高抗冲聚苯乙烯的阻燃性

合集下载

HIPS_PPO合金的燃烧性能

HIPS_PPO合金的燃烧性能

1
Ll
实验部分
原料
I S H P ,P H 一 , 镇 江奇 美化 工有 限公 司生产 ; 8
PPO ,SE 100x 一 , 美 国 G E 公 司生产 川
1. 2 仪器 与设 备
RC一 60OP 型 H A A K E 流 变 仪 , 德 国 T her o m
lc r E e t n 公 司生产 o Z H Y 一 型万 能制 样机 , 河 北 W
在离 开火源后马上 自熄 , 无滴落 现象 ;H I S/ PO 8 P P 0 合金 在水平燃烧时仅 有轻微熔 融滴落现 象 , 试样 在第 一个标线前 自熄 , 同时产 生较多黑色 残余物 由此 可见 , 引人 P P O 的确改善 了 H I S 的阻燃性 P 能 , 提高了应用 的火 灾安全性
增 加 , 聚合物 合金 的阻燃性 能逐渐增强
合物合金 的燃 烧性能变 化不大
表1
T a b .l
不 同组 成 H IP SI P O 合 金 的水 平 燃 烧 性 能和 氧 指 数 P
T h e h o r z o n ta l b u r in g P ro P e r ie i n t s f O d if e f re n t H IP S I P O P a n d o x y g en in d e x P o ly m e r a lo y s l
结构与性能
合 成 树 脂 及 塑 料 , 20 11 , 28 (3 ): 62
C H IN A S Y N T H E T C R E S IN I A N D P L A ST C S I
H IP S用P O 合金 的燃烧性能
井蒙蒙, 刘继纯 , 陈 权 , 陆 艇 , 张玉清

hips阻燃等级

hips阻燃等级

hips阻燃等级全文共四篇示例,供读者参考第一篇示例:HIPS阻燃等级是指高抗冲PS(High Impact Polystyrene)塑料的阻燃性能级别,是评价该材料抗火性能的重要指标之一。

HIPS材料广泛应用于家电、汽车、办公设备等领域,对其阻燃等级的要求也越来越高。

本文将从HIPS阻燃等级的定义、相关标准、测试方法、应用领域等方面进行详细介绍,希望对读者能有一定的帮助。

一、HIPS阻燃等级的定义HIPS阻燃等级是指HIPS材料在燃烧或发生火灾时的抗燃性能级别。

阻燃等级通常采用UL94标准进行评定,根据材料在垂直燃烧和水平燃烧条件下的燃烧时间和特征来分级。

阻燃等级越高,材料的阻燃性能越好,抗火等级也越高。

HIPS阻燃等级的评定一般采用UL94标准,该标准由美国安全实验室UL(Underwriters Laboratories)制定,是国际公认的评定塑料阻燃性能的标准之一。

UL94标准将材料的阻燃等级分为V-0、V-1、V-2、HB等级,其中V-0等级是最高级别,具有最好的阻燃性能,HB等级则是最低级别,表示材料自由燃烧。

HIPS阻燃等级的测试主要使用垂直燃烧和水平燃烧两种方法进行评定。

垂直燃烧测试是将材料垂直放置,用明火点燃材料底部,然后观察燃烧情况,根据燃烧时间和特征来评定阻燃等级。

水平燃烧测试是将材料水平放置,用明火点燃材料一端,然后观察燃烧情况,同样根据燃烧时间和特征来评定阻燃等级。

HIPS阻燃等级对于材料的应用领域有着重要的影响。

在家电领域,HIPS材料通常用于制造电视机壳、洗衣机面板等产品,对于阻燃性能的要求较高。

在汽车领域,HIPS材料主要用于制造汽车内饰零部件,如门板、仪表盘等,同样需要具备较好的阻燃性能。

在办公设备领域,HIPS材料常用于制造打印机外壳、复印机面板等产品,也需要满足一定的阻燃要求。

HIPS阻燃等级是评价HIPS材料阻燃性能的重要指标,通常使用UL94标准进行评定。

高抗冲聚苯乙烯简介演示

高抗冲聚苯乙烯简介演示

新兴市场驱动
新兴领域的发展将带动高抗冲聚 苯乙烯需求的增长,特别是在电 动汽车、电子电器、建筑建材等 领域,其需求有望实现快速增长 。
区域市场拓展
随着全球经济的发展,高抗冲聚 苯乙烯的区域市场需求将不断扩 大,特别是在亚太地区和北美地 区,将成为主要的需求市场。
环保政策影响挑战分析
环保政策压力
各国政府日益严格的环保政策对高抗冲聚苯乙烯的生产和消费带 来一定的压力,需要企业加强环保治理和节能减排。
耐磨性好
高抗冲聚苯乙烯具有较好的耐磨性, 可以在摩擦磨损的条件下保持较好的 使用性能。
韧性好
高抗冲聚苯乙烯具有较好的韧性,可 以在低温环境下保持较好的韧性,不 易脆裂。
热稳定性及耐候性评估
热稳定性好
高抗冲聚苯乙烯在高温条件下不 易分解或氧化,具有较好的热稳 定性。
耐候性好
高抗冲聚苯乙烯可以长时间承受 紫外线、湿度、温度等自然环境 因素的影响,具有较好的耐候性 。
高抗冲聚苯乙烯简介演示
汇报人: 2023-12-17
目录
• 高抗冲聚苯乙烯概述 • 高抗冲聚苯乙烯生产工艺 • 高抗冲聚苯乙烯性能特点 • 高抗冲聚苯乙烯在包装行业应
用案例分析
目录
• 高抗冲聚苯乙烯在建筑行业应 用案例分析
• 高抗冲聚苯乙烯未来发展趋势 预测与挑战分析
01
高抗冲聚苯乙烯概述
定义与性质
聚苯乙烯防水材料
高抗冲聚苯乙烯可制成具有优良防水性能的防水材料,用于建筑屋顶、墙体和地下室的防水工程。
聚苯乙烯结构材料
高抗冲聚苯乙烯可制成具有优良结构性能的结构材料,用于建筑梁、板、柱等结构构件的制作。
06
高抗冲聚苯乙烯未来发展趋势 预测与挑战分析

