[原创精品]2021届新高三一轮单元金卷 第十三单元复数训练卷 B卷 学生版

合集下载

第30讲 种群及其动态-2023年高考生物一轮复习(新教材)

第30讲 种群及其动态-2023年高考生物一轮复习(新教材)

样方法的调查步骤:
确定调 查对象
适用于植物、活动范围小和活动能力弱的动物,如昆虫卵、蚜虫、跳蝻等。以植物为 例,一般不选丛生或蔓生的单子叶植物,而选择个体数目易于辨别的双子叶草本植物
取样
根据调查对象的分布状况和地段的形状,确定样方的多少、样方大小和取样方法。植 物大小不同,样方面积也应不同。草本植物样方的大小一般以1m2的正方形为宜。如 果该种群个体数较少,样方面积可适当扩大。
非生物因素 包括 生物因素 包括
阳光、温度、水等
种内竞争和其他种群的 影响等
考点分析
目 录
CONTENT
能够阐述种群的各数量特征,并说明它们之间的关系;能够运
01 用样方法和标志重捕法调查种群密度,能概述两种方法的适应
范围。
02
通过探究培养液中酵母菌种群数量的动态变化,明确构建种群 增长模型(数学模型)的方法。
时间为横坐标,种群数量为纵坐标画出曲线来表示,曲线则 大致呈 “J” 形。这种类型的种群增长称为“J”形增长。
(2)模型假设(形成原因)
在食物和空间条件充裕、气候适宜、没有天敌和其他竞争物种等条件下,种群的数量每
年以一定的倍数(λ倍)增长。 (3)数学模型:Nt=N0λt
理想条件
N0为该种群的起始数量,t为时间,Nt表示t年后该种群的数量,λ表示该种群数量是前
死亡率 性别比例
迁入率
迁出率
能力训练
6、请判断对错。
①可用每平方米草坪上杂草的数量来表示种群密度( × ) ②统计种群密度时,应去掉采集数据中最大、最小值后取平均值( × ) ③五点取样法适合调查灌木类行道树上蜘蛛的种群密度( × ) ④调查青蛙等活动范围不大的动物的种群密度可以用样方法 ( √ ) ⑤种群密度与出生率成正比( × ) ⑥种群密度能反映种群在一定时期的数量及其变化趋势 ( × )

2021高考数学 复数历年来高考习题荟萃(2020-2021)(含解析)(1)

2021高考数学 复数历年来高考习题荟萃(2020-2021)(含解析)(1)

zi,+2=2z设=2a+2bi在复平面内对应的.第四象限,故答案为D.对应的点的坐标是( ) ()(+为虚数单位1i iA .第一象限B .第二象限C .第三象限D .第四象限 【答案】 B【解析】 z = i·(1+i) = i – 1,因此对应点(-1,1).选B 选B9.【2021山东】(1)复数z 知足(z-3)(2-i)=5(i 为虚数单位),那么z 的共轭复数为( D )A. 2+i C. 5+i10.【2021上海理】设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,那么________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩11.【2021四川理】2.如图,在复平面内,点A 表示复数z ,那么图中表示z 的共轭复数的点是( )(A )A (B )B (C )C (D )D 12.【2021全国新课改II 】设复数z 知足(1i )z = 2 i ,那么z =(A )1+ i(B )1 i(C )1+ i(D )1 i答案:A【解法一】将原式化为z =2i 1- i ,再分母实数化即可.【解法二】将各选项一一查验即可.13.【2021课标1】假设复数z 知足 (3-4i)z =|4+3i |,则z 的虚部为()A 、-4(B )-45(C )4(D )45【命题用意】此题要紧考查复数的概念、运算及复数模的计算,是容易题.【点评】此题考查复数代数形式的四那么运算及复数的大体概念,考查大体运算能力.先把Z 化成标准的(,)a bi a b R +∈形式,然后由共轭复数概念得出1z i =--. 10.【2021高考湖北文12】.若=a+bi (a ,b 为实数,i 为虚数单位),那么a+b=____________. 【答案】3【点评】此题考查复数的相等即相关运算.此题假设第一对左侧的分母进行复数有理化,也能够求解,但较繁琐一些.来年需注意复数的几何意义,大体概念(共轭复数),大体运算等的考查.11.【2021高考广东文1】设i 为虚数单位,那么复数34ii+= A. 43i -- B. 43i -+ C. 43i + D. 43i - 【答案】D12.【2102高考福建文1】复数(2+i )2等于 +4i +4i +2i +2i 【答案】A.【解析】i i i 43)22()14()2(2+=++-=+,应选A.13.【2102高考北京文2】在复平面内,复数103ii+对应的点的坐标为 A . (1 ,3) B .(3,1) C .(-1,3) D .(3 ,-1) 【答案】A14.【2021高考天津文科1】i 是虚数单位,复数534i i+-=(A )1-i (B )-1+i (C )1+i (D )-1-i【答案】C或,复数a+为纯虚数0,0b00b,应选B.=+(i为虚数单位年高考(山东理))假设复数)117i-i D.3--B.35i【解析】1iz i-=2021年高考(大纲理)【考点定位】此题要紧考查复数的代数运算在复平面内所对应的图形的面积为__8__.3416.(2021年高考(上海春))假设复数z 知足1(iz i i =+为虚数单位),那么z =1i -_______.34(江苏))设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),那么a b +的值为____. 7. 【考点】复数的运算和复数的概念.【分析】由117ii 12ia b -+=-得()()()()117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,因此=5=3a b ,,=8a b + .2020年高考复数1.【2020安徽理】 设 i 是虚数单位,复数aii1+2-为纯虚数,那么实数a 为 (A )2 (B) -2 (C) 1-2(D) 12A. 【命题用意】此题考查复数的大体运算,属简单题.【解析】设()aibi b R i1+∈2-=,那么1+(2)2ai bi i b bi =-=+,因此1,2b a ==.应选A. 2.【2020北京理】复数i 212i-=+ A. i B. i - C. 43i 55-- D. 43i 55-+【解析】:i 212ii -=+,选A 。

