2018年大一轮数学(文)高考复习(人教)课时规范训练:《第七章 立体几何》7-1

合集下载

2018版高考一轮总复习数学(理)习题第7章 立体几何7-4含答案

2018版高考一轮总复习数学(理)习题第7章 立体几何7-4含答案

(时间:40分钟)1.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β"是“α∥β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β错误!α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β"的必要而不充分条件.2.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是( )A.1 B.2C.3 D.4答案B解析对①,两条平行线中有一条与一平面垂直,则另一条也与这个平面垂直,故①正确;对②,直线l可能在平面α内,故②错误;对③,三条交线除了平行,还可能相交于同一点,故③错误;对④,结合线面平行的判定定理和性质定理可判断其正确.综上,①④正确,故选B。

3.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案C解析若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面内不共线且在另一个平面同侧的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面,两平面可以平行,也可以相交,故D错;故选项C正确.4.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过Β点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A。

[推荐学习]2018高考数学大一轮复习第七章立体几何

[推荐学习]2018高考数学大一轮复习第七章立体几何

第七章⎪⎪⎪ 立体几何第一节空间几何体的结构特征及三视图与直观图1.简单几何体(1)简单旋转体的结构特征:①圆柱可以由矩形绕其任一边旋转得到; ②圆锥可以由直角三角形绕其直角边旋转得到;③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;④球可以由半圆或圆绕直径旋转得到. (2)简单多面体的结构特征:①棱柱的侧棱都平行且相等,上下底面是全等的多边形; ②棱锥的底面是任意多边形,侧面是有一个公共点的三角形;③棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.说明:正视图也称主视图,侧视图也称左视图. (2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[小题体验]1.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4解析:选D 由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.2.(教材习题改编)如图,长方体ABCD­A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是______.答案:五棱柱三棱柱1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.[小题纠偏]1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.2.(教材习题改编)利用斜二测画法得到的①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1考点一空间几何体的结构特征基础送分型考点——自主练透[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B ①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD­A1B1C1D1中的三棱锥C1­ABC,四个面都是直角三角形.答案:②③④[谨记通法]解决与空间几何体结构特征有关问题3个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型;(3)通过反例对结构特征进行辨析.考点二空间几何体的三视图重点保分型考点——师生共研[典例引领]1.(2017·东北四市联考)如图,在正方体ABCD­A1B1C1D1中,P是线段CD的中点,则三棱锥P­A1B1A的侧视图为( )解析:选D 如图,画出原正方体的侧视图,显然对于三棱锥P­A1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.2.(2015·北京高考)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1 B. 2C. 3 D.2解析:选C 根据三视图,可知几何体的直观图为如图所示的四棱锥V­ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD中,VD=VB2+BD2=3.[由题悟法]1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.[提醒] 对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.[即时应用]1.(2016·沈阳市教学质量监测)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.2.一个几何体的三视图如图所示,则该几何体的直观图可以是( )解析:选D 由俯视图是圆环可排除A 、B 、C ,进一步将已知三视图还原为几何体,可得选项D .考点三 空间几何体的直观图重点保分型考点——师生共研[典例引领]有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.解析:如图,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1. 由此可还原原图形如图在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.答案:2+22[由题悟法]原图与直观图中的“三变”与“三不变”(1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变减半图形改变(2)“三不变”⎩⎪⎨⎪⎧平行性不变与x 轴平行的线段长度不变相对位置不变[即时应用]如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形解析:选C 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=4 2 cm ,CD =C ′D ′=2 cm .∴OC =OD 2+CD 2=22+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形.一抓基础,多练小题做到眼疾手快1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是( )解析:选D 几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是( ) A .棱柱的两个底面是全等的正多边形 B .平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D 因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台解析:选A 因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.4.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为4 cm,宽为2cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形85.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图,ABCD­A1B1C1D1,如图,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②二保高考,全练题型做到高考达标1.已知底面为正方形的四棱锥,其中一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )解析:选C 根据三视图的定义可知A、B、D均不可能,故选C.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2016·沈阳市教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥解析:选B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2016·淄博一模)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A ­BCD 的正视图与俯视图如图所示,则其侧视图的面积为( )A .22 B .12 C .24D .14解析:选D 由正视图与俯视图可得三棱锥A ­BCD 的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为22,所以侧视图的面积为S =12×22×22=14. 5.已知四棱锥P ­ABCD 的三视图如图所示,则四棱锥P ­ABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PM =3,PN =5,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6. 6.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④7.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm .解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:138.已知正四棱锥V ­ABCD 中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD 的中心O ,连结VO ,AO ,则VO 就是正四棱锥V ­ABCD 的高.因为底面面积为16,所以AO =22. 因为一条侧棱长为211.所以VO =VA 2-AO 2=44-8=6. 所以正四棱锥V ­ABCD 的高为6. 答案:69.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32, C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:6410.已知正三棱锥V ­ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.三上台阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图,共六块.2.(2017·湖南省东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P ­ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4×22-22=47,故四个面中面积最大的为S △PBC =47,选C .3.如图,在四棱锥P ­ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求PA .解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=62. 由正视图可知AD =6, 且AD ⊥PD , 所以在Rt△APD 中,PA =PD 2+AD 2=22+62=6 3 cm .第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式2.空间几何体的表面积与体积公式[小题体验]1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+32=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(教材习题改编)某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以该几何体的体积V =S ·h =⎝ ⎛⎭⎪⎫12×2×3×3=33. 答案:3 33.正三棱柱ABC ­A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A ­B 1DC 1的体积为________.解析:在正三棱柱ABC ­A1B 1C 1中,∵AD ⊥BC ,AD ⊥BB 1,BB 1∩BC =B ,∴AD ⊥平面B 1DC 1. ∴VA ­B 1DC 1=13S △B 1DC 1·AD =13×12×2×3×3=1.答案:11.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念. [小题纠偏]1.(教材习题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶12.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+162.答案:72+16 2考点一 空间几何体的表面积基础送分型考点——自主练透[题组练透]1.(易错题)(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B .2.(2015·福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+22.3.某几何体的三视图如图所示,则它的侧面积为( )A .12 5B .24 2C .24D .12 3解析:选A 由三视图得, 这是一个正四棱台,由条件知斜高h =22+12=5, 侧面积S =+52×4=125.[谨记通法] 几何体的表面积的求法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.注意衔接部分的处理,如“题组练透”第1题.考点二 空间几何体的体积重点保分型考点——师生共研[典例引领]1.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A .13+23π B .13+23π C .13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝ ⎛⎭⎪⎫223=13+26π. 2.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18 B .17 C .16D .15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15.[由题悟法]有关几何体体积的类型及解题策略[即时应用]1.(2016·西安质检)某几何体的三视图如图所示,该几何体的体积为( )A .43 B .52 C .73D .3解析:选A 根据几何体的三视图,得该几何体是下部为直三棱柱,上部为三棱锥的组合体,如图所示.则该几何体的体积是V 几何体=V 三棱柱+V 三棱锥=12×2×1×1+13×12×2×1×1=43.2.(2017·云南省统检)如图是底面半径为1,高为2的圆柱被削掉一部分后剩下的几何体的三视图,则被削掉的那部分的体积为( )A .π+23B .5π-23C .5π3-2D .2π-23解析:选B 由三视图可知,剩下部分的几何体由半个圆锥和一个三棱锥组成, 其体积V =13×12×π×12×2+13×12×2×1×2=π3+23,∴被削掉的那部分的体积为π×12×2-⎝ ⎛⎭⎪⎫π3+23=5π-23. 3.(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析:由三视图知该几何体是一个组合体,左边是一个长方体,交于一点的三条棱的长分别为2 cm,4 cm,2 cm ,右边也是一个长方体,交于一点的三条棱的长分别为2 cm ,2 cm ,4 cm .几何体的表面积为(2×2+2×4+2×4)×2×2-2×2×2=72(cm 2), 体积为2×2×4×2=32(cm 3). 答案:72 32考点三 与球有关的切、接问题题点多变型考点——多角探明 [锁定考向]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变. 常见的命题角度有:(1)正四面体的内切球与四棱锥的外接球;(2)直三棱柱的外接球;(3)正方体(长方体)的内切、外接球.[题点全练]角度一:正四面体的内切球与四棱锥的外接球1.(2017·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度二:直三棱柱的外接球2.已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A .3172B .210C .132D .310解析:选C 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎫522+62=132.角度三:正方体(长方体)的内切、外接球3.如图,已知球O 是棱长为1的正方体ABCD ­A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A .66π B .π3C .π6D .33π 解析:选C 平面ACD 1截球O 的截面为△ACD 1的内切圆.因为正方体的棱长为1,所以AC =CD 1=AD 1=2,所以内切圆的半径r =22×tan 30°=66, 所以S =πr 2=π×16=16π.[通法在握]“切”“接”问题处理的注意事项(1)“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[演练冲关]1.(2017·广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20πB .205π3C .5πD .55π6解析:选D 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,∴球半径为R =r 2+⎝ ⎛⎭⎪⎫h 22=1+14=52,∴该球的体积V =43πR 3=43×⎝ ⎛⎭⎪⎫523π=55π6. 2.(2016·河南省六市第一次联考)三棱锥P ­ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为( )A .253πB .252πC .833πD .832π解析:选D 由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,∴x 2=32+(6-x )2,解得x =546,∴R 2=x 2+⎝ ⎛⎭⎪⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),∴外接球的表面积S =4πR 2=832π,故选D .一抓基础,多练小题做到眼疾手快1.一个球的表面积是16π,那么这个球的体积为( ) A .163πB .323πC .16πD .24π解析:选B 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2.所以体积为43πR 3=32π3.2.(2016·长春市质量检测(二))几何体的三视图如图所示,则该几何体的体积为( ) A .323B .16-2π3C .403D .16-8π3解析:选 C 该几何体可视为长方体挖去一个四棱锥所得,所以其体积为2×2×4-13×2×2×2=403.故选C .3.(2016·全国乙卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π解析:选A 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A .4.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =+2×1=32.答案:325.(2015·天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.答案:83π二保高考,全练题型做到高考达标1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r ,则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.2.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为( )A .6B .8C .12D .24解析:选C 由题意可知该六棱锥为正六棱锥,正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×34×22×h =23,∴h =1, ∴斜高h ′=12+32=2,∴S 侧=6×12×2×2=12.故选C .3.(2015·重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A .13+2π B .13π6C .7π3D .5π2解析:选B 由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=136π.4.(2017·兰州市实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A .32π B .32C .3πD .3解析:选A 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为32,故体积为43π⎝ ⎛⎭⎪⎫323=32π,故选A . 5.(2016·山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A .7B .27C .4D .5解析:选C 分析题意可知,该几何体为如图所示的四棱锥P ­ABCD ,故其体积V =13×32+32×4×CP =37,∴CP =7,∴x =32+72=4,故选C .6.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V 1,直径为4的球的体积为V 2,则V 1∶V 2=________.解析:由三视图知,该几何体为圆柱内挖去一个底面相同的圆锥,因此V 1=8π-8π3=16π3,V 2=4π3×23=32π3,V 1∶V 2=1∶2. 答案:1∶27.(2016·合肥市第二次质量检测)已知球O 的内接圆柱的轴截面是边长为2的正方形,则球O 的表面积为________.解析:由题意可得,球心在轴截面正方形的中心,则外接球的半径R =12+12=2,该。