阻燃耐低温高抗冲聚苯乙烯材料的制备

阻燃耐低温高抗冲聚苯乙烯材料的制备
阻燃协效剂 :自制 ;
求 阻燃 的塑料 制 品中的应 用 , 。为 了进一 步拓 宽
其应 用范 围 ,需要对 HI P S进行 阻燃 改性 。 目前对
HI P S进行 阻燃 改性 常用的有 卤锑 体系和 无机 阻燃 体 系 ,其 中无机阻燃体 系因添加量较大 ,会大幅度 影 响复合材料的 力学性 能和加工性能 ,卤锑 体系 中 十 溴二苯醚 、十溴 二苯乙烷 、八溴联 苯醚 、四溴双 酚 A等 与三氧 化二锑复 配则最 为常用 一 。在此文 中笔者采用十溴 二苯乙烷 、三氧化 二锑 及 自制的 阻
1 . 4性 能测试
拉 伸性能按 G B / T1 0 4 0 测试 ;弯 曲性能按 GB /
T 9 3 4 1 测试 ;悬 臂梁缺 口冲击 强度按 G B / T1 8 4 3 测 试 ;垂直燃 烧按 G B / T2 4 0 8 测试 ;熔 体质量流动 速 率按 GB / T3 6 8 2 测试 。
1 . 3制备 工艺
先 将 HI P S树 脂 、增韧 剂 、阻燃 剂、协 效 剂及
I 论 文选编 l
其 他 助 剂按 配 方 比例 称 量后 经 高 速混 合 机搅 拌 均 匀 ,然后将混 合料 经双螺杆挤 出机在 1 8 0 — 2 0 0  ̄ C下 进行熔融 共混挤 出造粒 ,最后将 所得粒料在 8 0  ̄ C鼓 风 干燥 箱 中干 燥 4 h后 ,在 1 9 0 2 2 0 ℃下 经注 塑 机 制成样条 以备检测 。 强度 。K 胶和高胶粉分 子结构上都是 一端带有 苯乙 烯链段 ,与 HI P S界面粘结 性较 S B S差 ,所以用 K 胶 、高胶粉增韧所得复合材料冲击强度相 对较差 。
I 论文选编 I
阻燃耐低温高抗冲聚苯 乙烯材料 的制备

HIPS 性能简介

HIPS 性能简介

HIPS 高抗冲聚苯乙烯化学名称:高抗冲聚苯乙烯简介:HIPS是1950年开始开发橡胶改性聚苯乙烯(即高抗冲击聚苯乙烯,HIPS),主要是为了解决PS的冲击脆性。

通过将橡胶加入聚苯乙烯基材,可生产出具有不同性能的各种品级的高冲击聚苯乙烯。

近年来,已开发出各种特殊品级的HIPS,已有阻燃级、抗应力开裂级、高光泽度级、极高冲击强度级、玻璃纤维增强级以及低残留挥发分级等,它们在许多应用领域中已能与昂贵的工程树脂相竞争。

抗冲击聚苯乙烯突出的特性是易加工、尺寸稳定性优异、冲击强度高并且有较高刚性。

HIPS只是在耐热性。

氧渗透性、紫外光稳定性和耐油品性方面有一定限度。

HIPS的性能与体系内橡胶相的含量有很大的关系。

理化性质:HIPS是在PS的基础上开发出来的。

PS具有透明性好,硬度高,易于成型加工。

但是其最易发生脆性断裂,在使用上受到约束,为增加其使用性能改善其脆性断裂在聚合时加入丁二烯橡胶增加其韧性,经过增韧后的HIPS冲击韧性比PS 提高四倍。

根据添加的多少可分为,低冲击性PS、中冲击性PS、高冲击行PS。

但是橡胶类的加入使其表面光泽度降低。

改性后提高了材料使用温度,热变形温度为96℃,HIPS同样属于易燃型塑料,极限氧指数为,燃烧时火焰呈橙黄色并伴有大量黑烟产生,燃烧特点软化、起泡、烧焦,有特殊的苯乙烯单体味道产生。

密度:, ~ g/cm3ASTM D7292吸水率:~% ASTM D570熔融指数:~15 g/10min ASTM D1505拉伸强度:~ M/Pa ASTM D638拉伸模量:~ G/Pa断裂伸长率:15~75%弯曲强度:~ M/Pa ASTM D790弯曲模量:~Pa冲击强度:>10 J/m (悬臂梁)ASTM D256洛氏硬度:50~102 HR ASTM D785成型收缩率:~% ASTM D955热变性温度:96℃ASTM D648加工性能:HIPS可用许多传统的成型方法进行加工,如注塑成型、结构泡沫塑料成型、片材和薄膜挤塑、热成型以及注坯吹塑成型等。