高考数学《复数》专项练习(含答案)

高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。

2021年高考历史一轮复习 近代中国的政治民主化进程单元训练

2021年高考历史一轮复习 近代中国的政治民主化进程单元训练

1.(xx·高考山东卷)辛亥革命爆发后,山东巡抚孙宝琦曾致电清内阁,阐述对时局的看法。

阅读材料,回答问题。

顷者,宪法信条,业经颁布,君权削尽,仅存皇位,而各省不知信从,反多独立。

……重以土匪蜂起,列强环伺,瓦解瓜分,危在旦夕。

……今日各省民情,如决江河。

然察其所为,决非种族相仇,实渴望共和政体。

……依臣愚见,莫如毅然改计,俯顺舆情,实行公天下,宣布共和。

——孙宝琦致内阁电(1911年11月11日)(1)概括指出孙宝琦的电文反映了哪些史实。

(2)结合史实,说明清政府是如何应对“各省民情”的。

2.(xx·高考新课标全国卷Ⅰ)阅读材料,回答问题。

材料1:夫西人设立新闻纸馆,上以议国家之得失,下以评草野之是非,可以知四方之物价,可以悉外国之情形,原为有益之举。

今宜仿而行之,惟不准议朝廷得失。

凡外国物价,外国情形,及中国人而被外国人欺凌者,或传教不公道者,皆可写入新闻纸,布告各国,咸使闻知,使归曲于彼;且以见中国百姓痛恨洋人,必将激而生变。

庶彼君臣闻之,惕然知惧,必饬令彼国公使领事,自行约束。

——《李鸿章附呈潘司丁日昌条说》(1867年)材料2:19世纪70年代后,维新派开始办报。

他们在办报实践中提出,报纸必须“宗旨高而定”,“思想新而正”,“材料富而当”,“报事确而速”。

严复强调办报须“一举足不能无方向,一著论则不能无宗旨”。

有维新人士倡言:“无古今中外,变法必自空谈始。

故今日中国将变未变之际,以扩张报务为第一义。

阅报之多寡,与爱力之多寡有正比例;与阻力之多寡有反比例。

”梁启超提出:“所贵乎报馆之著述者,能以语言文字开将来之世界也。

”并说:“去塞求通,厥道非一,而报馆其导端也……阅报愈多者,其人愈智;报馆愈多者,其国愈强。

”——摘编自方汉奇《中国近代报刊史》(1)比较材料1、2,概括指出洋务派与维新派在办报宗旨、任务、目的方面的认识有何不同。

(2)根据材料1、2并结合所学知识,分析戊戌变法前报纸在推动近代中国民主进程中的作用。

高考数学一轮复习全套课时作业5-5复数

高考数学一轮复习全套课时作业5-5复数

题组层级快练 5.5复数一、单项选择题1.(2021·衡水中学调研卷)复数i1+2i(i 是虚数单位)的虚部是( )A.15B.25C.15iD.25i 2.(2019·课标全国Ⅱ)设z =i(2+i),则z -=( )A .1+2iB .-1+2iC .1-2iD .-1-2i 3.已知z-1+i=2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i 4.i 是虚数单位,若1+7i2-i=a +bi(a ,b ∈R ),则ab 的值是( )A .-15B .-3C .3D .15 5.(2020·揭阳一模)已知a ∈R ,i 是虚数单位,若z =3+ai ,|z -|=2,则a =( ) A.7或-7 B .1或-1 C .2 D .-26.(2021·江西名校高三质检)若在复平面内,复数z =3+mi 6-i (m ∈R )所对应的点落在直线y =x 上,则m =( )A.157B.715 C .-157 D .-7157.(2021·河北六校联考)已知复数z 1,z 2在复平面内对应的点分别为(2,-1),(0,-1),则z 1z 2+|z 2|=( )A .2+2iB .2-2iC .-2+iD .-2-i 8.(2020·唐山二模)若复数z =1+ia -i (i 是虚数单位,a ∈R )是纯虚数,则z 的虚部为( )A .1B .IC .2D .2i 9.(2021·江南十校联考)若复数z 满足z(1-i)=|1-i|+i ,则z 的实部为( ) A.2-12 B.2-1 C .1 D.2+1210.(2021·武汉市武昌区调考)设z 是复数,α(z)表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i)=( ) A .8 B .6 C .4 D .2 11.已知i 是虚数单位,且复数z 1=3-bi ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( )A .-6B .6C .0 D.1612.在复数集C 内分解因式2x 2-4x +5等于( )A .(x -1+3i)(x -1-3i)B .(2x -2+3i)(2x -2-3i)C .2(x -1+i)(x -1-i)D .2(x +1+i)(x +1-i)13.(2020·湖北黄冈期末)复数z 1,z 2在复平面内分别对应点A ,B ,z 1=3+4i ,将点A 绕原点O 逆时针旋转90°得到点B ,则z -2=( )A .3-4iB .-4-3iC .-4+3iD .-3-4i14.(2021·济南市质量评估)已知复数z 满足z +z·i =2(其中i 为虚数单位),则z -=( ) A .1+i B .1-i C .-1+i D .-1-i15.(2020·邯郸二模)复数z 在复平面内表示的点Z 如图所示,则使得z 2·z 1是纯虚数的一个z 1是( )A .3-4iB .4+3iC .3+4iD .4-3i 二、多项选择题16.设z 1,z 2是复数,则下列命题中的真命题是( )A .若|z 1-z 2|=0,则z -1=z -2B .若z 1=z -2,则z -1=z 2 C .若|z 1|=|z 2|,则z 1·z -1=z 2·z -2 D .若|z 1|=|z 2|,则z 12=z 22 17.下列命题正确的是( )A .若复数z 1,z 2的模相等,则z 1,z 2是共轭复数B .z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数C .