LSDYNA时间步长的解释.pdf
lsdyna显式与隐式

lsdyna显式与隐式隐式时间积分--不考虑惯性效应([C]and[M])。
--在t+△t时计算位移和平均加速度:{u}={F}/[K]。
--线性问题时,无条件稳定,可以用大的时间步。
--非线性问题时,通过一系列线性逼近(Newton-Raphson)来求解;要求转置非线性刚度矩阵[k];收敛时候需要小的时间步;对于高度非线性问题无法保证收敛。
显式时间积分--用中心差法在时间t求加速度:{a}=([F(ext)]-[F(int)])/[M]。
--速度与位移由:{v}={v0}+{a}t,{u}={u0}+{v}t--新的几何构型由初始构型加上{X}={X0}+{U}--非线性问题时,块质量矩阵需要简单的转置;方程非耦合,可以直接求解;无须转置刚度矩阵,所有的非线性问题(包括接触)都包含在内力矢量中;内力计算是主要的计算部分;无效收敛检查;保存稳定状态需要小的时间步。
关于文件组织:jobname.k--lsdyna输入流文件,包括所有的几何,载荷和材料数据jobname.rst--后处理文件主要用于图形后处理(post1),它包含在相对少的时间步处的结果。
jobname.his--在post26中使用显示时间历程结果,它包含模型中部分与单元集合的结果数据。
时间历程ASCII文件--包含显式分析额外信息,在求解之前需要用户指定要输出的文件,它包括:GLSTAT全局信息,MATSUM材料能量,SPCFORC节点约束反作用力,RCFORC接触面反作用力,RBDOUT刚体数据,NODOUT节点数据,ELOUT单元数据…在显式动力分析中还可以生成下列文件:D3PLOT--类似ansys中jobname.rstD3THDT--时间历程文件,类似ansys 中jobname.his关于单元:ANSYS/LSDYNA有7中单元(所有单元均为三维单元):LINK160:显式杆单元;BEAM161:显式梁单元;SHELL163:显式薄壳单元;SOLID164:显式块单元;COMBI165:显式弹簧与阻尼单元;MASS166:显式结构质量;LINK167:显式缆单元显式单元与ansys隐式单元不同:--每种单元可以用于几乎所有的材料模型。
LS-DYNA使用指南中文版本

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
LS-DYNA简介

LS-DYNA简介LS-DYNA 简介LS-DYNA 是世界上最著名的通用显式动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。
在工程应用领域被广泛认可为最佳的分析软件包。
与实验的无数次对比证实了其计算的可靠性。
由J.O.Hallquist主持开发完成的DYNA程序系列被公认为是显式有限元程序的鼻祖和理论先导,是目前所有显式求解程序(包括显式板成型程序)的基础代码。
1988年J.O.Hallquist创建LSTC公司,推出LS-DYNA程序系列,并于1997年将LS-DYNA2D、LS-DYNA3D、LS-TOPAZ2D、LS-TOPAZ3D等程序合成一个软件包,称为LS-DYNA。
PC版的前后处理采用ETA公司的FEMB,新开发的后处理为LS-POST。
LS-DYNA的最新版本是2001年5月推出的960版。
LS-DYNA功能特点LS-DYNA程序960版是功能齐全的几何非线性(大位移、大转动和大应变)、材料非线性(140多种材料动态模型)和接触非线性(50多种)程序。
它以Lagrange算法为主,兼有ALE和Euler算法;以显式求解为主,兼有隐式求解功能;以结构分析为主,兼有热分析、流体-结构耦合功能;以非线性动力分析为主,兼有静力分析功能(如动力分析前的预应力计算和薄板冲压成型后的回弹计算);军用和民用相结合的通用结构分析非线性有限元程序。
------------------------------------------------------------------------------LS-DYNA功能特点1.分析能力:¨非线性动力学分析¨多刚体动力学分析¨准静态分析(钣金成型等)¨热分析¨结构-热耦合分析¨流体分析:欧拉方式任意拉格郎日-欧拉(ALE)流体-结构相互作用不可压缩流体CFD分析¨有限元-多刚体动力学耦合分析(MADYMO,CAL3D)¨水下冲击¨失效分析¨裂纹扩展分析¨实时声场分析¨设计优化¨隐式回弹¨多物理场耦合分析¨自适应网格重划¨并行处理(SMP和MPP)2.材料模式库(140多种)¨金属¨塑料¨玻璃¨泡沫¨编制品¨橡胶(人造橡胶)¨蜂窝材料¨复合材料¨混凝土和土壤¨炸药¨推进剂¨粘性流体¨用户自定义材料3.单元库¨体单元¨薄/厚壳单元¨梁单元¨焊接单元¨离散单元¨束和索单元¨安全带单元¨节点质量单元¨ SPH单元4.接触方式(50多种) ¨柔体对柔体接触¨柔体对刚体接触¨刚体对刚体接触¨边-边接触¨侵蚀接触¨充气模型¨约束面¨刚墙面¨拉延筋5.汽车行业的专门功能¨安全带¨滑环¨预紧器¨牵引器¨传感器¨加速计¨气囊¨混合III型假人模型6.初始条件、载荷和约束功能¨初始速度、初应力、初应变、初始动量(模拟脉冲载荷);¨高能炸药起爆;¨节点载荷、压力载荷、体力载荷、热载荷、重力载荷;¨循环约束、对称约束(带失效)、无反射边界;¨给定节点运动(速度、加速度或位移)、节点约束;¨铆接、焊接(点焊、对焊、角焊);¨二个刚性体之间的连接-球形连接、旋转连接、柱形连接、平面连接、万向连接、平移连接;¨位移/转动之间的线性约束、壳单元边与固体单元之间的固连;¨带失效的节点固连。
Ls-dyna总结

