化碳气体4、污水处理厂中的沼气和曝气5、生成气体(如氩气、氮气、二氧化碳、氦气、氧气)6、气体泄露检测嘉可仪表生产的热式气体质量流量计可以测量氧气、氮气、二氧化碳、天然气、压缩空气、煤气、沼气等各种气体(乙炔除外),嘉可仪表JK系列热式气体质量流量计种类齐全,有管道式热式气体质量流量计、插入式热式气体质量流量计、高温型热式气体质量流量计、高压型热式气体质量流量计、一体式热式气体质量流量计、分体式热式气体质量流量计等。
热式气体质量流量计工作原理

热式气体质量流量计工作原理
热式气体质量流量计(或称热式流量计)是利用传感器受流体冷却效应变化来测量气体质量流量的仪器。
热式流量计通常由两个传感器组成,一个作为“加热器”,另一个作为“测温器”。
传感器通常采用可供直流通电的纯电阻丝或薄膜材料制成。
工作原理如下:
1. 加热器传感器:加热器被通电,使得传感器加热到设定温度,保持一个稳定的热平衡。
当气体流过加热器传感器时,气体带走了一部分热量,导致传感器温度降低。
2. 测温器传感器:测温器传感器位于加热器传感器的下游。
该传感器被设计为只测量气体的温度,而不受气体质量流量的影响。
3. 温差测量:通过测量加热器和测温器之间的温差来确定气体质量流量。
当气体流量增加时,气体带走的热量也增加,导致加热器温度下降更多,从而增加了加热器与测温器之间的温差。
4. 测量和计算:根据加热器与测温器之间的温差以及已知的加热器特性和气体性质,可以计算出气体的质量流量。
值得注意的是,热式流量计对气体的物性参数要求较高,如气
体密度、比热容等。
因此,在使用热式流量计时需要提供准确的气体物性参数,以获得更准确的流量测量结果。
热式气体质量流量计原理和标定过程

热式气体质量流量计原理和标定过程热式气体质量流量计是一种常用的流体测量仪器,广泛应用于工业和实验室等领域。
它通过测量气体在流动过程中的热传导和冷却效应来确定气体的流速和质量流量。
本文将详细介绍热式气体质量流量计的原理和标定过程。
一、热式气体质量流量计的原理热式气体质量流量计的原理基于绝热条件下气体的热传导效应。
当气体流经热敏元件时,由于传热系数不同,导致热敏元件的温度产生变化。
根据流动气体的传热方程,可以得到流过热敏元件的气体流量和质量流量。
热式气体质量流量计的核心部件是热敏元件,通常采用铂丝或薄膜材料制成。
当气体流经热敏元件时,热敏元件受热后温度升高,然后通过传感器测量温度的变化,再根据气体的传热原理计算出流量和质量流量。
二、热式气体质量流量计的标定过程1.准备工作:首先需要准备标定装置,包括标定管道、标定阀门、标定仪表等设备。
接着对流量计进行吹扫清洗,确保测量精度。
2.标定装置安装:将标定装置连接到被测气体管道,确保连接紧密,避免漏气。
3.参数设置:将标定仪表的参数设置为被测气体的类型和流量范围,同时确定标定温度和压力。
4.标定过程:打开标定阀门,调节流量,使其逐渐增大,同时读取标定仪表的数据,记录下流量计的输出信号和被测气体的实际流量。
5.数据处理:根据标定数据,进行曲线拟合和数据处理,得到流量计的输出标定曲线和误差范围。
6.标定结果验证:通过再次调节流量并比对实际测量值和标定曲线的输出值,确认标定结果的准确性。
热式气体质量流量计的标定是保证其准确测量的重要环节。
只有经过严格的标定过程,才能确保流量计的测量结果准确可靠。
三、热式气体质量流量计的应用热式气体质量流量计主要应用于工业生产中的气体流量测量和控制,广泛用于化工、冶金、石油、天然气等领域。
它具有测量精度高、稳定性好、响应速度快等优点,是流体测量领域中的重要仪器之一。