复数z 是实数的充要条件是z =z -(z -是z 的共轭复数)D .已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i(i 是虚数单位),它们对应的点分别为A ,B ,C ,O 为坐标原点,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y =1 三、填空题与解答题18.(2020·西安模拟)若a +bii (a ,b ∈R )与(2-i)2互为共轭复数,则a =________,b =________.19.(2020·江苏阜宁中学调研)若复数z =i +i 2 020,则z -+10z的模等于________.20.计算:(1)(1+2i )2+3(1-i )2+i ; (2)1-i (1+i )2+1+i (1-i )2; (3)1-3i(3+i )2.5.5复数 参考答案1.答案 A 2.答案 D 3.答案 B解析 z -=(1+i)(2+i)=1+3i ,则z =1-3i. 4.答案 B 解析1+7i 2-i=(1+7i )(2+i )5=-1+3i ,故a =-1,b =3,故ab =-3.5.答案 B解析 z =3+ai ,z -=3-ai ,又|z -|=2,则3+(-a)2=4,解得a =±1,a 的值为1或-1.故选B. 6.答案 A解析 依题意,z =3+mi 6-i =(3+mi )(6+i )(6-i )(6+i )=18+3i +6mi -m 37=18-m 37+3+6m 37i ,则18-m =3+6m ,解得m =157,故选A.7.答案 A解析 由题意知z 1=2-i ,z 2=-i ,则z 1z 2=2-i -i =(2-i )i -i 2=1+2i ,|z 2|=1,故z 1z 2+|z 2|=2+2i ,故选A. 8.答案 A解析 设z =1+ia -i =bi(b ∈R 且b ≠0),则1+i =b +abi ,∴b =1.选A. 9.答案 A解析 由z(1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,故z 的实部为2-12,故选A. 10.答案 C解析 ∵α(z)表示满足z n =1的最小正整数n ,∴α(i)表示满足i n =1的最小正整数n.∵i 2=-1,∴i 4=1,∴α(i)=4. 11.答案 B解析 因为z 1z 2=3-bi 1-2i =3+2b 5+(6-b )i 5,z 1z 2是实数,所以6-b 5=0,所以b =6.故选B.12.答案 B解析 2x 2-4x +5=2(x -1)2+3=[2(x -1)]2-(3i)2=(2x -2+3i)(2x -2-3i). 13.答案 B解析 由题意知A(3,4),B(-4,3),即z 2=-4+3i ,z -2=-4-3i. 14.答案 A解析 方法一:由z +z·i =2,得z =21+i =2(1-i )(1+i )(1-i )=1-i ,所以z -=1+i.方法二:设z =a +bi(a ,b ∈R ),则a +bi +(a +bi)i =2,即a -b +(b +a)i =2,所以⎩⎪⎨⎪⎧a -b =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,所以z =1-i ,所以z -=1+i. 15.答案 D解析 由题意可得,z =-2+i ,令z 1=a +bi(a ,b ∈R ),则z 2·z 1=(-2+i)2(a +bi)=(3-4i)(a +bi)=(3a +4b)-(4a -3b)i.又z 2·z 1为纯虚数,则z 2·z 1的实部为0,即3a +4b =0,则z 1=4-3i ,故选D. 16.答案 ABC解析 对于A ,若|z 1-z 2|=0,则z 1-z 2=0,z 1=z 2,所以z -1=z -2为真; 对于B ,若z 1=z -2,则z 1和z 2互为共轭复数,所以z -1=z 2为真;对于C ,设z 1=a 1+b 1i ,z 2=a 2+b 2i ,若|z 1|=|z 2|,则a 12+b 12=a 22+b 22,即a 12+b 12=a 22+b 22,所以z 1·z-1=a 12+b 12=a 22+b 22=z 2·z -2,所以z 1·z -1=z 2·z -2为真;对于D ,若z 1=1,z 2=i ,则|z 1|=|z 2|,而z 12=1,z 22=-1,所以z 12=z 22为假,故选ABC. 17.答案 BC解析 对于A ,z 1和z 2可能是相等的复数,错误;对于B ,若z 1和z 2是共轭复数,则相加为实数,不会为虚数,正确;对于C ,由a +bi =a -bi ,得b =0,正确;对于D ,由题可知,A(-1,2),B(1,-1),C(3,-2),建立等式(3,-2)=(-x +y ,2x -y),即⎩⎪⎨⎪⎧-x +y =3,2x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =4,错误.故选BC. 18.答案 -4 3解析 因为a +bi i =(a +bi )(-i )-i 2=b -ai(a ,b ∈R ),(2-i)2=4-4i -1=3-4i ,由题意得b =3,a =-4.19.答案 6 2解析 z =i +i 2 020=i +1,z -+10z =1-i +101+i =6-6i ,其模为6 2.20.答案 (1)15+25i (2)-1 (3)-14-34i解析 (1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i=i (2-i )5=15+25i.(2)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1.(3)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4=-14-34i.。