差别: 计算成本
• 隐式分析的计算成本
– 模型大小
– 非线性程度 – 时间步个数
Training Manual
Explicit Dynamics with ANSYS/LSDYNA
•
显式分析的计算成本
– 模型大小
– 临界时间步 • 单元边长 • 声波速度:
– 杨氏模量
– 密度 – 终止时间
001322 10 JAN 2000 13-4
ANSYS/LS-DYNA的计算时间估计
TCPU k N Elem t
TCPU = 总的CPU时间 k = 系统因子 SGI PowerIndigo2 SGI Crimson 100 MHz HP 730 Nelem = 单元数 t = 模拟时间 c = 声速 lmin = 最短的单元长度
Training Manual
Explicit Dynamics with ANSYS/LSDYNA
第 13 章 总结
本章目的
1. 描述显式与隐式分析的区别
Training Manual
Explicit Dynamics with ANSYS/LSDYNA
2. 回顾各个部分的注意事项
a. 建模 b. 材料 c. 接触 d. 加载 e. 概要
•
学会怎样使用 LS-TAURUS. 使用 EDOPT 命令来得到 d3plot 和 d3thdt 文件. LS-TAURUS 能较好的支持某些特定类型的后处理。 ( 例如:失效单元).
001322 10 JAN 2000 13-13
协调单位
Mass kg kg kg kg kg gm gm gm gm ton lbf-s2/in slug Length m cm cm cm mm cm cm mm mm mm in ft Time s s ms ms ms s ms s ms s s s Force N 1e-02N 1e+04N 1e+10N kN dyne 1e+07N 1e-06N N N lbf lbf Stress Pa Energy Joule r(steel) 7.83e+03 7.83e-03 7.83e-03 7.83e-03 7.83e-06 7.83e+00 7.83e+00 7.83e-03 7.83e-03 7.83e-09 7.33e-04 1.52e=01
LSDYNA理论及功能简介.pdf