高抗冲聚苯乙烯的制备

高抗冲聚苯乙烯的制备

高抗冲聚苯乙烯的制备一、聚苯乙烯的发展及高抗冲聚苯乙烯的简介苯乙烯树脂是五大通用性合成树脂之一,一般按产量仅次于PE、PVC和PP而居第四位。

苯乙烯发展初期,只生产通用型聚苯乙烯。

其质硬而脆、机械强度不高、耐热性较差,且易燃。

为此人们做了大量的改进工作,形成了高抗冲聚苯乙烯、可发性聚苯乙烯、丙烯晴-苯乙烯共聚物等为代表的庞大的苯乙烯树脂体系。

高抗冲聚苯乙烯是一种橡胶粒径约为2um,分散在透明聚苯乙烯基质中形成的复合材料。

它具有尺寸稳定、电绝缘性好、易于加工、成本低廉、综合性能优良等优点,从而在包装、器械、家电及玩具等领域被广泛使用,消耗量逐年增加。

高抗冲聚苯乙烯一般是用橡胶状丁二烯聚合物补强的聚苯乙烯。

它可为混合物或接枝共聚物,前者很少引起聚苯乙烯性能的变化,或者根本没有变化,而后者则根据参入的聚丁二烯量在抗冲击强度及其他性能方面显出很大的改善,用橡胶改善聚苯乙烯大大增加了高抗冲聚苯乙烯的应用范围。

二、原理及制备聚苯乙烯的接枝共聚共混方法主要有乳液―悬浮方法、本体—悬浮方法和连续本体方法等。

其中乳液—悬浮方法由于经济╱性能指标较差已经逐渐被淘汰。

本体—悬浮方法是发展较晚的一种方法,但由于设备利用率低,工艺流程长,能耗大,生产成本较高,此法一趋淘汰。

1、工业制法本体法聚合时,首先将橡胶溶解于苯乙烯单体中。

在与聚合反应转化至6%—10%时,就开始形成两相,即PS相和橡胶相。

这样,苯乙烯中的PS相和苯乙烯中的橡胶相达到一定的相体积比时,在切应力搅拌存在下,即发生相变。

此时,橡胶在反应系统中的相容性降低,因橡胶析出而体系粘度骤降,而切应力的存在使橡胶颗粒分散为切断小粒,这便是本体聚合法生产HIPS的关键所在。

反应由苯乙烯本体聚合和橡胶苯乙烯聚合两种方式同时进行,经过四个聚合釜连续反应,转化率达75%~80%时,将聚合物送入脱气槽,脱去未反应的单体,再经挤压抽条、冷却、造粒、包装即得成品。

步骤:⑴聚合:由预聚和终聚两部分组成,预聚在较低的温度(如90℃)并伴有良好的搅拌条件下进行;终聚则在较高温度下进行(如120℃),通过加入溶剂来降低反应体系的粘度。

HIPS 性能简介

HIPS 性能简介

HIPS 高抗冲聚苯乙烯化学名称:高抗冲聚苯乙烯简介:HIPS是1950年开始开发橡胶改性聚苯乙烯(即高抗冲击聚苯乙烯,HIPS),主要是为了解决PS的冲击脆性。

通过将橡胶加入聚苯乙烯基材,可生产出具有不同性能的各种品级的高冲击聚苯乙烯。

近年来,已开发出各种特殊品级的HIPS,已有阻燃级、抗应力开裂级、高光泽度级、极高冲击强度级、玻璃纤维增强级以及低残留挥发分级等,它们在许多应用领域中已能与昂贵的工程树脂相竞争。

抗冲击聚苯乙烯突出的特性是易加工、尺寸稳定性优异、冲击强度高并且有较高刚性。

HIPS只是在耐热性。

氧渗透性、紫外光稳定性和耐油品性方面有一定限度。

HIPS的性能与体系内橡胶相的含量有很大的关系。

理化性质:HIPS是在PS的基础上开发出来的。

PS具有透明性好,硬度高,易于成型加工。

但是其最易发生脆性断裂,在使用上受到约束,为增加其使用性能改善其脆性断裂在聚合时加入丁二烯橡胶增加其韧性,经过增韧后的HIPS冲击韧性比PS 提高四倍。

根据添加的多少可分为,低冲击性PS、中冲击性PS、高冲击行PS。

但是橡胶类的加入使其表面光泽度降低。

改性后提高了材料使用温度,热变形温度为96℃,HIPS同样属于易燃型塑料,极限氧指数为17.8,燃烧时火焰呈橙黄色并伴有大量黑烟产生,燃烧特点软化、起泡、烧焦,有特殊的苯乙烯单体味道产生。

密度:,1.035 ~1.07 g/cm3 ASTM D7292吸水率:0.05~0.22% ASTM D570熔融指数:3.5~15 g/10min ASTM D1505拉伸强度: 13.8~41.4 M/Pa ASTM D638拉伸模量: 1.5~2.0 G/Pa断裂伸长率:15~75%弯曲强度: 13.8~55.1 M/Pa ASTM D790弯曲模量:1.9~2.2G/Pa冲击强度: >10 J/m (悬臂梁) ASTM D256洛氏硬度:50~102 HR ASTM D785成型收缩率:0.2~0.8% ASTM D955热变性温度:96℃ ASTM D648加工性能:HIPS可用许多传统的成型方法进行加工,如注塑成型、结构泡沫塑料成型、片材和薄膜挤塑、热成型以及注坯吹塑成型等。

苯乙烯类聚合物阻燃及阻燃体系的增韧研究进展

苯乙烯类聚合物阻燃及阻燃体系的增韧研究进展

苯乙烯类聚合物阻燃及阻燃体系的增韧研究进展郑宝明,杨荣杰(北京理工大学材料科学与工程学院,北京100081)摘 要:对苯乙烯类的高分子材料(包括聚苯乙烯、高抗冲聚苯乙烯和丙烯腈-丁二烯-苯乙烯共聚物)的阻燃及阻燃后的增韧研究进展进行了综述。