在实验室领域,热式气体质量流量计也被广泛应用于科研领域的气体流量测量和控制。
热式气体质量流量计原理

热式气体质量流量计原理热式气体质量流量计主要包括传感器和电子控制单元两部分。
传感器通常由两个热电阻组成,一个作为加热元件,另一个作为测量元件。
电子控制单元控制加热电源的输出功率和测量元件的温度,同时采集和处理热电阻的温度信号。
在工作时,热式气体质量流量计首先通过加热元件将待测气体加热到一定温度,使其与测量元件温度保持一定差值。
然后通过测量元件和加热元件之间的热传导,传递一定的热量。
由于待测气体的流动会带走部分热量,所以测量元件的温度会降低。
电子控制单元通过检测测量元件的温度变化,计算得到待测气体的质量流量。
1.加热:电子控制单元向加热元件提供一定的加热功率,使其达到一定的温度。
加热元件通常采用薄膜结构,具有较高的热导率。
2.温度差测量:测量元件与加热元件之间形成一定的温差。
这个温差可以通过测量元件和加热元件中的热电阻的温度差来确定。
热电阻的阻值随温度的变化而变化,通过测量热电阻的阻值变化,可以得到温差信号。
3.热量传导:加热元件和测量元件之间的温差会导致热量的传导。
当气体流过测量元件时,它会带走一部分热量,使得测量元件的温度降低。
4.信号检测:电子控制单元通过检测测量元件的温度变化来确定气体的流量。
测量元件的温度变化与气体的流动量成正比。
5.数值计算:电子控制单元将测量元件的温度变化转化为气体的质量流量。
通过校正系数和相关参数,可以得到准确的质量流量数值。
总而言之,热式气体质量流量计通过测量加热元件和测量元件之间的热传导来确定气体的质量流量。
它是一种常用的流量测量仪器,具有较高的测量精度和稳定性,在工业和科学研究中发挥着重要作用。
热式质量流量计原理及概述

率的变化。当使用于某一特定范围的流体时,则 A、cp 均视为常量,
则质量流量仅与绕组平均温度差成正比,如图 2 Oa 段所示。 Oa 段
为仪表正常测量范围,仪表出口处流体不带走热量,或者说带走热量
极微;超过 a 点流量增大到有部分热量被带走而呈现非线性,流量超
过 b 点则大量热量被带走。
测量管加热方式大部分产品采用两绕组或三绕组线绕电阻;除管外电
热式质量流量计原理及概述
2010-5-31 江苏瑞特仪表有限公司 编辑:潘东升 热式质量流量计(以下简称 TME)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外加
热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。当前主要用于测量气体。 20 世纪 90 年代初期,世界范围 TMF 销售金额约占流量仪表的 8%,约 4.5 万台。国内 90 年代中期销售量估
冷却效应的插入式 TMF 国外近 10 年在环境保护和流程工业中应用发展迅速,例如;水 泥工业竖式磨粉机排放热气流量控制,煤粉燃烧过程粉/气配比控制,污水处理发生的 气体流量测量,燃料电池工厂各种气体流量测量等等。大管道用还有径向分段排列多组 检测元件组成的插入检测杆,应用于锅炉进风量控制以及烟囱烟道排气监测 SO2 和 NOX 排放总量。
热电阻丝 中间绕组加热
金氏定律的热丝热散失率表述各参量间关系,如式 2 所示。
式中 H/L -------单位长度热散失率,J/m•h; ΔT--------热丝高于自由流束的平均升高温度,K; λ --------流体的热导率,J/h•m•K; cV---------定容比热容,J/kg•k; ρ---------密度,kg/m3; U---------流体的流速,m/h; d--------热丝直径,m.