2018年大一轮数学理高考复习人教课件第七章 立体几何7

2018年大一轮数学理高考复习人教课件第七章 立体几何7

解析:选 A.反例:①直平行六面体底面是菱形,满足条件但不是 正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体; ③④显然错误,故选 A.
2.给出下列四个命题: ①有两个侧面是矩形的棱柱是直棱柱; ②侧面都是等腰三角形的棱锥是正棱锥; ③侧面都是矩形的直四棱柱是长方体; ④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱 柱. 其中不正确的命题为________.
棱锥
棱台
(2)旋转体的形成
几何体
圆柱 圆锥 圆台 球
旋转图形
矩形 直角三角形 直角梯形或等腰梯形 半圆或圆
旋转轴
矩形一边所在的直线 一直角边所在的直线 直角腰所在的直线或等腰梯形上下 底 中点连线 直径 所在的直线
2.空间几何体的三视图 (1)三视图的名称 几何体的三视图包括: 正视图 、 (2)三视图的画法 ①在画三视图时,重叠的线只画一条,挡住的线要画成 虚线 . ②三视图的正视图、 侧视图、 俯视图分别是从几何体的
基础知识导航
考点典例领航 智能提升返航 课时规范训练
第1课时
空间几何体的结构及三视图、直观图
1.空间几何体的结构特征 (1)多面体的结构特征
多面体 棱柱
结构特征 有两个面 平行 ,其余各面都是四边形且每相邻两个面 的交线都平行且相等 有一个面是多边形,而其余各面都是有一个 公共顶点 的 三角形 棱锥被平行于 底面 的平面所截,截面和底面之间的部分 叫做棱台
答案:B
(2)给出下列命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆 柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是 圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( A.0 C.2 ) B.1 D.3