对此种聚合物材料的常用阻燃方法的优缺点进行了简单分析,指出了苯乙烯类聚合物阻燃今后研究的方向。

关 键 词:阻燃;增韧;苯乙烯类聚合物中图分类号:TQ323 文献标识码:A 文章编号:1001Ο9278(2003)10Ο0008Ο05Progress in R esearch of Flame R etarding and Toughening ofFlame R etarding System of Styrene2Containing PolymersZHEN G Bao2ming,YAN G Rong2jie(College of Materials and Science,Beijing University of Technology,Beijing100081,China)Abstract:Progress in research of flame retarding and toughening of flame retardant system of styrene2 containing polymers are summarized,including polystyrene,high impact polystyrene,and acrylnitrile2 butadiene2styrene copolymer.Advantages and disadvantages of each flame retarding method are ana2 lyzed.Developing trends of flame retarding of styrene2containing polymers are presented.K ey w ords:flame retarding;toughening;styrene2containing polymer 苯乙烯类高分子材料是指含有苯乙烯单元或以苯乙烯单元为主体的聚合物,主要包括聚苯乙烯(PS)、高抗冲聚苯乙烯(HIPS)、丙烯腈-丁二烯-苯乙烯嵌段共聚物(ABS)以及甲基丙烯酸-苯乙烯共聚物(MS)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Flame Retardancy and Toughening of HighImpact PolystyreneWenguang Cui,Fen Guo,Jianfeng ChenKey Lab for Nanomaterials,Institute of Chemical Engineering,Beijing University of Chemical Technology, Ministry of Education,Beijing100029,People’s Republic of ChinaFlame retardant high impact polystyrene(HIPS)was pre-pared by melt blending HIPS,nano-modified aluminum trihydrate(nano-CG-ATH),red phosphorus masterbatch (RPM),and modified polyphenylene oxide(MPPO).Sty-rene-butadiene-styrene(SBS)was used as a toughener in this research.The effects of nano-CG-ATH,RPM, MPPO,and SBS on properties of HIPS composites were studied by combustion test,mechanical tests,and ther-mogravimetric analysis.The morphologies of fracture surfaces and char layers were characterized through scanning electron microscopy(SEM).The HIPS/nano-CG-ATH/RPM/MPPO(60/6/9/25)composite and its com-bustion residues at various temperatures were character-ized by Fourier transform infrared(FTIR)spectra analysis. The results showed that the UL-94rating of the HIPS/ nano-CG-ATH/RPM/MPPO(60/6/9/25)composite reached V-0and its char layer afterflame test was integrated,but its impact strength was low.Addition of SBS improved its impact property and did not influence its thermal and flame retardant properties but lowered its tensile strength andflexural modulus to some extent.The FTIR spectra confirmed that the PÀÀOÀÀC group was present in the charred POS.,28:551–559,2007.ª2007Society of Plastics EngineersINTRODUCTIONHigh impact polystyrene(HIPS)is widely used for numerous applications in our daily life.In many applica-tions that applyfire safety regulation rules,particularly in transportation and electrical appliances,flame retardants are used to improve the ignition resistance of polymers[1]. Halogenated organic compounds in the presence of anti-mony oxide(Sb2O3)have been widely used as effective flame retardants in many polymeric systems.It is generally thought that theflame retardant effect of these additive systems is mainly due to the synergism between the halo-genated compounds and antimony oxide to form volatile antimony halides such as SbCl3and SbBr3,which act as free radical traps around theflame[2].However,the corrosive-ness and toxicity of the smoke and other emission products generated during the combustion of halogen-containing ther-moplastics have given rise to some concern[3–5].At present,extensive work has been carried out to inves-tigate theflame retardant property of halogen-freeflame retardants.In particular,some metallic hydroxidefillers have been studied in detail,which have become some of the most popular replacements for halogen-basedflame retard-ants[6–10].The effectiveness of theseflame retardants(e.g. Al(OH)3and Mg(OH)2)depends on several factors[11,12]. For instance,the endothermic decomposition of these metal-lic hydroxides and the accompanying release of water vapor are thought to withdraw heat from the substrate and dilute the fuel supply present in the gas phase and hence retard the rate of thermal degradation.In addition,the decomposed products,Al2O3and MgO may better insulate the substrate from the heat source through promotion of char formation. However,metallic hydroxide must be present at high con-centrations(usually higher than50%)in order to confer adequatefire resistance.The high loadings of metallic hydroxides in thermoplastics result in significant deteriora-tion of mechanical properties,particularly the impact strength[13].An alternative approach is the incorporation offlame retardant additives.The relatively low loadings required to achieve sufficientflame retardance,and the care-ful selection offlame retardant additives,may keep detri-mental changes to the physical and mechanical properties of the polymer to an acceptable minimum.Nano-CG-ATH is a product which is obtained from alu-minum trihydrate by chemical modification.Its thermal stability is higher than that of aluminum trihydrate,and so it can be added to the polymer materials under higher proc-essing temperature.It is well-established as a halogen-free and smoke-suppressingflame retardant.It decomposes endothermally and releases water and carbon dioxide,and so theflame retardant effect is based on cooling and dilu-tion.Highfiller loadings of nano-CG-ATH are necessary to achieve sufficientflame retardancy,which often causes a drawback in mechanical and processing properties.Red phosphorus(P r)is one of the ecologically and physi-cally harmless alternativeflame retardants,since encapsulation and the use of master