SAGE热式质量流量计

快速响应
热传导速度较快,响应 时间短,能够快速跟踪
流体的变化。
局限性
对流场要求高
要求流场稳定,不能有涡流、湍流等现象, 否则会影响测量精度。
对流体物性敏感
对流体的物性较为敏感,如密度、比热容等, 需要针对不同流体进行校准和补偿。
受环境温度影响
环境温度的变化会影响热传导的速度和效率, 从而影响测量精度。
应用拓展
工业自动化
将热式质量流量计应用于更多的工业领域,如石 油、化工、制药等,提高生产效率。
环境监测
拓展流量计在环境监测领域的应用,如气体排放 监测、空气质量监测等。
智能家居
将热式质量流量计应用于智能家居领域,如智能 热水器、智能空调等,提高生活品质。
市场前景
市场需求增长
01
随着工业自动化和智能化的发展,热式质量流量计的市场需求Fra bibliotek生物工程
在生物工程实验中,热式质量流量 计可用于监测培养液或气体的流量, 控制细胞培养和发酵过程。
环境监测
在环境监测领域,热式质量流量计 可用于监测气体排放和大气污染物 的浓度,为环境保护和治理提供数 据支持。
环境监测
大气污染
监测大气中各种污染物的浓度, 如二氧化硫、氮氧化物等,评估 环境质量和空气质量指数。
水质监测
在水质监测中,热式质量流量计 可用于监测水体中各种污染物的 排放量,确保水质安全和符合标 准。
04
优势与局限性
优势
高精度测量
采用先进的热传导原理, 对流体的质量流量进行 高精度测量,测量精度
高。
宽测量范围
可测量多种流体,如气 体、液体和蒸汽,测量
范围广泛。
非接触式测量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热式质量流量计原理及概述2010-5-31 瑞特仪表编辑:东升热式质量流量计(以下简称TME)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。
当前主要用于测量气体。
20世纪90年代初期,世界围TMF销售金额约占流量仪表的8%,约4.5万台。
国90年代中期销售量估计每年1000台左右。
过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。
1. 原理和结构热式流量仪表用得最多有两类,即1)利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计(thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)效应的金氏定律(King s Iaw)TMF。
又由于结构上检测元件伸入测量管,也称浸入型(immersion type )或侵入型(intrusion type)。
有些在使用时从管外插入工艺管的仪表称作插入式(insertion type)。
热分布式TMF的工作原理如图1所示,薄壁测量管3外壁绕着两组兼作加热器和检测元件的绕组2,组成惠斯登电桥,由恒流电源5供给恒定热量,通过线圈绝缘层、管壁、流体边界层传导热量给管流体。
边界层热的传递可以看作热传导方式实现的。
在流量为零时,测量管上的温度分布如图下部虚线所示,相对于测量管中心的上下游是对称的,由线圈和电阻组成的电桥处于平衡状态;当流体流动时,流体将上游的部分热量带给下游,导致温度分布变化如实线所示,由电桥测出两组线圈电阻值的变化,求得两组线圈平均温度差ΔT。
便可按下式导出质量流量qm,即(1)式中 cp -------被测气体的定压比热容;A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数;在总的热传导系数A中,因测量管壁很薄且具有相对较高热导率,仪表制成后其值不变,因此A的变化可简化认为主要是流体边界层热导率的变化。
当使用于某一特定围的流体时,则A、cp均视为常量,则质量流量仅与绕组平均温度差成正比,如图2 Oa 段所示。
Oa段为仪表正常测量围,仪表出口处流体不带走热量,或者说带走热量极微;1.2基于金氏定律的浸入型TMF金氏定律的热丝热散失率表述各参量间关系,如式2所示。