2018高考数学复习第七章立体几何教师用书文

2018高考数学复习第七章立体几何教师用书文

第七章⎪⎪⎪ 立体几何第一节空间几何体的结构特征及三视图与直观图1.简单几何体(1)简单旋转体的结构特征:①圆柱可以由矩形绕其任一边旋转得到; ②圆锥可以由直角三角形绕其直角边旋转得到;③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;④球可以由半圆或圆绕直径旋转得到. (2)简单多面体的结构特征:①棱柱的侧棱都平行且相等,上下底面是全等的多边形; ②棱锥的底面是任意多边形,侧面是有一个公共点的三角形;③棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.说明:正视图也称主视图,侧视图也称左视图. (2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[小题体验]1.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4解析:选D 由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.2.(教材习题改编)如图,长方体ABCD­A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是______.答案:五棱柱三棱柱1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.[小题纠偏]1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.2.(教材习题改编)利用斜二测画法得到的①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1考点一空间几何体的结构特征 基础送分型考点——自主练透[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B ①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD­A1B1C1D1中的三棱锥C1­ABC,四个面都是直角三角形.答案:②③④[谨记通法]解决与空间几何体结构特征有关问题3个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型;(3)通过反例对结构特征进行辨析.考点二空间几何体的三视图 重点保分型考点——师生共研[典例引领]1.(2017·东北四市联考)如图,在正方体ABCD­A1B1C1D1中,P是线段CD的中点,则三棱锥P­A1B1A的侧视图为( )解析:选D 如图,画出原正方体的侧视图,显然对于三棱锥P­A1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.2.(2015·北京高考)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1 B. 2C. 3 D.2解析:选C 根据三视图,可知几何体的直观图为如图所示的四棱锥V­ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD中,VD=VB2+BD2=3.[由题悟法]1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.[提醒] 对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.[即时应用]1.(2016·沈阳市教学质量监测)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.2.一个几何体的三视图如图所示,则该几何体的直观图可以是( )解析:选D 由俯视图是圆环可排除A 、B 、C ,进一步将已知三视图还原为几何体,可得选项D .考点三 空间几何体的直观图 重点保分型考点——师生共研[典例引领]有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.解析:如图,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1. 由此可还原原图形如图在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.答案:2+22[由题悟法]原图与直观图中的“三变”与“三不变”(1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变 减半图形改变(2)“三不变”⎩⎪⎨⎪⎧平行性不变与x 轴平行的线段长度不变相对位置不变[即时应用]如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形解析:选C 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42cm ,CD =C ′D ′=2 cm .∴OC =OD 2+CD 2= 42 2+22=6 cm , ∴OA =OC ,故四边形OABC 是菱形.一抓基础,多练小题做到眼疾手快1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是( )解析:选D 几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是( ) A .棱柱的两个底面是全等的正多边形 B .平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D 因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台解析:选A 因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.4.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为4 cm,宽为2cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形85.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图,ABCD­A1B1C1D1,如图,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②二保高考,全练题型做到高考达标1.已知底面为正方形的四棱锥,其中一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )解析:选C 根据三视图的定义可知A、B、D均不可能,故选C.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2016·沈阳市教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥解析:选B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2016·淄博一模)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A ­BCD 的正视图与俯视图如图所示,则其侧视图的面积为( )A .22 B .12 C .24D .14解析:选D 由正视图与俯视图可得三棱锥A ­BCD 的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为22,所以侧视图的面积为S =12×22×22=14. 5.已知四棱锥P ­ABCD 的三视图如图所示,则四棱锥P ­ABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PM =3,PN =5,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6. 6.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④7.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm .解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:138.已知正四棱锥V ­ABCD 中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD 的中心O ,连结VO ,AO ,则VO 就是正四棱锥V ­ABCD 的高.因为底面面积为16,所以AO =22. 因为一条侧棱长为211.所以VO =VA 2-AO 2=44-8=6. 所以正四棱锥V ­ABCD 的高为6. 答案:69.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32, C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:6410.已知正三棱锥V ­ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.三上台阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图,共六块.2.(2017·湖南省东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P ­ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4× 42 2-22=47,故四个面中面积最大的为S △PBC =47,选C .3.如图,在四棱锥P ­ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求PA .解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=62. 由正视图可知AD =6, 且AD ⊥PD , 所以在Rt△APD 中,PA =PD 2+AD 2= 62 2+62=63cm .第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式2.空间几何体的表面积与体积公式[小题体验]1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+ 23 2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(教材习题改编)某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以该几何体的体积V =S ·h =⎝ ⎛⎭⎪⎫12×2×3×3=33. 答案:3 33.正三棱柱ABC ­A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A ­B 1DC 1的体积为________.解析:在正三棱柱ABC ­A1B 1C 1中,∵AD ⊥BC ,AD ⊥BB 1,BB 1∩BC =B ,∴AD ⊥平面B 1DC 1. ∴VA ­B 1DC 1=13S △B 1DC 1·AD =13×12×2×3×3=1.答案:11.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念. [小题纠偏]1.(教材习题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶12.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+162.答案:72+16 2考点一 空间几何体的表面积 基础送分型考点——自主练透[题组练透]1.(易错题)(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B .2.(2015·福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+22.3.某几何体的三视图如图所示,则它的侧面积为( )A .12 5B .24 2C .24D .12 3解析:选A 由三视图得, 这是一个正四棱台,由条件知斜高h =22+12=5, 侧面积S = 2+4 ×52×4=125.[谨记通法] 几何体的表面积的求法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.注意衔接部分的处理,如“题组练透”第1题.考点二 空间几何体的体积 重点保分型考点——师生共研[典例引领]1.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A .13+23π B .13+23π C .13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝ ⎛⎭⎪⎫223=13+26π. 2.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18 B .17 C .16D .15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15.[由题悟法]有关几何体体积的类型及解题策略[即时应用]1.(2016·西安质检)某几何体的三视图如图所示,该几何体的体积为( )A .43 B .52 C .73D .3解析:选A 根据几何体的三视图,得该几何体是下部为直三棱柱,上部为三棱锥的组合体,如图所示.则该几何体的体积是V 几何体=V 三棱柱+V 三棱锥=12×2×1×1+13×12×2×1×1=43.2.(2017·云南省统检)如图是底面半径为1,高为2的圆柱被削掉一部分后剩下的几何体的三视图,则被削掉的那部分的体积为( )A .π+23B .5π-23C .5π3-2D .2π-23解析:选B 由三视图可知,剩下部分的几何体由半个圆锥和一个三棱锥组成, 其体积V =13×12×π×12×2+13×12×2×1×2=π3+23,∴被削掉的那部分的体积为π×12×2-⎝ ⎛⎭⎪⎫π3+23=5π-23. 3.(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析:由三视图知该几何体是一个组合体,左边是一个长方体,交于一点的三条棱的长分别为2 cm,4 cm,2 cm ,右边也是一个长方体,交于一点的三条棱的长分别为2 cm ,2 cm ,4 cm .几何体的表面积为(2×2+2×4+2×4)×2×2-2×2×2=72(cm 2), 体积为2×2×4×2=32(cm 3). 答案:72 32考点三 与球有关的切、接问题 题点多变型考点——多角探明 [锁定考向]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变. 常见的命题角度有:(1)正四面体的内切球与四棱锥的外接球;(2)直三棱柱的外接球;(3)正方体(长方体)的内切、外接球.[题点全练]角度一:正四面体的内切球与四棱锥的外接球1.(2017·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度二:直三棱柱的外接球2.已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A .3172B .210C .132D .310解析:选C 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎫522+62=132.角度三:正方体(长方体)的内切、外接球3.如图,已知球O 是棱长为1的正方体ABCD ­A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A .66π B .π3C .π6D .33π 解析:选C 平面ACD 1截球O 的截面为△ACD 1的内切圆.因为正方体的棱长为1,所以AC =CD 1=AD 1=2,所以内切圆的半径r =22×tan 30°=66, 所以S =πr 2=π×16=16π.[通法在握]“切”“接”问题处理的注意事项(1)“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[演练冲关]1.(2017·广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20πB .205π3C .5πD .55π6解析:选D 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,∴球半径为R =r 2+⎝ ⎛⎭⎪⎫h 22=1+14=52,∴该球的体积V =43πR 3=43×⎝ ⎛⎭⎪⎫523π=55π6. 2.(2016·河南省六市第一次联考)三棱锥P ­ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为( )A .253πB .252πC .833πD .832π解析:选D 由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,∴x 2=32+(6-x )2,解得x =546,∴R 2=x 2+⎝ ⎛⎭⎪⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),∴外接球的表面积S =4πR 2=832π,故选D .一抓基础,多练小题做到眼疾手快1.一个球的表面积是16π,那么这个球的体积为( ) A .163πB .323πC .16πD .24π解析:选B 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2.所以体积为43πR 3=32π3.2.(2016·长春市质量检测(二))几何体的三视图如图所示,则该几何体的体积为( ) A .323B .16-2π3C .403D .16-8π3解析:选 C 该几何体可视为长方体挖去一个四棱锥所得,所以其体积为2×2×4-13×2×2×2=403.故选C .3.(2016·全国乙卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π解析:选A 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A .4.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V = 1+2 ×12×1=32.答案:325.(2015·天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.答案:83π二保高考,全练题型做到高考达标1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r ,则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.2.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为( )A .6B .8C .12D .24解析:选C 由题意可知该六棱锥为正六棱锥,正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×34×22×h =23,∴h =1,∴斜高h ′=12+ 3 2=2, ∴S 侧=6×12×2×2=12.故选C .3.(2015·重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A .13+2π B .13π6C .7π3D .5π2解析:选B 由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=136π.4.(2017·兰州市实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A .32π B .32C .3πD .3解析:选A 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为32,故体积为43π⎝ ⎛⎭⎪⎫323=32π,故选A . 5.(2016·山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A .7B .27C .4D .5解析:选C 分析题意可知,该几何体为如图所示的四棱锥P ­ABCD ,故其体积V =13×32+32×4×CP =37,∴CP =7,∴x =32+ 7 2=4,故选C .6.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V 1,直径为4的球的体积为V2,则V 1∶V 2=________.解析:由三视图知,该几何体为圆柱内挖去一个底面相同的圆锥,因此V 1=8π-8π3=16π3,V 2=4π3×23=32π3,V 1∶V 2=1∶2. 答案:1∶27.(2016·合肥市第二次质量检测)已知球O 的内接圆柱的轴截面是边长为2的正方形,则球O 的表面积为________.。