高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。

备战2020年高考高三一轮单元训练金卷+数学+第13单元++算法、推理证明与复数+A卷++Word版含答案

备战2020年高考高三一轮单元训练金卷+数学+第13单元++算法、推理证明与复数+A卷++Word版含答案

单元训练金卷▪高三▪数学卷(A )第13单元 算法、推理证明与复数注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复平面内,复数z i i 为虚数单位),则复数z 对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.某种树的分枝生长规律如图所示,则预计到第6年树的分枝数为( )A .5B .6C .7D .83.定义x x f sin )(0=,()()10cos f x f x x '==,()()1n n f x f x +'=,则=)(2017x f ( )A .x sinB .x cosC .x sin -D .x cos -4.观察图示图形规律,在其右下角的空格内画上合适的图形为( )A .B .C .D .5.已知复数512z =+i ,则复数z z -2的虚部为( ) A .-i B .1- C .2-i D .2-6.对任意非零实数a ,b ,若a b ⊗的运算原理如右图程序框图所示,则(32)4⊗⊗的值是( )A .0B .12C .32D .97.关于复数()211z +=-i i ,下列说法中正确的是( )A .在复平面内复数z 对应的点在第一象限B .复数z 的共轭复数1z =-iC .若复数()1z z b b =+∈R 为纯虚数,则1b =D .设a ,b 为复数z 的实部和虚部,则点(),a b 在以原点为圆心,半径为1的圆上8.已知某程序框图如图所示,则执行该程序后输出的结果是( )A .21B .1-C .2D .19.已知222433+=⨯,333988+=⨯,444161515+=⨯,……,观察以上等式,若999k m n+=⨯(m ,n ,k 均为实数),则m n k +-=( )A .76B .77C .78D .7910.阅读如图所示的程序框图,若输入919a =,则输出的k 值是( )A .9B .10C .11D .1211.网络工作者经常用网络蛇形图来解释网络的运作模式,如图所示,数字1出现在第一行;数字2,3出现在第二行;数字6,5,4(从左至右)出现在第三行;数字7,8,9,10出现在第四行;以此类推,则按网络运作顺序第63行从左到右的第2个数字(如第2行第1个数字为2,第3行第1个数字为4,…,)是( )A .2014B .2015C .2016D .201712.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{}()n a n *∈N 的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则=++201720162015a a a ( )A .1008B .1009C .2017D .2018第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若复数z 与2(2)4z -+i 都是纯虚数,则=-+22z z ________. 14.若程序框图如图所示,则该程序运行后输出k 的值是______.15.我国的刺绣有着悠久的历史,如图所示的()()()()1234为刺绣中最简单的四个图案,这些图案都是有相同的小正方形构成,小正方形越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图案包含)(n f 个小正方形,则)(n f 的表达式为 .16.在计算“)1(3221-++⨯+⨯n n ”时,某位数学教师采用了以下方法: 构造等式:)]1()1()2)(1([31)1(+--++=+k k k k k k k k ,以此类推得:)210321(3121⨯⨯-⨯⨯=⨯,)321432(3132⨯⨯-⨯⨯=⨯, )432543(3143⨯⨯-⨯⨯=⨯,…,…, )]1()1()2)(1([31)1(+--++=-⨯n n n n n n n n , 相加得11223(1)(1)(2)3n n n n n ⨯+⨯++-=++. 类比上述计算方法,可以得到=+++⨯+⨯)2(4231n n .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设复数1z =+i ,若实数a ,b 满足2)2(2z a z b az +=+,其中z 为z 的共轭复数.求实数a ,b 的值.18.(12分)如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x <<π时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式;(2)若输出的y 值为12,求点Q 的坐标.19.(12分)已知函数)()0,1f x a a =>≠且.(1)证明:函数)(x f y =的图象关于点11,22⎛⎫- ⎪⎝⎭对称; (2)求(2014)(2013)(1)(0)(1)(2014)(2015)f f f f f f f -+-++-+++++.20.(12分)已知数列{}n a 满足:211=a ,111)1(21)1(3++-+=-+n n n n a a a a ,()101n n a a n +<≥,数列{}n b 满足:()2211n n n b a a n +=-≥. (1)求数列{}n a 、{}n b 的通项公式;(2)证明:数列{}n b 中的任意三项不可能成等差数列.21.(12分)下面四个图案,都是由小正三角形构成,设第n 个图形中所有小正三角形边上黑点的总数为)(n f .(1)求出(2)f ,(3)f ,(4)f ,(5)f ;(2)找出)(n f 与)1(+n f 的关系,并求出)(n f 的表达式;(3)求证()111125111136(1)3(2)5(3)7()213333n f f f f n n *++++<∈+++++N .22.(12分)将数列{}n a 中的所有项按每一行比上一行多两项的规则排成如下数表:已知数表中每一行的第一个数1a ,2a ,5a ,…构成一个等差数列,记为{}n b ,且42=b ,105=b .数表中每一行正中间一个数1a ,3a ,7a ,…构成数列{}n c ,其前n 项和为n S .