(2)式中 H/L -------单位长度热散失率,J/m•h;ΔT--------热丝高于自由流束的平均升高温度,K;λ --------流体的热导率,J/h•m•K;cV---------定容比热容,J/kg•k;ρ---------密度,kg/m3;U---------流体的流速,m/h;d--------热丝直径,m.如图5所示,两温度传感器(热电阻)分别置于气流中两金属细管,一热电阻测得气流温度T;另一细管经功率恒定的电热加热,其温度Tv高于气流温度,气体静止时Tv最高,随着质量流速ρU增加,气流带走更多热量,温度下降,测得温度差ΔT=Tv-T.这种方法称作“温度差测量法”或“温度测量法”。
消耗功率P和温度差ΔT如式3所示比列关系,式中B, C, K均为常数,K在?~?之间。
从式2便可算出质量流速,乘上点流速于管道平均流速间系数和流通面积的质量流量qm,再将式3变换成式4。
(3)(4)式4中E是与所测气体物性如热导率、比热容、粘度等有关的系数,如果气体成分和物性恒定则视为常数。
D则是与实际流动有关的常数。
2、优点热分布式TMF可测量低流速(气体0.02~2m/s)微小流量;浸入式TMF可测量低~中偏高流速(气体2~60m/s),插入式TMF更适合于大管径。
TMF无活动部件,无分流管的热分布式仪表无阻流件,压力损失很小;带分流管的热分布式仪表和浸入性仪表,虽在测量管道中置有阻流件,但压力损失也不大。
TMF使用性能相对可靠。
与推导式质量流量仪表相比,不需温度传感器,压力传感器和计算单元等,仅有流量传感器,组成简单,出现故障概率小。
热分布式仪表用于H2 、N2 、O2、CO 、NO等接近理想气体的双原子气体,不必用这些气体专门标定,直接就用空气标定的仪表,实验证明差别仅2%左右;用于Ar、He等单原子气体则乘系数1.4即可;用于其他气体可用比热容换算,但偏差可能稍大些。
3、缺点热式质量流量计响应慢。
被测量气体组分变化较大的场所,因cp值和热导率变化,测量值会有较大变化而产生误差。
对小流量而言,仪表会给被测气体带来相当热量。
对于热分布式TMF,被测气体若在管壁沉积垢层影响测量值,必须定期清洗;对细管型仪表更有易堵塞的缺点,一般情况下不能使用。
对脉动流在使用上将受到限制。
液体用TMF对于粘性液体在使用上亦受到限制。
4、分类按流体对检测元件热源的热量作用可分为热量传递转移效应和热量消散效应或冷却效按检测变量可分为温度测量法和功率消耗测量法。
按流量传感器结构可分为(有测量管的)接入管道式和插入式。
按测量流体可分为气体和液体用。
气体是当前TMF主要应用的流体,从微小流量到大管径大流量都可使用。
液体用TMF 在20世纪90年代初中期开始发展并在工业生产中应用,但当前主要为微小流量仪表。
有消耗功率测量法的热分布式TMF和利用珀尔帖( Peltier)致冷元件在检测部位致冷(即附加热)的TMF。
后者的测量原理如图6所示,流量传感器由测量毛细管、电子冷却装置(珀尔帖元件)和3各温度检出件组成。
测量管和致冷元件接触,无液体流动时冷却到某一温度时,两者温度相等;液体流动时致冷元件附近测量毛细管温度上升,如虚线所示分布,测量温度检测点的两者温度差以求的流量。
5.1 应用概况TMF目前绝大部分用于测量气体,只有少量用于测量微小液体流量。
热分布式仪表使用口径和流量均较小,较多应用于半导工业外延扩散、石油化工微型反应装置、镀膜工艺、光导纤维制造、热处理淬火炉等各种场所的氢、氧、氨、燃气等气体流量控制,以及固体致冷中固体氩蒸发等累积量和阀门制造中泄漏量的测量等。
在气体色谱仪和气体分析仪等分析仪器上,用于监控取样气体量。
分流型热分布式仪表应用于30~50mm以上管径时,通常在主流管道上装孔板等节流装置或均速管,分流部分气体到流量传感器进行测量。
冷却效应的插入式TMF国外近10年在环境保护和流程工业中应用发展迅速,例如;水泥工业竖式磨粉机排放热气流量控制,煤粉燃烧过程粉/气配比控制,污水处理发生的气体流量测量,燃料电池工厂各种气体流量测量等等。
大管道用还有径向分段排列多组检测元件组成的插入检测杆,应用于锅炉进风量控制以及烟囱烟道排气监测SO2和NOX 排放总量。