四边形壳元
• Hughes-Liu • Belytschko-Tsay(缺省)
• S/R Hughes-Liu • S/R 旋转 Hughes-Liu
• Belytschko-Leviathan 壳
• Belytschko-Wong-Chiang • S/R 快速(旋转)Hughes-Liu
单元库 (Element Formulation)
LS-DYNA 程序现有 16 种单元类型,有二维、三维单元,薄壳、厚壳、体、梁单元, ALE、Euler、Lagrange 单元等。各类单元又有多种理论算法可供选择,具有大位移、大应 变和大转动性能,单元积分采用沙漏粘性阻尼以克服零能模式,单元计算速度快,节省存储 量,可以满足各种实体结构、薄壁结构和流体-固体耦合结构的有限元网格剖分的需要。
p=f(v, r,E, T) p:压力 v:相对体积 r:密度
图 12 反挤工艺模拟
2
LS-DYNA 理论及功能
E:内能 T:温度
LS-DYNA 有 14 种状态方程,可以处理各种非常复杂的物理现象和材料特性,常用的 状态方程如下:
*eos_linear_polynomial(线性多项式) *eos_jwl(炸药) *eos_gruneisen(结构材料) *eos_ignition_and_growth_of_reaction_in_he(推进剂燃烧) *eos_tabulated(列表方式)
DYNA 程序系列最初是 1976 年在美国 Lawrence Livermore National Lab. 由 J.O.Hallquist 博士主持开发完成的,主要目的是为武器设计提供分析工具,后经 1979、1981、1982、1986、 1987、1988 年版的功能扩充和改进,成为国际著名的非线性动力分析软件,在武器结构设 计、内弹道和终点弹道、军用材料研制等方面得到了广泛的应用。
LS-DYNA使用指南第五章

LS-DYNA使用指南第五章2007-11-29 作者:安世亚太点击进入论坛第五章求解特性5.1求解过程当模型建好后(即,单元、实常数、材料性质的定义,建立模型、网格划分、边界/初始条件指定以及加载、结束控制),执行SOLVE命令即可以开始求解过程。
(在GUI中,菜单路径为Main Menu>Solution>Solve)。
此时,ANSYS/LS-DYNA程序将运行以下几步:1.标题记录:包括几何特性(如节点和单元等),都写到相应的两个结果文件Jobname.RST和Jobname.HIS中。
(此时ANSYS/LS-DYNA数据库中包含全部相应的信息。
即在运行SOLVE命令前,必须执行SAVE命令,把所有的模型信息都写入到文件Jobname.DB)。
2.将所有输入的信息写出LS-DYNA程序的输入文件Jobname.K 。
3.控制权由ANSYS程序转移给LS-DYNA程序。
LS-DYNA求解器运行的结果写入到结果文件Jobname.RST和Jobname.HIS中。
如果执行SOLVE命令前给定命令EDOPT,ADD,,BOTH,则也将输出用于LS-POST后处理程序的结果文件(d3plot和d3thdt文件)。
当求解结束后,ANSYS/LS-DYNA GUI将提醒用户求解已完成,控制权重新转回到ANSYS/LS-DYNA程序。
可以通过ANSYS/LS-DYNA程序的POST1和POST26后处理器来查看结果。
如果产生了错误或警告,输出窗口将自动显示弹出信息,表明有几个错误和警告。
可以参考LS-DYNA的信息文件,其中详细记录了错误和警告。
这些信息也同时被写入到LS-DYNA d3hsp文件。
5.2 LS-DYNA终止控制LS-DYNA求解终止点与建模时设定的终止控制有关。
主要有以下几种终止控制类型:·终止时间-用T IME命令定义分析结束时间。
时间步累积达到结束时间时计算就会停止。
LS-DYNA使用指南中文版本

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
LS-DYNA使用指南中文版本

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LSDYNA时间步长的解释
示例设置:
解释一下:
*CONTROL_TERMINA TION是指模型计算的终止时间,也就是你要模拟的时间。
根据你的单位系统定的。
比如上面的例子中是70秒。
*CONTROL_TIMESTEP是指时间步长,第一个字段取0.0表示是计算机自动设置。
在程序中,可能会有如下的提示
就是说这次计算步长不能超过0.486E-03秒(秒取决与自己的单位系统)。
本次计算的实际步长会显示出来,如下图的第一个框8.27E-04秒。
当前计算到的时间也会显示,如图第二个框9.9940E-01,这个值跟前次的时间0.000E+00的差约等于1,就是K文件中指定的*DATABASE_BINARY_D3PLOT,是指每隔1t(在本文的单位系统中也就是一秒)写一个D3PLOT文件。
前面的数如1、1209等是通过t和dt除出来的,如
(9.9940E-01 - 0.000E+00)/ 8.27E-04 = 1209.1898
注:
关于计算中到底写多少个D3PLOT文件,要完全取决于实际的需要,如碰撞在一瞬间发生,那么写的文件少了,在后处理中,就没有相应的state,自然就观察不到了。