2018版大一轮全国人教数学文科配套作业 第7单元 立体

2018版大一轮全国人教数学文科配套作业 第7单元 立体

课时作业(三十八)基础热身1.将如图K38­1所示的直角三角形ABC (∠C =90°)绕斜边AB 旋转一周,所得到的几何体的正视图是( )图K38­1图K38­22.[2016·珠海二检] 某几何体的三视图如图K38­3所示,则该几何体的最短的棱的长度是( )A .1 B. 2 C. 3 D .2图K38­33.[2016·成都二诊] 已知某几何体的三视图如图K38­4所示,则该几何体的体积为( )图K38­4A.12 B .1 C.32 D .3 4.[2016·山东济宁模拟] 若一个几何体的三视图如图K38­5所示,则该几何体的表面积为( )图K38­5A .75+210B .75+410C .48+410D .48+210 5.[2016·湖南师大附中二模] 如图K38­6所示,将边长为2的正方形ABCD 沿对角线BD 折起得到一个三棱锥C -ABD ,已知该三棱锥的正视图与俯视图如图所示,则其侧视图的面积为________.图K38­6能力提升6.[2016·福建漳州二模] 某四面体的三视图如图K38­7所示,则该四面体四个面的最大面积是( )图K38­7A .8B .6 2C .10D .8 2图K38­87.[2016·河北枣强中学月考] 一个水平放置的平面图形用斜二测画法画出的直观图是一个直角梯形(如图K38­8所示),其中∠A ′B ′C ′=45°,A ′B ′=A ′D ′=1,D ′C ′⊥B ′C ′,则平面图形ABCD 的面积为( )A.14+24 B .2+22 C.14+22 D.12+ 2图K38­9 8.[2016·成都一诊] 如图K38­9为一个半球被挖去一个圆锥后的几何体的三视图,则该几何体与挖去的圆锥的体积之比为( )A .3∶1B .2∶1C .1∶1D .1∶29.[2016·湖南四县一模] 在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点(如图K38­10所示),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )图K38­10图K38­1110.[2016·河北邯郸模拟] 一个空间几何体的三视图如图K38­12所示,则该几何体的体积为( )图K38­12A .2 3B .2 5 C.433 D.53311.[2016·南昌模拟] 如图K38­13所示,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )图K38­13A .1∶1B .2∶1C .2∶3D .3∶2 12.[2016·长春质检] 祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如果在等高处截面的面积恒相等,则体积相等.已知某不规则几何体与三视图为图K38­14所对应的几何体满足“幂势同”,则该不规则几何体的体积为( )A .4-π2B .8-4π3C .8-πD .8-2π图K38­1413.[2016·玉溪三模] 某几何体的三视图如图K38­15所示,且该几何体的体积是3,则正视图中x 的值是( )图K38­15A .2 B.92C.32 D .3 14.[2016·福建泉州质检] 已知A ,B ,C 在球O 的球面上,AB =1,BC =2,∠ABC =60°,且点O 到平面ABC 的距离为2,则球O 的表面积为________.15.[2016·大连一模] 已知正三棱柱ABC -A 1B 1C 1的所有顶点都在半径为1的球面上,当正三棱柱的体积最大时,该正三棱柱的高为________.难点突破16.(1)(6分)[2016·河南中原名校一联] 如图K38­16所示,ABCD -A 1B 1C 1D 1是边长为1的正方体,S -ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的表面积为( )图K38­16A.916πB.2516πC.4916πD.8116π (2)(6分)[2016·山西阳泉模拟] 点 A ,B ,C ,D 在同一个球面上,AB =BC =2,AC =2,若球的表面积为25π4,则四面体ABCD 体积的最大值为________.课时作业(三十九)基础热身1.l1,l2,l3是空间三条不同的直线,则下列说法正确的是()A.若l1⊥l2,l2⊥l3,则l1∥l3B.若l1⊥l2,l2∥l3,则l1⊥l3C.若l1∥l2∥l3,则l1,l2,l3共面D.若l1,l2,l3共点,则l1,l2,l3共面2.[2016·江西七校联考] 已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面3.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直4.[2016·长春一模] 一个正方体的展开图如图K39­1所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°图K39­1图K39­25.[2016·海南文昌中学期末] 如图K39­2所示,已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成角的大小为________.能力提升6.如图K39­3所示,在正方体ABCD-A1B1C1D1中,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论中错误的是()图K39­3A.A,M,O三点共线B.M,O,A1,A四点共面C.A,O,C,M四点共面D.B,B1,O,M四点共面7.已知命题“直线l与平面α有公共点”是真命题,给出下列命题:①直线l上的点都在平面α内;②直线l上有些点不在平面α内;③平面α内任意一条直线都不与直线l 平行. 其中真命题的个数是( ) A .3 B .2 C .1 D .0 8.[2016·广州调研] 用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a ⊥b ,b ⊥c ,则a ∥c ; ②若a ∥b ,b ∥c ,则a ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ; ④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( )A .①②B .②③C .①④D .②④图K39­49.[2016·衡水中学六调] 如图K39­4所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为正方形,AA 1=2AB ,则异面直线A 1B 与AD 1所成的角的余弦值为( )A.15B.25C.35D.4510.已知异面直线a ,b 均与平面α相交,给出下列命题: ①存在直线m ⊂α,使得m ⊥a 或m ⊥b ; ②存在直线m ⊂α,使得m ⊥a 且m ⊥b ;③存在直线m ⊂α,使得m 与a 和b 所成的角相等. 其中,假命题的个数为( ) A .0 B .1 C .2 D .3 11.[2016·浙江五校二联] 如图K39­5所示,在边长为1的菱形ABCD 中,∠DAB =60° ,沿BD 将△ABD 翻折,得到三棱锥A -BCD ,则当三棱锥A -BCD 的体积最大时,异面直线AD与BC 所成的角的余弦值为( )图K39­5A.58B.14C.1316D.23 12.[2016·哈尔滨六中模拟] 如图K39­6所示,在四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形,则异面直线CD 与PB 所成角的大小为( )A .90°B .75°C .60°D .45°图K39­6图K39­713.如图K39­7所示,在四面体ABCD 中,E ,F 分别为AB ,CD 的中点,过EF 任作一个平面α分别与直线BC ,AD 相交于点G ,H ,则下列结论中正确的是________(填序号).①对于任意的平面α,都有直线GF ,EH ,BD 相交于同一点; ②存在一个平面α0,使得GF ∥EH ∥BD ;③存在一个平面α0,使得点G 在线段BC 上,点H 在线段AD 的延长线上.14.(10分)如图K39­8所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD都是直角梯形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G ,H 分别为F A ,FD 的中点.(1)求证:四边形BCHG 是平行四边形. (2)C ,D ,F ,E 四点是否共面?为什么?图K39­815.(13分)[2016·冀州中学模拟] 如图K39­9所示,在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =60°,P A =AB =AC =2,E 是PC 的中点.(1)求证:AE 与PB 是异面直线;(2)求异面直线AE 和PB 所成角的余弦值.图K39­9难点突破16.(12分)[2016·湖南十三校二联] 如图K39­10所示,在四棱锥O -ABCD 中,底面ABCD是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小; (2)求点B 到平面OCD 的距离.图K39­10课时作业(四十)基础热身1.[2016·山西重点中学二模] 已知l,m是两条不同的直线,α是一个平面,则下列说法正确的是()A.