batchesCorrespondence to:F.Guo;e-mail:guofen19580610@DOI10.1002/pc.20324Published online in Wiley InterScience(). V C2007Society of Plastics EngineersPOLYMER COMPOSITES—-2007cessfully to eliminate problems of handling safety and sta-bility.Theflame retardancy of P r in polymers functions pre-dominantly in the condensed phase[14].Condensed phase mechanisms of P r increase char formation,which decreases the combustible volatiles and therefore the total fuel support of theflame.Furthermore,the char can act as a barrier, decreasing the mass loss rate.The action of P r depends on the chemical structure of the polymer.Polymers with heter-oatoms,such as oxygen,are polar and adsorb water.The presence of water in a polymer is one of the most important prerequisites for condensed phase mechanisms of P r,as it was proposed for glassfiber reinforced polyamide66[15]. In nonpolar polymers,phosphorus can barely befixed by oxidation in the condensed phase.MPPO is a polymer blend of polystyrene and polypheny-lene oxide.Itsflame retardant synergistic effect with P r is favorable.Moreover,the compatibility between MPPO and HIPS matrix is good.Based on these results,the combination of advantageous properties from nano-CG-ATH,red phos-phorus masterbatch(RPM),and MPPO in HIPS is promising.In this work,flame retardant HIPS composite was ob-tained by melt blending HIPS,nano-CG-ATH,RPM,and MPPO.But addition of nano-CG-ATH,RPM,and MPPO made the impact strength of HIPS decrease to some extent. To improve the impact property,styrene-butadiene-styrene (SBS)was used to toughen the composite.Then,burning, thermal,and mechanical properties of HIPS composites were analyzed.The morphologies of fracture surfaces of the HIPS/nano-CG-ATH/RPM/MPPO(60/6/9/25)and HIPS/nano-CG-ATH/RPM/MPPO/SBS(45/6/9/25/15)were observed by scanning electron microscopy(SEM).In addition,Fourier transform infrared(FTIR)spectra before and after treatment of the HIPS/nano-CG-ATH/RPM/MPPO(60/6/9/25)at vari-ous temperatures were recorded.Detailed research and the results will be discussed in the following sections. EXPERIMENTALMaterialsHIPS(476L)was obtained from BASF.Red phosphorus masterbatch(RPM)was produced by Chenguang Research Institute of Chemical Industry,China National Blue Star. MPPO was kindly supplied by Beijing Beihua Gaoke New-Tech.Styrene-butadiene-styrene(SBS-801)was kindly sup-plied by Yueyang Petrochemical,China.Aluminum trihydrate(ATH),sodium hydroxide,CO2, and oxalic acid from Beijing Chemical Reagent were used in the preparation of nano-CG-ATH.Sample PreparationPreparation of Nano-CG-ATH.The experimental pro-cedures are as follows:(i)A certain amount of ATH raw material was pouredinto boiling sodium hydroxide solution.Then,theslurry was heated until ATH was fully dissolved toobtain raw sodium aluminate(SA)solution,whichwas subsequently diluted andfiltered to obtain clearSA solution with a desired concentration.(ii)The SA solution was carbonated by absorbing CO2 in a rotating packed bed(RPB)at room temperatureto yield nano-ATH suspension while it was forced tocirculate between the RPB and an agitating tank bya centrifugal pump.(iii)The nano-ATH suspension discharged from the RPB was aged for3h at708C,then wasfiltered andrinsed to obtain nano-ATH.(iv)The nano-ATH was redispersed into an aqueous oxalic acid solution and heated up to a temperature of130–1808C under stirring in a closed vessel for30–90minto obtain desired nano-CG-ATH suspension,whichwas subsequentlyfiltered,rinsed,and dried for futureuse.Polymer Compounding.Table1lists the compositions of all samples.These raw materials werefirst melt-mixed using a twin-screw extruder(PE-20,Keya Company Lim-ited,Nanjing,China).The temperatures of the extruder were ordinal:150,180,205,and2008C.Subsequently,the pellets were fed into a single screw extruder(SJ-30,Bei-jing Plastic Engineering,Beijing,China)to prepare the test specimens,the temperatures of which were ordinal(160, 190,205,and2008C).Combustion TestThe UL-94test was performed to evaluate theflame spread of the test specimens in air atmosphere using a CZF-1 type instrument(Nanjing Jiangning Analytical Instrument Factory,China)on sheets according to ISO1210-1992.positions of all samples.SampleHIPS(wt%)Nano-CG-ATH(wt%)RPM(wt%)MPPO(wt%)SBS(wt%) 16609250 26339250 36069250 45799250 554129250 66960250 76663250 86366250 957612250 10856900 117569100 127069150 136569200 146040000 156000400 1660150250 175469256 185169259 1948692512 2045692515552POLYMER COMPOSITES—-2007DOI10.1002/pcThermogravimetric AnalysisThermal degradation study was performed using a STA-449C thermogravimetric analyzer (Netzsch,Germany).The samples (about 15mg)were heated in air or nitrogen atmosphere from room temperature up to about 8008C at a heating rate of 108C/min.Mechanical PropertiesThe impact strength of the composites was measured by Charpy pendulum impact testing machines (XJJ-5,ChengDe JinJian Testing Machine Company,China.)at room temperature.The tensile (testing speed,50mm/min)and the flexural (testing speed,10mm/min)properties were recorded by Instron universal testing machine (Ins-tron 1185,Instron,England)at room temperature.Morphological ObservationThe morphologies of fracture surfaces after the impact test and combustion char residues were observed by scanning elec-tron microscope (SEM Hitachi LTDx-650,Japan).The mor-phology of nano-CG-ATH was observed by field-emission scanning electron microscope (FESEM,FEI XL-30,USA).Fourier Transform Infrared Spectra AnalysisThe FTIR