(1)求数列{}n b 的通项公式;(2)若数表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数且113=a ,求数列{}n c 的前n 项和n S ;(3)在满足(2)的条件下,记{}(1),n M n n c n λ*=+≥∈N ,若集合M 的元素个数为3,求实数λ的取值范围.单元训练金卷▪高三▪数学卷(A ) 第13单元 算法、推理证明与复数 答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C【解析】∵z ===i ,∴z ,故选C . 2.【答案】D【解析】由题意得,这种树的从第一年的分枝数分别是1,1,2,3,5,,则112+=,213+=,325+=,即从第三项起每一项都等于前两项的和, 所以第6年树的分枝数是853=+,故选D . 3.【答案】B【解析】()()10cos f x f x x '==,x x x f x f sin )(cos )()(''12-===,'3()(sin )cos f x x x =-=-,'40()(cos )sin ()f x x x f x =-==,'51()(sin )cos ()f x x x f x ===,同理)()(26x f x f =,)()(37x f x f =,)()(48x f x f =,周期为4, ∴20171()()cos f x f x x ==,故选B . 4.【答案】A【解析】由所给图形的规律看出,空心的矩形、三角形、圆形都是一个,实心的图形应均为两个,∴空白处应填实心的矩形,故选A . 5.【答案】D 【解析】55(12)5(12)1212(12)(12)5z --====-++⋅-i i i i i i , ∴22(12)(12)42z z -=---=--i i i ,∴复数z z -2的虚部为2-,故选D .6.【答案】C【解析】根据程序框图知221323=+=⊗,∴413(32)42422-⊗⊗=⊗==,故选C .7.【答案】C【解析】由题意可知()212111z +===-+--i ii ii,若()1z z b b =+∈R 为纯虚数,则1b =, 故选C . 8.【答案】B【解析】设每次循环所得到的a 的值构成数列{}n a , 由框图可111n n a a +=-,02a =,112a =,21a =-,32a =,412a =,…, 所以{a n }的取值具有周期性,且周期为T =3. 又由框图可知输出的122012-===a a a ,故选B . 9.【答案】D【解析】观察以上等式,类比出等式2(1)(1)(1)(1)x xx x x x x x +=⨯-+-+, 当9x =时,可得999818080+=⨯,所以80m =,80n =,81k =, 所以80808179m n k +-=+-=.故选D . 10.【答案】C 【解析】当111119(1)1335171921919S =+++=-=⨯⨯⨯时,10=k ,若199>S ,则输出的k 值是11,故选C . 11.【答案】B【解析】网络蛇形图中每一行的第一个数1,2,4,7,11,,按原来的顺序构成数列{}n a ,易知n a a n n =-+1,且11=a , ∴22132121()()()1123(1)2n n n n n a a a a a a a n --+=+-+-++-=+++++-=. ∴第63行的第一个数字为19542263632=+-, 而偶数行的顺序为从左到右,奇数行的顺序为从右到左, ∴第63行从左到右的第2个数字就是从右到左的第62个数字, 这个数为2015611954=+.故选B . 12.【答案】B【解析】观察点的坐标,写出数列{}n a 的前12项:1,1,1-,2,2,3,2-,4,3,5,3-,6.可提炼出规律,偶数项的值等于其序号的一半,奇数项的值有正负之分, 且n a n =-34,n a n -=-14,n a n =2,∴505350542017==-⨯a a ,504150442015-==-⨯a a ,10082016=a , ∴2015201620171009a a a ++=,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】i 或-i【解析】由已知可设(),0z b b b =∈≠R i ,则222(2)4(2)44(44)z b b b -+=-+=-+-i i i i ,∴240440b b ⎧-=⎨-≠⎩,∴2b =±,∴2z =-i 或2z =i ,∴当2z =-i 时,2221(1)(1)22221(1)(1)2z z +--+-+⋅-=====---++⋅-i i i i ii i i i i ; 当2z =i 时,()()()222222222z z ++=====---+⋅-i+1i i+1i i i i-1i+1i-1. 14.【答案】5【解析】5=n ,16=n ,1=k ;8=n ,2=k ;4=n ,3=k ;2=n ,4=k ;1=n ,5=k ,输出5.15.【答案】1222+-n n【解析】我们考虑,4)1()2(=-f f ,42)2()3(⨯=-f f ,43)3()4(⨯=-f f ,…, 归纳得出)1(4)()1(-⨯=-+n n f n f , ∴()(1)[(2)(1)][(3)(2)][()(1)]f n f f f f f f n f n =++-+-++--21424344(1)14[123(1)]221n n n n =++⨯+⨯++-=+++++-=-+.16.【答案】)72)(1(61++n n n 【解析】构造等式:)]2()2()4)(2([61)2(+--++=+n n n n n n n n , ∴]31)1(531[6131⨯⨯--⨯⨯=⨯,)420642(6142⨯⨯-⨯⨯=⨯,)531753(6153⨯⨯-⨯⨯=⨯,……,)]1)(1)(3()3)(1)(1[(61)1()1(+---++-=+⨯-n n n n n n n n ,)]2()2()4)(2([61)2(+--++=+⨯n n n n n n n n ,相加得11324(2)[(1)13024(1)(1)(3)(2)(4)]6n n n n n n n n ⨯+⨯+++=--⨯⨯-⨯⨯+-+++++)72)(1(61++=n n n .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】42a b =-⎧⎨=⎩或21a b =-⎧⎨=-⎩.【解析】由1z =+i ,可知i z -=1,代入2)2(2z a z b az +=+得2(1)2(1)[2(1)]a b a ++-=++i i i ,即22(2)(2)44(2)a b a b a a ++-=+-++i i ,∴22(2)424(2)a b a a b a ⎧+=+-⎨-=+⎩,解得42a b =-⎧⎨=⎩或21a b =-⎧⎨=-⎩.18.