若l∥α,m∥α,则l∥mB.若l⊥m,m∥α,则l⊥αC.若l⊥α,m⊥α,则l∥mD.若l⊥m,l⊥α,则m∥α2.[2016·河南实验中学质检] 已知直线m,n和平面α,则m∥n的一个必要条件是() A.m∥α,n∥αB.m⊥α,n⊥αC.m∥α,n⊂αD.m,n与α所成的角相等3.[2016·成都二诊] 已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列说法中正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β4.如图K40­1所示,P为平行四边形ABCD所在平面外的一点,过BC的平面与平面P AD交于EF,E,F分别在PD,P A上,则四边形EFBC是()A.空间四边形B.平行四边形C.梯形D.以上都有可能图K40­1图K40­25.[2016·泉州一模] 如图K40­2所示,四棱锥P-ABCD的底面是直角梯形,AB∥CD,BA⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点,则BE与平面P AD的位置关系为________.能力提升6.[2016·长春质检] 已知直线m,n与平面α,β,则下列说法中错误的是()A.若m⊥α,n⊥α,则m∥nB.若m⊥β,n∥β,则m⊥nC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若m∥n,n⊂α,则m∥α7.[2016·广东七校联考] 设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α8.已知直线l ,平面α,β,γ,则下列能推出α∥β的条件是( ) A .l ⊥α,l ∥β B .l ∥α,l ∥β C .α⊥γ,γ⊥β D .α∥γ,β∥γ 9.如图K40­3所示,在正方体ABCD - A 1B 1C 1D 1中,E ,F 分别为棱AB ,CC 1的中点,则在平面ADD 1A 1内与平面D 1EF 平行的直线( )A .不存在B .有1条C .有2条D .有无数条图K40­3图K40­410.如图K40­4所示,三棱柱ABC - A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点,且A 1B ∥平面B 1CD ,则A 1D ∶DC 1=( )A .1∶2B .2∶1C .1∶3D .1∶111.如图K40­5所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 的长度的取值范围是( )图K40­5A.⎣⎡⎦⎤1,52 B.⎣⎡⎦⎤324,52 C.⎣⎡⎦⎤52,2 D.[]2,3 12.[2016·郑州模拟] 设α,β,γ为三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ.则可以填入的条件有( )A .①或②B .②或③C .①或③D .①或②或③ 13.[2016·枣强中学模拟] 如图K40­6所示,在正四棱柱A 1C 中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________,就有MN ∥平面B 1BDD 1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)图K40­614.(10分)[2016·冀州中学模拟] 如图K40­7所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.图K40­715.(13分)[2016·西安模拟] 如图K40­8所示,在梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.(1)证明:AC∥平面BEF;(2)求三棱锥D-BEF的体积.图K40­8难点突破16.(12分)[2016·淄博诊断] 如图K40­9所示,在梯形ABCD中,AB∥CD,AB=2AD =2DC=2CB=2,四边形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,点G是BF的中点.(1)求证:CG∥平面ADF;(2)求三棱锥E-AFB的体积.图K40­9课时作业(四十一)基础热身1.已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直2.[2016·山东枣庄模拟] 给出下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是()A.①和②B.②和③C.③和④D.②和④图K41­13.[2016·九江模拟] 如图K41­1所示,在四面体D-ABC中,若AB=CB,AD=CD,E 是AC的中点,则下列结论正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE4.[2017·成都模拟] 已知m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,n⊥β,且β⊥α,则下列结论中一定正确的是()A.m⊥nB.m∥nC.m与n相交D.m与n异面5.[2016·上海十二校联考] 设直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①若m∥α,则l∥m;②若α∥β,则l⊥m;③若l⊥m,则α∥β;④若α⊥β,则l∥m.其中真命题的序号是________.能力提升6.[2016·广州六校一联] 设l,m,n为三条不同的直线,α为一个平面,则下列说法中正确的个数是()①若l⊥α,则l与α相交;②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;③若l∥m,m∥n,l⊥α,则n⊥α;④若l∥m,m⊥α,n⊥α,则l∥n.A.1 B.2C.3 D.47.[2016·云南玉溪模拟] 已知m,n为异面直线,α,β为两个不同平面,且α∥m,α∥n,直线l满足l⊥m,l⊥n,l∥β,则()A.α∥β且l∥αB.α∥β且l⊥αC.α⊥β且l∥αD.α⊥β且l⊥α8.[2016·陕西镇安中学月考] 关于直线l,m及平面α,β,下列说法中正确的是() A.若l∥α,α∩β=m,则l∥mB.若l∥α,m∥α,则l∥mC.若l⊥α,l∥β,则α⊥βD.若l∥α,l∥m,则m⊥α9.[2016·成都一诊] 已知m,n为空间中两条不同的直线,α,β为空间中两个不同的平面,则下列说法中正确的是()A.若m∥α,m∥β,则α∥βB.若m⊥α,m⊥n,则n∥αC.若m∥α,m∥n,则n∥αD.若m⊥α,m∥β,则α⊥β10.[2016·江西上饶中学模拟] 在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC()A.为锐角三角形B.为直角三角形C.为钝角三角形D.形状不能确定11.如图K41­2所示,在三棱锥P -ABC中,已知P A⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点,则下列说法错误的是()图K41­2A.当AE⊥PB时,△AEF一定为直角三角形B.当AF⊥PC时,△AEF一定为直角三角形C.当EF∥平面ABC时,△AEF一定为直角三角形D.当PC⊥平面AEF时,△AEF一定为直角三角形12.如图K41­3所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC 为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.图K41-3图K41­413.如图K41­4所示,P A ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的正投影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC .其中正确结论的序号是________. 14.(10分)[2016·河南中原名校联考] 如图K41­5所示,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD ,AB ∥DC ,△SAD 是等边三角形,且SD =2,BD =23,AB =2CD =4.(1)证明:平面SBD ⊥平面SAD .(2)若E 是SC 上的一点,当E 点位于线段SC 上什么位置时,SA ∥平面EBD ?请证明你的结论.(3)求四棱锥S -ABCD 的体积.图K41­515.(13分)[2016·赣州模拟] 如图K41­6所示,在底面为梯形的四棱锥P - ABCD 中,平面P AB ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,AD =CD =2,BC =4.(1)求证:AC ⊥PB ;(2)若P A =PB ,且三棱锥D -P AC 的体积为23,求AP 的长.图K41­6难点突破 16.(12分)如图K41­7(1)所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1­BCD ,如图K41­7(2)所示.(1)若M 是FC 的中点,求证:直线DM ∥平面A 1EF . (2)求证:BD ⊥A 1F .(3)若平面A 1BD ⊥平面BCD ,试判断直线A 1B 与直线CD 能否垂直?并说明理由.图K41­7。