spectra of KBr wafers were recorded using a Shimadzu FTIR-8400S infrared spectrophotometer (Japan).RESULTS AND DISCUSSION Characteristics of Nano-CG-ATHThe FESEM micrograph of nano-CG-ATH is shown in Fig.1.It can be seen from the FESEM that nano-CG-ATH has lozenge morphology and is 20–40nm in thickness,100–200nm in length,and 50–100nm in width.Figure 2presents the thermogravimetric (TG)curve of nano-CG-ATH in N 2atmosphere at the heating rate of 108C/min.Nano-CG-ATH started to decompose at $3308C and decomposed in one single step.Because of the high decomposition temperature,nano-CG-ATH can be added to the polymer materials with higher processing temperature.Flame RetardancyThe UL-94test is widely used to evaluate the flame re-tardant property of materials.The results of the UL-94test are listed in Table 2.It can be seen that the UL-94rating reached V-1after 9wt%RPM and 25wt%MPPO was added.Here,addition of 6wt%nano-CG-ATH caused the UL-94rating to increase from V-1to V-0.When the quan-tity of nano-CG-ATH and MPPO was 6and 25wt%respectively,with addition of 6wt%RPM,the UL-94rat-ing increased from HB to V-1.When 9wt%RPMwasFIG.1.FESEM micrograph ofnano-CG-ATH.FIG.2.TGA curve of nano-CG-ATH in nitrogen.TABLE 2.The results of the UL-94test.Sample Nano-CG-ATH (wt%)RPM (wt%)MPPO (wt%)SBS (wt%)UL-94109250V-1239250V-1369250V-0499250V-05129250V-0660250HB 763250HB 866250V-19612250V-0106900HB 1169100HB 1269150HB 1369200V-11440000HB 1500400HB 16150250HB 1769256V-01869259V-019692512V-020692515V-0DOI 10.1002/pc POLYMER COMPOSITES—-2007553added,the UL-94rating reached V-0.The quantity of MPPO also had a great influence on the UL-94rating.If only 6wt%nano-CG-ATH and 9wt%RPM were added,the UL-94rating was HB.But,when 20wt%MPPO was added together with 6wt%nano-CG-ATH and 9wt%RPM,the UL-94rating improved from HB to V-1.When the quantity of MPPO increased to 25wt%,the UL-94rat-ing reached V-0.In addition,when 40wt%nano-CG-ATH or 40wt%MPPO was added or 15wt%nano-CG-ATH and 25wt%MPPO were added,the UL-94rating couldnot be increased.These suggest that RPM shows a goodsynergistic effect of flame retardancy with nano-CG-ATH and MPPO.Table 2also shows that addition of SBS did not influence the UL-94rating.Figure 3shows the SEM micrographs of char layers taken from flame-tested specimens.From Fig.3b and 3c,it is evident that the HIPS/nano-CG-ATH/MPPO (69/6/25)composite and HIPS/nano-CG-ATH/RPM (85/6/9)com-posite did not form intact and strong char layers after the flame test.In contrast to Fig.3b and 3c,Fig.3a showsaFIG.3.SEM micrographs of char layers of the composites (a)HIPS/RPM/MPPO(66/9/25);(b)HIPS/nano-CG-ATH/MPPO(69/6/25);(c)HIPS/nano-CG-ATH/RPM(85/6/9);(d)HIPS/nano-CG-ATH/RPM/MPPO(60/6/9/25);(e)HIPS/nano-CG-ATH/RPM/MPPO/SBS(45/6/9/25/15).554POLYMER COMPOSITES—-2007DOI 10.1002/pcbetter char layer.In addition,it is obvious that incorpora-tion of nano-CG-ATH,RPM,and MPPO in proportion pro-moted the formation of a compact char layer in the con-densed phase during burning of HIPS,and that addition of SBS hardly affected the integrity of the char layer.A com-pact char layer can slow down heat and mass transfer between the gas and condensed phases and prevent the underlying polymeric substrate from further attack by heat flux in a flame.So,the flame retardant property of the HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25)composite and HIPS/nano-CG-ATH/RPM/MPPO/SBS (45/6/9/25/15)composite was better than that of other composites.Thermogravimetric AnalysisThe TG results in air at the heating rate of 108C/min are illustrated in Fig.4.It can be seen from Fig.4that HIPS decomposed in one single step and no residues occurred at8008C.The TG curve of Sample 6shows that when only 6wt%nano-CG-ATH and 25wt%MPPO were added,few residues appeared,in which the decomposition product of nano-CG-ATH was the maximum.For the HIPS/nano-CG-ATH/RPM (85/6/9)composite,after the main mass loss,a subsequent mass gain was observed,followed by a second mass decrease.The main mass loss corresponded to the decomposition of the composite.The mass gain was attrib-uted to the oxidation of phosphorus in the condensed phase by oxygen and water from the atmosphere.The second mass decrease corresponded to the loss of some unstable residues.Figure 4also shows that there were more residues in the sys-tem with RPM,indicating that synergistic action RPM with nano-CG-ATH and MPPO took place for the residues.Par-ticularly,in case of incorporation of nano-CG-ATH,RPM,and MPPO in proportion,the residual quantity was the larg-est.The residues can not only insulate the substrate,the heat source and oxygen,but also reduce the quantity of carbon entering the flame,and hence play a significant role in the flame retardancy.In addition,addition of SBS had little in-fluence on the decomposition and residues of the HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25)composite.FTIR AnalysisFTIR spectra recorded before and after treatment of the HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25)composite at various temperatures are shown in Fig.5.In curve (a),the absorption bands at 3,671and 1,715cm À1were attributed to the following stretching vibrations:O ÀÀH and C ¼¼O in nano-CG-ATH,respectively.The broad absorption band be-tween 2,850and 3,060cm À1was assigned to C ÀÀH stretch-ing vibration.The absorption band at 1,600cm À1was aro-matic C ¼¼C stretching vibration.Curve (b)represents the FTIR spectrum for the residues of the composite after being treated in a