液体微小流量TMF应用于化学、石油化工、食品等流程工业实验性装置,如液化气流量测量,注入过程中控制流量;高压泵流量控制的反馈量;药液配比系统定流量配比控制;直接液化气液态计量后气化,供给工业流程或商业销售。
还有在色谱分析等仪器上用作定量液取样控制以及用于动物实验麻醉液流量测量。
还未见到液体微小流量TMF国定型产品。
5.2流体种类和物性TMF只能用于测量清洁单相流体------气体或液体,用气体的型号不能用于液体,反之亦然。
对于热分布式气体还必须是干燥气体,不能含有湿气。
流体可能产生的沉积、结垢以及凝结物均将影响仪表性能。
对于热分布式TMF制造厂还应给出接受的不清洁程度,例如大部分给出允许微粒粒度,用户可按此决定是在仪表前装过滤器。
浸入式TMF 对清洁度要求低些,则可用于测量烟道气,但必须装有阀等插入机构,能再不停流条件下去取出检测头。
(1)流体的比热容和热导率从式1和式2可知,TMF工作时流体的比热容和热导率保持恒定才能测量准确。
被测介质工况温度、压力变化围不大,仅在工作点附近波动,比热容变化不大,可视作常数。
若工作点压力温度远离校准时压力温度,则必须在该工作点压力温度下调整。
表2列出几种气体在不同压力温度下的定压比热容,可看到其变化程度。
注: 1cal/ (g•k)=4186.8J/ (kg•K)(2)流量值的换算热分布式TMF制造厂通常用空气或氮气在略高于常压的室温工况条件下标定(校准)。
如实际使用工况有异或不用于同一气体,均可通过各自条件下比热容或换算系数换算。
1)同一气体不同工况的流量换算从表2的数值可以看出空气、氩气、一氧化碳、氮气、氧气压力在1MPa以下、温度在400K以下变化,定压比热容变化仅在1%~2%之间,大部分使用场所可不作换算;压力温度变换较大时也可利用式6计算,因为同一气体两种工况条件下定压比热容的比值与摩尔定压比热容的比值是相等的。
2)不同气体间流量换算有些制造厂的使用说明书给出以空气为基数的转换系数F,可按式6换算;也可直接以标定(校准)气体和实际使用气体的摩尔定压比热按式6换算,但因还有热导率等其他因素,换算后精度要降低些。
表3给出若干气体按摩尔定压比热容直接计算和若干制造厂提供的两种转换系数数据,其中Freon12两者差别较大。
各厂提供的转换系数单双原子气体差别较小,仅百分之几;烃类气体则差别较大,达20% ~30%。
(5)(6)式中 qm-----仪表标定的质量流量,但通常以标准状态体积流量表征,L/h(标准状态);qm" -------特使用气体的质量流量。
L/h(标准状态);cP-------标定气体的摩尔定压比热容,通常为空气,J/ (moI·k);c"P-------待使用气体的摩尔定压比热容,J/ (moI·k)。
浸入式TMF由于式(3)和式(4)中各系数由各个检测元件几何形状和所测气体而定,所以目前通常只能在实际使用条件下个别校准。
3)混合气体的换算的转换系数混合气体的换算亦按式6进行,惟其转换系数Fmix按式7合成(7)式中 V1,V2,----Vn为各成分气体体积的占有率;F1,F2,-----Fn为各成分气体的转换系数。
(3)流体中含有异相和低沸点液体气体用仪表,热分布式必须是清洁气体,不能有固相,浸入式则可允有微粒,但均不得含有水气。
测量液体时如混入气泡会产生测量误差。
由于大部分TMF要带给流体一定热量,流体温度会升高,如所测液体是低沸点液体,应考虑液体汽化气化问题,必要是时选用致冷元件的TMF。
5.3 仪表性能考虑(1)流量围、流速和围度TMF的流量应以单位时间流过的质量来表示,但测量气体时习惯上亦常以计算到标准状态下单位时间流过的体积表示。
流速亦以标准状态下单位时间流过距离的长度表示。
与其他流量计相比,TMF适用于低流速围,特别是小口径热分布式;带测量短管浸入检测杆式可选上限(满度)流速围较宽,上限围度(最大上限流量/最小上限流量)在10~ 30(TH1200型)和60 ~80 (TH1300型)之间。
插入式TMF的上限流速选择围较宽,可在0.5~100m/s,但较多用于3~60m/s之间,视仪表结构设计而异。