2018届高考数学文大一轮复习教师用书:第7章 立体几何

2018届高考数学文大一轮复习教师用书:第7章 立体几何

第二节空间几何体的表面积与体积————————————————————————————————了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)锥体的体积等于底面面积与高之积.( )(2)球的体积之比等于半径比的平方.( )(3)台体的体积可转化为两个锥体的体积之差.( )(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.( )(1)×(2)×(3)√(4)√2.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D.32cmB3.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图7­2­1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )图7­2­1A.14斛B.22斛C.36斛D.66斛B4.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.32 3πC.8πD.4πA5.(2017·郑州质检)某几何体的三视图如图7­2­2所示(单位:cm),则该几何体的体积是________cm3.图7­2­2323(1)某几何体的三视图如图7­2­3所示,则该几何体的表面积等于( )图7­2­3A .8+2 2B .11+2 2C .14+2 2D .15(2)(2016·全国卷Ⅰ)如图7­2­4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图7­2­4A .17πB .18πC .20πD .28π(1)B (2)A1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.(2016·全国卷Ⅲ)如图7­2­5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )【导学号:31222245】图7­2­5A .18+36 5B .54+18 5C .90D .81B(1)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π(2)(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图7­2­6所示(单位:m),则该四棱锥的体积为________m3.图7­2­6(1)C(2)21.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解.2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.一个几何体的三视图如图7­2­7所示(单位:m),则该几何体的体积为________m3.图7­2­783π111AB ⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4π B.9π2C.6π D.32π3B若本例中的条件变为“直三棱柱ABC­A1B1C1的6个顶点都在球O的球面上”,若AB =3,AC=4,AB⊥AC,AA1=12,求球O的表面积.将直三棱柱补形为长方体ABEC­A′B′E′C′,则球O 是长方体ABEC ­A ′B ′E ′C ′的外接球, ∴体对角线BC ′的长为球O 的直径. 因此2R =32+42+122=13, 故S 球=4πR 2=169π.若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.(2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256πC1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.1.求组合体的表面积时,要注意各几何体重叠部分的处理,防止重复计算.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.课时分层训练(三十九)空间几何体的表面积与体积A组基础达标(建议用时:30分钟)一、选择题1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C.22πD.42πB2.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )【导学号:31222246】A.32π3B .4πC .2π D.4π3D3.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图7­2­8所示,则该几何体的体积为( )图7­2­8A.13+23πB.13+23πC.13+26π D .1+26π C4.某几何体的三视图如图7­2­9所示,且该几何体的体积是3,则正视图中的x 的值是( )【导学号:31222247】图7­2­9A .2B.92C.32D.3D5.(2016·江南名校联考)一个四面体的三视图如图7­2­10所示,则该四面体的表面积是( )图7­2­10A.1+ 3 B.2+ 3C.1+2 2 D.2 2B二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______.【导学号:31222248】77.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.128.某几何体的三视图如图7­2­11所示,则该几何体的体积为________.图7­2­11136π 三、解答题9.如图7­2­12,在三棱锥D ­ABC 中,已知BC ⊥AD ,BC =2,AD =6,AB +BD =AC +CD =10,求三棱锥D ­ABC 的体积的最大值.图7­2­12由题意知,线段AB +BD 与线段AC +CD 的长度是定值,∵棱AD 与棱BC 相互垂直,设d 为AD 到BC 的距离,4分则V D ­ABC =AD ·BC ×d ×12×13=2d ,当d 最大时,V D ­ABC 体积最大.8分 ∵AB +BD =AC +CD =10, ∴当AB =BD =AC =CD =5时,d 有最大值42-1=15.此时V =215.12分10.四面体ABCD 及其三视图如图7­2­13所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .图7­2­13(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,3分∴四面体ABCD 的体积V =13×12×2×2×1=23.5分 (2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,8分∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG .∴四边形EFGH 是矩形.12分B 组 能力提升(建议用时:15分钟)1.(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图7­2­14所示.若该几何体的表面积为16+20π,则r =( )图7­2­14A .1B .2C .4D .8B2.三棱锥P ­ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ­ABE 的体积为V 1,P ­ABC 的体积为V 2,则V 1V 2=________. 143.(2016·全国卷Ⅰ)如图7­2­15,已知正三棱锥P ­ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G .图7­2­15(1)证明:G 是AB 的中点;(2)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.(1)证明:因为P 在平面ABC 内的正投影为D ,所以AB ⊥PD .因为D 在平面PAB 内的正投影为E ,所以AB ⊥DE .3分因为PD ∩DE =D ,所以AB ⊥平面PED ,故AB ⊥PG .又由已知可得,PA =PB ,所以G 是AB 的中点.5分(2)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.7分理由如下:由已知可得PB ⊥PA ,PB ⊥PC ,又EF ∥PB ,所以EF⊥PA ,EF ⊥PC .又PA ∩PC =P ,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .10分由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC . 由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PE =2 2.在等腰直角三角形EFP 中,可得EF =PF =2,所以四面体PDEF 的体积V =13×12×2×2×2=43.12分。