【答案】(1)①②的式子分别为cos 2xy =,cos 2x y =-;(2)当0x <≤π时,此时点Q 的坐标为12⎛- ⎝⎭;当2x π<<π时,此时点Q的坐标为12⎛- ⎝⎭,. 【解析】(1)当0x <≤π时,cos 2x y =;当2x π<<π时,cos cos 22x x y ⎛⎫=π-=- ⎪⎝⎭;综上可知,函数解析式为()(]()cos ,0,2cos ,,22x x f x x x ⎧∈π⎪⎪=⎨⎪-∈ππ⎪⎩,所以框图中①②处应填充的式子分别为cos 2xy =,cos 2x y =-.(2)若输出的y 值为12,则0x <≤π时,1cos22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭; 当2x π<<π时,1cos 22x -=,得43x π=,此时点Q的坐标为12⎛- ⎝⎭,. 19.【答案】(1)见解析;(2)2015-.【解析】(1)函数aa a x f x+-=)(的定义域为R ,在函数)(x f 的图象上任取一点),(00y x ,它关于点11,22⎛⎫- ⎪⎝⎭的对称点为)1,1(00y x ---,则aa a x f y x +-==0)(00,∴00(1)1f x y -====--,∴函数)(x f 图象上任意一点),(00y x 关于点11,22⎛⎫- ⎪⎝⎭的对称点)1,1(00y x ---仍在函数)(x f y =的图象上.即函数)(x f y =的图象关于点11,22⎛⎫- ⎪⎝⎭对称.(2)由(1)得1)1()(00-=-+x f x f ,∴1)2015()2014(-=+-f f ;1)2014()2013(-=+-f f ;1)2013()2012(-=+-f f ;……;1)2()1(-=+-f f ;1)1()0(-=+f f .∴(2014)(2013)(1)(0)(1)(2014)(2015)2015f f f f f f f -+-++-+++++=-.20.【答案】(1)(1)n n a -=-11243n n b -⎛⎫=⋅ ⎪⎝⎭;(2)见解析.【解析】(1)由题意可知,)1(321221n n a a -=-+,令21n n a c -=,则2111++-=n n a c ,n n c c 321=+.又431211=-=a c ,则数列{}n c 是首项为431=c ,公比为32的等比数列,即13243n n c -⎛⎫=⋅ ⎪⎝⎭,故1232143n na -⎛⎫-=⋅ ⎪⎝⎭,∴1232143n na -⎛⎫=-⋅ ⎪⎝⎭.又0211>=a ,01<+n n a a ,故(1)n n a -=-,1122132321211434343n n n n n nb a a --+⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-⋅--⋅=⋅⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.(2)反证法:假设数列{}n b 存在三项r b ,s b ,t b ()r s t <<按某种顺序成等差数列, 由于数列{}n b 是首项为41,公比为32的等比数列,于是有r s t b b b >>, 则只能有t r s b b b +=2成立.∴1111212122434343s r t ---⎛⎫⎛⎫⎛⎫⋅⋅=⋅+⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,两边同乘以r t --1123,化简得s t r s r t r t ----⋅=+32223. 由于t s r <<,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.21.【答案】(1)(2)12f =,(3)27f =,(4)48f =,(5)75f =;(2)36)()1(+=-+n n f n f ,2()3f n n =;(3)见解析.【解析】(1)由题意有:3)1(=f ,12233)1()2(=⨯++=f f ,27433)2()3(=⨯++=f f , 48633)3()4(=⨯++=f f ,75833)4()5(=⨯++=f f .(2)由题意及(1)知,36)(233)()1(++=⨯++=+n n f n n f n f , 即36)()1(+=-+n n f n f .∴()(1)[(2)(1)][(3)(2)][()(1)]f n f f f f f f n f n =+-+-++--3(613)(623)[6(1)3]36[123(1)]n n n =+⨯++⨯+++-+=+++++-2(1)3633(1)32n nn n n n n -=+⨯=+-=. (3)∵23)(n n f =,∴2111111(1)(1)1()213n n n n n f n n =<=-+++++, ∴11111111(1)3(2)5(3)7()213333f f f f n n ++++<+++++11111111111111125()()()4934451493149336n n n ++-+-++-=++-<++=++, 所以对于任意n *∈N ,原不等式成立.22.【答案】(1)2n b n =;(2)2282n n n S -+=-;(3)(]4,5. 【解析】(1)设数列{}n b 的公差为d ,则114410b d b d +=⎧⎨+=⎩解得122b d =⎧⎨=⎩,所以n b n 2=.(2)设每一行组成的等比数列的公比为q ,由于前n 行共有2)12(531n n =-++++ 个数,且224133<<,又8410==b a ,所以18331013===q q a a ,解得21=q .因此121222n n n n c n --⎛⎫== ⎪⎝⎭.所以12110121232222n n n n n S c c c c ---=++++=++++,0121112122222n n n n nS ---=++++,所以10121111211111122412222222212nn n n n n n n n S -----⎛⎫- ⎪+⎝⎭=++++-=-=--,即2228-+-=n nn S .(3)由(1)知22-=n n n c ,不等式λ≥+n c n )1(,可化为λ≥+-22)1(n n n .设22)1()(-+=n n n n f , 计算得4)1(=f ,6)3()2(==f f ,5)4(=f ,415)5(=f , 因为121(1)(2)(1)(2)(1)(1)()222n n n n n n n n n f n f n ---+++-++-=-=, 所以当3≥n 时,)()1(n f n f <+.因为集合M 的元素的个数为3,所以λ的取值范围是(]4,5.。