muffle at 4008C.In comparison with curve (a),curve (b)demonstrates weak absorption bands at 3,671and 1,715cm À1,which indicates that part of nano-CG-ATH decomposed after the composite was treated at 4008C.FIG.4.TGA in air (n ,HIPS;&,Sample 1;*,Sample 6;l ,Sample 10;*,Sample 20;*,Sample3).FIG.5.FTIR spectra;(a)the HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25)composite;(b)its combustion residues at 4008C;(c)its combustion residues at 5008C;(d)its combustion residues at 6008C.FIG.6.Variation of the impact strength and tensile strength against nano-CG-ATH content.DOI 10.1002/pc POLYMER COMPOSITES—-2007555In curve (c),O ÀÀH and C ¼¼O groups in nano-CG-ATH disappears,which reveals that nano-CG-ATH completely decomposes when the composite is treated at 5008C.C ÀÀH stretching vibration is still seen from curve (c),indicating that the composite did not completely decompose after treated at 5008C.In contrast to curves (a)and (b),aromatic C ¼¼C stretching vibration in curve (c)intensifies.Curve (c)also shows that two broad absorption bands at 3,250and 1,150cm À1assigned to phosphoric acid were gener-ated during the thermal treatment.In curve (d),the two broad absorption bands at 3,250and 1,151cm À1are strong.Moreover,a strong absorption band at 1,618cm À1appears.These indicate that more red phos-phorus is oxidized to phosphoric acid at 6008C.The absorp-tion band at 969cm À1attributed to P ÀÀO ÀÀC indicates that part of phosphoric acid reacted with resin to form a stable structure containing the P ÀÀO ÀÀC group,which was benefi-cial for the formation of a compact char layer in the con-densed phase during the burning of polymer materials.The afore-mentioned research results suggest the flame re-tardant mechanisms of the HIPS/nano-CG-ATH/RPM/MPPOcomposite.The endothermic decomposition of nano-CG-ATH,accompanied by the release of water,provides an effective heat sink mechanism,in comparison with polymer pyrolysis based on product oxidation.Beyond this effect,nano-CG-ATH acts as an inorganic filler and Al 2O 3layer as a barrier.The presence of oxygen in MPPO contributes to the for-mation of a phosphoric anhydride with increasing tempera-ture [16],leading to phosphoric acid (see Fig.5),by released water from nano-CG-ATH,and then phosphoric polyacid,causing a dehydration of HIPS and char forma-tion (Fig.3d).In addition,the solid phase oxidation of phosphorus suppresses the thermo-oxidative HIPS decom-position by oxygen consumption (see Fig.4).Fire retardancy by the char forming system works here by two mechanisms [15].On the one hand,the char acts as a barrier layer,influencing the mass and heat transfer,thus resulting in a decrease of the heat release rate.On the other hand,the char-forming process can lead to an increase of the thermally stable residue and consequently to a decrease of the total heat release,resulting from a decrease of the total amount of combustible volatileproducts.FIG.7.Variation of the flexural modulus against nano-CG-ATHcontent.FIG.8.Variation of the impact strength and tensile strength against RPMcontent.FIG.9.Variation of the flexural modulus against RPMcontent.FIG.10.Variation of the impact strength and tensile strength against MPPO content.556POLYMER COMPOSITES—-2007DOI 10.1002/pcMechanical PropertiesFigure 6shows the impact strength and tensile strength of the HIPS/nano-CG-ATH/RPM/MPPO composite with the variation of nano-CG-ATH content.As the content of nano-CG-ATH increases,the impact strength decreases.After 6wt%nano-CG-ATH was added,the impact strength decreased from 6.10to 4.36kJ/m 2,and decreased continu-ously to 3.12kJ/m 2with the addition of 12wt%nano-CG-ATH.On the other hand,the tensile strength increased with nano-CG-ATH content.When 12wt%nano-CG-ATH was added,the tensile strength increased from 29.35to 31.73kJ/m 2MPa,which indicated that nano-CG-ATH took on a strengthening effect.Figure 7shows the flexural modulus of the HIPS/nano-CG-ATH/RPM/MPPO composite with the variation of nano-CG-ATH content.It can be seen that addition of nano-CG-ATH gave an evident improvement in the flexural modulus,when its content ranged from 0to 6wt%.When nano-CG-ATH was added more than 9wt%,the flexural modulus grad-ually decreased.Variation of the impact strength and tensile strength of the HIPS/nano-CG-ATH/RPM/MPPO composite versus RPM content is shown in Fig.8.It can be seen that addi-tion of RPM resulted in a decrease in impact strength,decreasing with increasing of RPM content.When RPM was added from 0to 12wt%,the impact strength de-creased from 6.37to 4.31kJ/m 2.Figure 8also shows that as the content of RPM increases from 0to 9wt%,the tensile strength gradually increases,and then,evidently decreases with the RPM content.Variation of the flexural modulus of the HIPS/nano-CG-ATH/RPM/MPPO composite versus RPM content is shown in Fig.9.When RPM was added from 0to 9wt%,the flex-ural modulus continuously increased with the RPM content.But,when the content of RPM was more than 9wt%,the flexural modulus rapidly decreased.Figure 10shows the effect of the quantity of MPPO on the impact strength and tensile strength of the HIPS/nano-CG-ATH/RPM/MPPO composite.Figure 11shows the effect of the quantity of MPPO on the flexural modulus of the HIPS/nano-CG-ATH/RPM/MPPO composite.It can be seen that the impact strength slightly decreases with MPPO con-tent.When 25wt%MPPO was added,the impact strength only reduced 0.67kJ/m 2.On the other hand,the tensile strength and flexural modulus evidently increased