2018届高三数学理一轮总复习课时规范训练:第七章 立

2018届高三数学理一轮总复习课时规范训练:第七章 立

课时规范训练[A级基础演练]1.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c( )A.一定平行B.一定相交C.一定是异面直线D.一定垂直解析:选D.∵a⊥b,b∥c,∴a⊥c.2.(2017·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a 在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( ) A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析:选D.依题意,直线b和c的位置关系可能是相交、平行或异面,故选D.3.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件答案:D4.若直线a平行于平面α,则下列结论错误的是( )A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角解析:选A.若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.5.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:选D.在如图所示的正六面体中,不妨设l2为直线AA1,l3为直线CC1,则直线l1,l4可以是AB,BC;也可以是AB,CD;也可以是AB,B1C1,这三组直线可以相交,平行,垂直,异面,故选D.6.过同一点的4条直线中,任意3条都不在同一平面内,则这四条直线确定平面的个数为 .解析:由题意知这4条直线中的每两条都确定一个平面,因此,共可确定6个平面. 答案:67.(2017·揭阳模拟)如图所示,在正三棱柱ABC ­A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为 .解析:如图,取A 1C 1的中点D 1,连接B 1D 1,因为D 是AC 的中点,所以B 1D 1∥BD ,所以∠AB 1D 1即为异面直线AB 1与BD 所成的角.连接AD 1,设AB =a ,则AA 1=2a ,所以AB 1=3a ,B 1D 1=32a , AD 1=14a 2+2a 2=32a , 所以,在△AB 1D 1中,由余弦定理得,cos ∠AB 1D 1=AB 21+B 1D 21-AD 212AB 1·B 1D 1=3a 2+34a 2-94a22×3a ×32a=12, 所以∠AB 1D 1=60°. 答案:60°8.(2017·福建六校联考)设a ,b ,c 是空间中的三条直线,下面给出四个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线. 上述命题中正确的命题是 (写出所有正确命题的序号)解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,或异面,故②错;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③错;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④错.答案:①9.在正方体ABCD­A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.解析:法一:在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有1个交点N,M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点,如图所示.法二:在A1D1上任取一点P,过点P与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设它们交于点Q,连接PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交.答案:无数10.如图,正方体ABCD­A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠2,有以下四个结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1是异面直线.其中正确结论的序号是.(注:把你认为正确命题的序号都填上)解析:过N作NP⊥BB1于点P,连接MP,可证AA1⊥平面MNP,∴AA1⊥MN,①正确.过M、N分别作MR⊥A1B1、NS⊥B1C1于点R、S,则当M不是AB1的中点、N不是BC1的中点时,直线A1C1与直线RS相交;当M、N分别是AB1、BC1的中点时,A1C1∥RS,∴A1C1与MN可以异面,也可以平行,故②④错误.由①正确知,AA1⊥平面MNP,而AA1⊥平面A1B1C1D1,∴平面MNP∥平面A1B1C1D1,故③对.综上所述,其中正确的序号是①③.答案:①③[B级能力突破]1.如图,ABCD­A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面解析:选A.连接A 1C 1,AC ,则A 1C 1∥AC ,所以A 1,C 1,C ,A 四点共面,所以A 1C ⊂平面ACC 1A 1,因为M ∈A 1C ,所以M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 在平面ACC 1A 1与平面AB 1D 1的交线上,所以A ,M ,O 三点共线.故选A.2.如图是某个正方体的侧面展开图,l 1,l 2是两条侧面对角线,则在正方体中,l 1与l 2( )A .互相平行B .异面且互相垂直C .异面且夹角为π3D .相交且夹角为π3解析:选D.将侧面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,则△ABD 为正三角形,所以l 1与l 2的夹角为π3.故选D.3.正方体ABCD ­A 1B 1C 1D 1中,E ,F ,G 分别是A 1B 1,CD ,B 1C 1的中点,则正确的命题是( )A .AE ⊥CGB .AE 与CG 是异面直线C .四边形AEC 1F 是正方形D .AE ∥平面BC 1F解析:选D.由正方体的几何特征知,AE 与平面BCC 1B 1不垂直,则AE ⊥CG 不成立;由于EG ∥A 1C 1∥AC ,故A 、E 、G 、C 四点共面,所以AE 与CG 是异面直线错误;在四边形AEC 1F 中,AE =EC 1=C 1F =AF ,但AF 与AE 不垂直,故四边形AEC 1F 是正方形错误;由于AE ∥C 1F ,由线面平行的判定定理,可得AE ∥平面BC 1F .4.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是( )A.1 B.2C.3 D.4解析:选B.易知①正确;②错误,l与α的具体关系不能确定;③错误,以墙角为例即可说明,④正确,可以以三棱柱为例证明.5.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:36.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;以上四个命题中,正确命题的序号是.解析:还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角.答案:②③。