2021届金太阳高三新高考(广东卷)联考数学试题(解析版)

2021届金太阳高三新高考(广东卷)联考数学试题(解析版)
【详解】
设这7天降雨量分别为X],a∙2 tx3tx4tx5tx6, J7
因为1厘米=10毫米,这7天降雨量分别为IOxI, 10‰, IOX3,IOX4,IoX5,IOX6,IO-V7,
平均值为10无二265,
所以标准差变为-X(IOxll-IOx)'xf=10×6」=61.
Y 7ZI=Iy 7/?=i
故选:C
【点睛】
本题考査统讣知识,考查标准差的求解,考查数据处理能力,屈于基础题・
4.若0<方<1,则““>戻”是“u>b”的()
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件
【答案】A
【解析】根据充分条件、必要条件的概念即可求解.
【详解】
因为OCbVl,所以b-b3=b(l-b2)>0,即b>b∖故">方可推出a > b',
A. (0, 1)B.(—3,0)<j(1,2)
C.(—3,1)D.(―2,0)<j(1,3)
【答案】B
【解析】化简集合A, B,根据交集运算即可求值.
【详解】
因为A = {x∖x<x2} =(Y,0)u(1,+oc),
B = {x∖x2+X —6 v0} = (-3,2)
所以ACB = (-3,0)u(l,2)∙
而a >b3推不出u >b,(例如“=丄"=丄)42
故“α>Z√”是∏"的必要不充分条件.
故选:A
【点睹】
本题主要考查了充分条件,必要条件,不等式的性质,属于中档题.
5.函数/(X) = x2SinX-XCOSx⅛[-π,π]±的图象大致为()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[原创精品]
2021届新高三一轮单元金卷 第十三单元复数训练卷 B 卷
学生版
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.( )
A .
B .
C .
D .
2.已知为虚数单位,复数,则( )
A .
B .
C .
D .
3.设复数(,),则是纯虚数的必要不充分条件是( )
A .且
B .