with MPPO content.If 25wt%MPPO was added,the tensile strength and flexural modulus increased about 39.96%and 29.78%,respectively.These are mostly attributed to lower toughness and higher strength of MPPO.In addition,the good miscibility between MPPO and HIPS also contributes to the strengthening effect of MPPO.Figure 12shows the effect of the quantity of SBS on the impact strength and tensile strength of the HIPS/nano-CG-ATH/RPM/MPPO/SBS composite.Figure 13shows the effect of the quantity of SBS on the flexural modulus of the HIPS/nano-CG-ATH/RPM/MPPO/SBS composite.It is clear that the impact strength evidently increases with SBS content.After 15wt%SBS was added,the impact strength increased from 4.36to 10.17kJ/m 2,which increasedaboutFIG.11.Variation of the flexural modulus against MPPOcontent.FIG.12.Variation of the impact strength and tensile strength against SBScontent.FIG.13.Variation of the flexural modulus against SBS content.DOI 10.1002/pc POLYMER COMPOSITES—-2007557133.26%.This is mainly attributed to high miscibility between SBS and HIPS.In contrast to the impact strength,the tensile strength and flexural modulus decrease with SBS content.The tensile strength and flexural modulus of a com-posite depend mainly on the tensile and flexural properties of the composite components besides the factor of interfa-cial adhesion.SBS is an elastomer whose tensile strength and flexural modulus are lower than those of HIPS;there-fore,increase in the weight fraction of SBS evidently reduces the tensile strength and flexural modulus of the composite.Morphologies of Fracture SurfacesThe morphology of the fractured surface of the HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25)composite after impact test is shown in Fig.14a.It can be seen that the fractured surface of the composite is smooth and has a brit-tle nature,which suggests that cracks can propagate a long way in initial directions.It means that the material exhibits low impact strength.Figure 14b shows the morphology of the fractured sur-face of the HIPS/nano-CG-ATH/RPM/MPPO/SBS (45/6/9/25/15)composite after impact test.Since the S-block of SBS has a high miscibility with PS and the B-block is compatible with PB,the dispersion of SBS in HIPS matrix and the adhesion between SBS and the matrix are both good.Apart from the chemical structure of SBS,the size of the rubber particles plays a decisive role.Depending on the nature of the matrix polymer,the optimum diameter of the rubber particles can vary between 100nm and several micrometers [17].The mode of action of the rubber par-ticles consists generally in initiating deformation mecha-nism,which allows high dissipation of energy.During the fracture of the composite,microcracks have greater propa-gating velocities in HIPS than in SBS.When entering into SBS,microcracks will be deflected with sudden changes in propagating velocities.Such deflections causing tortuosityand complexity of the fracture surface (Fig.14b)can not only absorb fracture energy but also buffer interfacial im-pact stresses and prevent whiskers from breaking,so that the toughness of the composite is improved.CONCLUSIONIn this study,RPM showed good synergistic effect of flame retardancy with nano-CG-ATH and MPPO.The combined flame retardant system lowered the flammability of HIPS to the level of V-0class and formed a compact char layer after the flame test.The P ÀÀO ÀÀC group was beneficial for the formation of the compact char layer in the condensed phase during burning of polymer materials.The char layer was related to good flame retardant effect.However,the impact strength of the flame retardant HIPS was low.To improve its impact strength,SBS was used as a toughener.Evidently,the impact strength of the flame re-tardant HIPS increased with SBS content.On the contrary,its tensile strength and flexural modulus decreased to some extent with SBS content.In addition,addition of SBS did not influence its thermal decomposition and flame retardant property.REFERENCES1.D.Radloff,H.W.Spiess,J.T.Books,and K.C.Dowling,J.Appl.Polym.Sci.,60(5),715(1996).2.H.Sato,K.Kondo,S.Tsuge,H.Ohtani,and N.Sato,Polym.Degrad.Stab.,62(1),41(1998).3.R.Xie and B.Qu,J.Appl.Polym.Sci.,80(8),1181(2001).4.W.Von Gentzkow,J.Huber,H.Kapitza,and W.Rogler,J.Vinyl Addit.Technol.,3(2),175(1997).5.Z.Li and B.Qu,Polym.Degrad.Stab.,81(3),401(2003).6.J.T.Yeh,M.J.Yang,and S.H.Hsieh,Polym.Degrad.Stab.,61(3),465(1998).7.X.Zhang,F.Guo,J.Chen,G.Wang,and H.Liu,Polym.Degrad.Stab.,87(3),411(2005).FIG.14.SEM micrographs of fractured surfaces of the composites;(a)HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25);(b)HIPS/nano-CG-ATH/RPM/MPPO/SBS (45/6/9/25/15).558POLYMER COMPOSITES—-2007DOI 10.1002/pc8.Z.Z.Li and B.J.Qu,Polym.Degrad.Stab.,81(3),401(2003).9.U.Braun and B.Schartel,Macromol.Chem.Phys.,205(16),2185(2004).10.U.Hippi,J.Mattila,and M.Korhonen,Polymer,44(4),1193(2003).11.S.M.B.Nachtigall,M.Miotto,E.E.Schneider,R.S.Maulerand M.M.C.Forte,Eur.Polym.J.,42(5),990(2006).12.M.Sain,S.H.Park,F.Suhara,and w,Polym.Degrad.Stab.,83(2),363(2004).13.H.S.Katz and ewski,Handbook of Fillers and Rein-forcements for Plastics,Van Nostrand Reinhold,New York (1978).14.J.Davis and M.Huggard,J.Vinyl Addit.Technol.,2(1),69(1996).15.B.Schartel,R.Kunze,and D.Neubert,J.Appl.Polym.Sci.,83(10),2060(2002).outid,L.Ferry,J.M.Lopez-Cuesta,and A.Crespy,FireMater.,in press.17.Z.Jelcic,T.Holjevac-Grguric,and V.Rek,Polym.Degrad.Stab.,90(2),295(2005).DOI10.1002/pc POLYMER COMPOSITES—-2007559。

相关文档
最新文档