2018届高三数学(理)一轮总复习课时规范训练第七章立体几何7-5Word版含答案

2018届高三数学(理)一轮总复习课时规范训练第七章立体几何7-5Word版含答案

课时规范训练[A级基础演练]1.设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是( )A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C.∵b⊥β,α∥β,∴b⊥α.又∵a⊂α,∴b⊥a.故选C.2.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析:选D.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l,故选D.3.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是( ) A.m∥α,n∥β,且α∥β,则m∥nB.m⊥α,n⊥β,且α⊥β,则m⊥nC.m⊥α,m⊥n,n⊂β,则α⊥βD.m⊂α,n⊂α,m∥β,n∥β,则α∥β解析:选B.m与n的位置关系为平行,异面或相交,∴A错误;根据面面垂直的性质可知B正确;由题中的条件无法推出α⊥β,∴C错误;只有当m与n相交时,结论才成立,∴D错误.故选B.4.如图,P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )A.平面PAB与平面PBC、平面PAD都垂直B.它们两两垂直C.平面PAB与平面PBC垂直,与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直解析:选A.∵DA⊥AB,DA⊥PA,AB∩PA=A,∴DA⊥平面PAB,又DA⊂平面PAD,∴平面PAD⊥平面PAB,同理可证平面PAB⊥平面PBC.5.(2017·佳木斯名校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β,其中正确的命题的个数是( )A.1 B.2C.3 D.4解析:选B.①中,α∥β,且m⊥α,则m⊥β,因为l⊂β,所以m⊥l,所以①正确;②中,α⊥β,且m⊥α,则m∥β或m⊂β,又l⊂β,则m与l可能平行,可能异面,可能相交,所以②不正确;③中,m⊥l,且m⊥α,l⊂β,则α与β可能平行,可能相交,所以③不正确;④中,m∥l,且m⊥α,则l⊥α,因为l⊂β,所以α⊥β,所以④正确,故选B.6.设α,β是空间中两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题: (填序号).解析:因为当n⊥β,m⊥α时,平面α及β所成的二面角与直线m,n所成的角相等或互补,所以若m⊥n,则α⊥β,从而由①③④⇒②正确;同理②③④⇒①也正确.答案:①③④⇒②或②③④⇒①7.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:(1)若a∥α且b∥α,则a∥b;(2)若a⊥α且a⊥β,则α∥β;(3)若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;(4)若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是.解析:(1)中a与b可能相交或异面,故不正确.(2)垂直于同一直线的两平面平行,正确.(3)空间中存在γ,使得γ与α,β都垂直.(4)空间中只需直线l⊥α且l⊄β就可以.答案:(2)(3)(4)8.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的点,P是平面ABC 外一点.给出下列四个命题:①若PA⊥平面ABC,则三棱锥P­ABC的四个面都是直角三角形;②若PM⊥平面ABC,且M是AB边的中点,则有PA=PB=PC;③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为152;④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则点P到平面ABC的距离为23.其中正确命题的序号是.(把你认为正确命题的序号都填上)解析:由题意知AC ⊥BC ,对于①,若PA ⊥平面ABC ,则PA ⊥BC ,又PA ∩AC =A ,∴BC ⊥平面PAC ,∴BC ⊥PC ,因此该三棱锥P ­ABC 的四个面均为直角三角形,①正确;对于②,由已知得M 为△ABC 的外心,所以MA =MB =MC .∵PM ⊥平面ABC ,则PM ⊥MA ,PM ⊥MB ,PM ⊥MC ,由三角形全等可知PA =PB =PC ,故②正确;对于③,要使△PCM 的面积最小,只需CM 最短,在Rt△ABC 中,CM min =125,∴S △PCM min =12×125×5=6,故③错误;对于④,设P 点在平面ABC 内的射影为O ,且O 为△ABC 的内心,由平面几何知识得△ABC 的内切圆半径r =1,且OC =2,在Rt△POC 中,PO =PC 2-OC 2=23,∴点P 到平面ABC 的距离为23,故④正确. 答案:①②④9.(2016·高考北京卷)如图,在四棱锥P ­ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点.在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由. 证明:(1)因为PC ⊥平面ABCD ,所以PC ⊥DC .又因为DC ⊥AC ,PC ∩CA =C ,所以DC ⊥平面PAC .(2)因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB ,且PC ∩AC =C ,所以AB ⊥平面PAC ,且AB ⊂面PAB .所以平面PAB ⊥平面PAC .(3)棱PB 上存在点F ,使得PA ∥平面CEF .证明如下:如图,取PB 中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥PA .又因为PA ⊄平面CEF ,所以PA ∥平面CEF .10.如图,四棱锥P ­ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面PAC .证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC . 因此四边形ABCE 为菱形,所以O 为AC 的中点.又F为PC的中点,因此在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC,所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以BE⊥平面PAC.[B级能力突破]1.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,则m∥α,且m∥β;④若α⊥γ,β⊥γ,则α∥β.其中真命题的个数为( )A.0 B.1C.2 D.3解析:选B.①m∥n或m,n异面,故①错误;②根据面面平行的性质以及线面垂直的性质可知②正确;③m∥α或m⊂α,m∥β或m⊂β,故③错误;④根据面面垂直的性质以及面面平行的判定可知④错误,所以真命题的个数为1,故选B.2.如图所示,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,下列说法正确的是 (填上所有正确的序号).①不论D折至何位置(不在平面ABC内)都有MN∥平面DEC;②不论D折至何位置都有MN⊥AE;③不论D折至何位置(不在平面ABC内)都有MN∥AB.解析:取AE的中点F,连接MF,NF,则MF∥DE,NF∥AB∥CE,从而平面MFN∥平面DEC,故MN∥平面DEC,①正确;又AE⊥MF,AE⊥NF,所以AE⊥平面MFN,从而AE⊥MN,②正确;又MN与AB是异面直线,则③错误.答案:①②3.如图,在四棱锥P­ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,BD=43,AB=2CD=8.(1)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(2)求四棱锥P ­ABCD 的体积.解:(1)证明:在△ABD 中,∵AD =4,BD =43,AB =8,∴AD 2+BD 2=AB 2.∴AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面PAD .又BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 于O ,则PO ⊥AD .∵平面PAD ⊥平面ABCD ,∴PO ⊥平面ABCD .即PO 为四棱锥P ­ABCD 的高.又△PAD 是边长为4的等边三角形,∴PO =4×32=2 3. 在Rt△ADB 中,斜边AB 上的高为4×438=23,此即为梯形ABCD 的高. ∴S 梯形ABCD =4+82×23=12 3. ∴V P ­ABCD =13×123×23=24. 4.如图,四边形ABCD 为正方形,EA ⊥平面ABCD ,EF ∥AB ,AB =4,AE =2,EF =1.(1)求证:BC ⊥AF ;(2)若点M 在线段AC 上,且满足CM =14CA ,求证:EM ∥平面FBC ; (3)试判断直线AF 与平面EBC 是否垂直?若垂直,请给出证明;若不垂直,请说明理由. 解:(1)证明:因为EF ∥AB ,所以EF 与AB 确定平面EABF ,因为EA ⊥平面ABCD ,所以EA ⊥BC .由已知得AB ⊥BC 且EA ∩AB =A ,所以BC ⊥平面EABF .又AF ⊂平面EABF ,所以BC ⊥AF .(2)证明:如图,过点M 作MN ⊥BC ,垂足为点N ,连接FN ,则MN ∥AB .因为CM =14AC ,所以MN =14AB .又EF ∥AB 且EF =14AB ,所以EF ═∥MN , 所以四边形EFNM 为平行四边形,所以EM ∥FN .又FN ⊂平面FBC ,EM ⊄平面FBC ,所以EM ∥平面FBC .(3)直线AF 垂直于平面EBC .证明如下:由(1)可知,AF ⊥BC .在四边形ABFE中,AB=4,AE=2,EF=1,∠BAE=∠AEF=90°,所以tan∠EBA=tan∠FAE=12,则∠EBA=∠FAE.设AF∩BE=P,因为∠PAE+∠PAB=90°,所以∠PBA+∠PAB=90°,则∠APB=90°,即EB⊥AF.又EB∩BC=B,所以AF⊥平面EBC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时规范训练
《第七章立体几何》7-1
A组基础演练
1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()
A.20B.15
C.12D.10
解析:选D.如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()
A.球B.三棱锥
C.正方体D.圆柱
解析:选D.球、正方体的三视图形状都相同、大小均相等,首先排除选项A和C.
对于如图所示三棱锥O-ABC,
当OA、OB、OC两两垂直且OA=OB=OC时,其三视图的形状都相同,大小均
相等,故排除选项B.
不论圆柱如何设置,其三视图的形状都不会完全相同,故答案选D.
3.如图是一几何体的直观图、主视图和俯视图.在主视图右侧,按照画三视图的要求画出的该几何体的左视图是()
解析:选B.由直观图和主视图、俯视图可知,该几何体的左视图应为面P AD ,且EC 投影在面PAD 上,故B 正确.
4.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()
解析:选C.注意到在三视图中,俯视图的宽度应与左视图的宽度相等,而在选项C 中,其宽度为3,与题中所给的左视图的宽度不相等,C 不可能.
5.如图是一正方体被过棱的中点M、N和顶点A、D、C1的两个截面截去两个角后所得的几何体,则该几何体的主视图为()
解析:选B.还原正方体,如图所示,由题意可知,该几何体的主视图是选项B.
6.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD 平行于x轴.已知四边形ABCD的面积为22cm2,则原平面图形的面积为()
A.4cm2B.42cm2
C.8cm2D.82cm2
解析:选C.依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长
与BC、AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8cm2. 7.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A­BCD的正视图与俯视图如图所示,则其侧视图的面积为()
A.2 2
B.1 2
C.2 4
D.1 4
解析:选D.由正视图与俯视图可得三棱锥A-BCD的一个侧面与底面垂直,其侧
视图是直角三角形,且直角边长均为2
2,所以侧视图的面积为S=
1

2

2
2=
1
4,选D.
8.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于()
A.3
2
B.1
C.2+1
D.2
解析:选D.由题意可知该正方体的放置如图所示,侧视图的方向垂直于面BDD1B1,正视图的方向垂直于面A1C1CA,且正视图是长为2,宽为1的矩形,
2,因此选D.
9.如图,E、F分别是正方体ABCD­A1B1C1D1中AD1、B1C上的动点(不含端点),则四边形B1FDE的俯视图可能是()
解析:选B.由画几何体的三视图的要求可知,点E在底面的正投影应落在线段A1D1上(不含端点),点F在底面的正投影应落在线段B1C1上(不含端点),而B1与D在底面的正投影分别为B1和D1,故四边形B1FDE在底面ABCD上的正投影为四边形,结合选项知选B.
10.如图是一个无盖的正方体盒子展开后的平面图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC的值为()
A.30°B.45°
C.60°D.90°
解析:选C.还原正方体,如图所示,连接AB,BC,AC,可得△ABC是正三角形,则∠ABC=60°.
B组能力突破
1.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,主视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()
A.23 B.3
C.22D.4
解析:选A.观察三视图可知,该几何体是正三棱柱,底面边长、高均为2,所以,其左视图是一个矩形,边长分别为2,2sin60°=3,其面积为2 3.
2.某几何体的三视图如图所示,则该几何体的体积为()
A.12B.18
C.24D.30
解析:选C.由三视图还原几何体知,该几何体如图所示,
其体积V =VB 1-ABC +VB 1-A 1ACC 1=13×12×3×4×2+13
×3×5×4=24.3.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.
解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,3,所以正视图的面积为2 3.
答案:3
4.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.
解析:由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC
的高为OE ,则OE ×1×2=O ′C ′,∵O ′C ′=2,∴OE =42,∴S ▱
OABC =6×42=242.答案:2
5.如图,在正方体ABCD ­A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P ­ABC 的正(主)视图与侧(左)视图的面积的比值为________.
解析:如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的正(主)视图与侧(左)
视图都是三角形,且面积都是12
a 2,所以所求面积的比值为1.答案:1
6.如图,三棱锥A ­BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC =CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.
解析:∵AB ⊥平面BCD ,投影线平行于BD ,
∴三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,∵BC ⊥CD ,AB =BC =CD =2,
∴△BCD 中BD 边上的高为2,故该三棱锥的侧视图(投影线平行于BD )的面积S =12×2×2= 2.2。

相关文档
最新文档