C .且
D . 4.设是原点,向量,对应的复数分别是,
,则向量
对应的复数为( )
A .
B .
C .
D .
5.已知复数满足
,复数
在复平面内对应的点为
,且

在复平面内对应
的点关于实轴对称,则有( ) A . B . C .
D .
6.复数,
在复平面内分别对应点,

,将点
绕原点
逆时针旋转

到点,则( ) A . B .
C .
D .
7.已知
(是虚数单位),则复数
的辐角的主值为( )
A .
B .
C .
D .
8.若是关于方程的一个复数根,则的取值范围是( )
A .
B .
C .
D .
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.关于复数满足
,则在复平面内的对应点可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 10.下列各式中正确的是( ) A .
B .
C .
D .
11.下面是关于复数
的四个命题,其中为真命题的是( )
A .
B .的共轭复数是
C .
的虚部是
D .在复平面内所对应的点位于第三象限
12.对于两个复数

,有下列四个结论,其中正确的是( )
A .
B .
C .
D .








班级 姓名 准考证号 考场号 座位号
第Ⅱ卷
三、填空题:本大题共4小题,每小题5分.
13.若(,,为虚数单位),则.
14.若复数为纯虚数,则.
15.若复数满足,则的最大值为.
16.若复数的共轭复数所表示的点在复平面二、四象限的平分线上,则实数;

四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)计算:
(1);
(2).18.(12分)将下列复数代数式化为三角式.
(1);(2).
19.(12分)设,为虚数单位.(1)若为纯虚数,求的值;
(2)若的共轭复数在复平面对应的点在第二象限,求的取值范围;(3)若,求的取值范围.
20.(12分)已知复数满足(为虚数单位),.
(1)求;
(2)若是关于的方程的一个根,求实数的值及方程的另一个根.
21.(12分)已知在复平面内的平行四边形中,点对应的复数为,向量对应的复数为,向量对应的复数为.
(1)求,,三点对应的复数;
(2)求平行四边形的面积.22.(12分)已知复数满足条件,其中常数为正实数.(1)试证明:;
(2)当时,试确定复数的辐角主值的取值范围.
第13单元复数答案
第Ⅰ卷
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.【答案】B
【解析】,故选B.
2.【答案】A
【解析】,∴,故选A.
3.【答案】D
【解析】由纯虚数概念可知,且是复数(,)为纯虚数的充要条件,题中要求的是必要不充分条件,故选D.
4.【答案】D
【解析】∵,∴向量对应的复数为,故选D.
5.【答案】A
【解析】由已知可得,则,
∵,所以,故选A.
6.【答案】B
【解析】由题意知,将点绕原点逆时针旋转得到点,即,
∴,故选B.
7.【答案】C
【解析】,
∴复数的辐角的主值为,故选B.
8.【答案】D
【解析】设且,则,∴,∴,
∵,∴,∴,即.
∵,∴,故选D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.
9.【答案】BD
【解析】当为奇数时,,,此时在复平面内的对应点位于第二象限;
当为偶数时,,,此时在复平面内的对应点位于第四象限.
综上可知,B,D正确.
10.【答案】BC
【解析】,∴B正确;
,∴C正确.
11.【答案】CD
【解析】,,∴A错误;
,∴B错误;
的虚部是,∴C正确;
在复平面内所对应的点为,该点位于第三象限,∴D正确.
12.【答案】ACD
【解析】,∴A正确;
,∴B错误;
,∴C正确;
,∴D正确.
第Ⅱ卷
三、填空题:本大题共4小题,每小题5分.
13.【答案】
【解析】由已知得,
∴,解得,
∴.
14.【答案】
【解析】∵复数为纯虚数,∴,
∴,∴.15.【答案】
【解析】,
当且仅当时等号成立.
16.【答案】,
【解析】,
∴,由已知可得,的实部与虚部互为相反数,∴,解得.
∴,.
四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2)0.
【解析】(1),,
∴.
(2),
∴.
18.【答案】(1);(1)见解析.
【解析】(1).
(2),
当时,,,
∴;
当时,,,

19.【答案】(1);(2);(3).
【解析】(1)若为纯虚数,则,解得.
(2),由已知可得,解得,
即的取值范围为.
(3),,∴,∴,解得.
又∵,即,∴,
即的取值范围为.
20.【答案】(1);(2),.
【解析】(1)∵,∴,
∴.
(2)∵是方程的一个根,
∴,即.
∵为实数,∴,解得.
设方程另一根为,
根据韦达定理,可得,∴,即方程另一根为.
21.【答案】(1)见解析;(2)1.
【解析】(1)点对应的复数为,
点对应的复数为,∵四边形为平行四边形,∴,
∴点对应的复数为.
(2)由已知可得,,
∴,∴,
∴平行四边形的面积.
22.【答案】(1)证明见解析;(2).
【解析】(1)设,
代入可得,
∴,即.
∵,∴,即,
解得,∴.
(2)当时,由可得,∴,即,
∴当时,可得或,
即复数的辐角主值的取值范围为.。

相关文档
最新文档