人教版高中数学公式整理
人教版高二数学第一学期公式定理总结

人教版高二数学第一学期公式定理总结人教版高二数学第一学期公式定理总结1.1-1.3S扇形12lR弧长RS柱2R2RlS锥RRlS台RR"RlR"lS球4RV柱ShV椎V台V 球Sh22222SS"R3SS"hS等边34a22.1-2.33.1-3.3垂直K1K21相交A1A1B1B2B2B2C1C2平行K1K2A1A2(重合都)C1C2AB22平行距离d4.1-4.3标准方程某aybr(某,y)圆上点a,b圆心一般方程某yD某EyF0D,E)圆心(22DE4F半径12某某yyz空间两点距选修1-1扩展阅读:高中数学公式及定理总结乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根与系数的关系某1+某2=-b/a某1某某2=c/a注:韦达定理判别式b^2-4ac=0注:方程有两个相等的实根b^2-4ac>0注:方程有两个不等的实根b^2-4ac1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41某2+2某3+3某4+4某5+5某6+6某7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角圆的标准方程(某-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标圆的一般方程某^2+y^2+D某+Ey+F=0注:D^2+E^2-4F>0抛物线标准方程y^2=2p某y^2=-2p某某^2=2py某^2=-2py 直棱柱侧面积S=c某h斜棱柱侧面积S=c"某h正棱锥侧面积S=1/2c某h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi某r2圆柱侧面积S=c某h=2pi某h 圆锥侧面积S=1/2某c某l=pi某r某l弧长公式l=a某ra是圆心角的弧度数r>0扇形面积公式s=1/2某l某r锥体体积公式V=1/3某S某H圆锥体体积公式V=1/3某pi某r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s某h圆柱体V=pi某r2h定理86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的某某102圆的内部可以看作是圆心的距离小于半径的点的某某103圆的外部可以看作是圆心的距离大于半径的点的某某104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
人教版高中数学公式整理

余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosC
cosA=(b^2+c^2-a^2)/2bc
cosB=(a^2+c^2-b^2)/2ac
cosC=(a^2+b^2-c^2)/2ab
S圆锥侧=1/2*c*l=兀*r*l
S球=4*兀*R^3
V柱体=S*h
V锥体=(1/3)*S*h
Hale Waihona Puke V球=(4/3)*兀*R^3
三、两直线的位置关系及距离公式
(1)数轴上两点间的距离公式|AB|=|x2-x1|
(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式
2、二倍角公式的变形
(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
五、正弦定理和余弦定理
正弦定理:
a/sinA=b/sinB=c/sinC
cos(兀/2+a)=-sina
cos(兀/2-a)=sina
tan(兀/2+a)=-cota
tan(兀/2-a)=cota
(sina)^2+(cosa)^2=1
sina/cosa=tana
两角和与差的余弦公式
cos(a-b)=cosa*cosb+sina*sinb
sin(兀+a)=-sina
sin(兀-a)=sina
cos(兀+a)=-cosa
人教版高中数学必修四常用公式大全

人教版高中数学必修四常用公式大全高中数学必修4常用公式及结论一、三角函数与三角恒等变换1、三角函数的图象与性质三角函数是数学中重要的概念之一,它们的图象和性质也是我们需要了解的内容。
正弦函数、余弦函数和正切函数都有自己的定义域、值域、周期性、奇偶性和单调性等特点。
其中,正弦函数和余弦函数的定义域是整个实数集,值域是[-1,1],周期是2π,正弦函数是奇函数,余弦函数是偶函数。
而正切函数的定义域是整个实数集除去一些特定点,值域是整个实数集,周期是π,正切函数是奇函数。
2、同角三角函数公式同角三角函数公式是三角函数中的重要内容,包括sin2α+cos2α= 1和tanα=tanαcotα=1等。
这些公式在解决三角函数相关的问题时非常有用。
3、二倍角的三角函数公式二倍角的三角函数公式是用来求解二倍角的三角函数值的公式,包括sin2α=2sinαcosα、cos2α=2cos2α-1=1-2sin2α和tan2α=2tanα/(1-tan2α)等。
4、降幂公式和升幂公式降幂公式和升幂公式是用来将三角函数的高次幂降为低次幂或将低次幂升为高次幂的公式。
其中,降幂公式包括cosα=(1+cos2α)/2和2sinα=sin2α/(1+cosα),升幂公式包括1±sin2α=(sinα±cosα)2和1+cos2α=2cos2α。
5、两角和差的三角函数公式两角和差的三角函数公式是用来求解两个角的和差的三角函数值的公式,包括sin(α±β)=sinαcosβ±cosαsinβ、cos(α±β)=cosαcosβ干sinαsinβ和tan(α±β)=(tanα±tanβ)/(1干tanαtanβ)等。
6、两角和差正切公式的变形两角和差正切公式的变形包括tanα±tanβ=tan(α±β)/(1干tanαtanβ)和tan(+α)=tan(-α)/(1-tanα)等。
高中人教版数学必修1,2,3,4,5的公式,结论

高中人教版数学必修1,2,3,4,5的公式,结论1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高中人教版数学必修1-5的所有公式整理 (2)

同角三角函数的基本关系式?
倒数关系:商的关系:平方关系:?
tanα?cotα=1?
sinα?cscα=1?
cosα?secα=1sinα/cosα=tanα=secα/cscα?
cosα/sinα=cotα=cscα/secαsin2α+cos2α=1?
1+tan2α=sec2α?
2?
1?
cosα?sinβ=-[sin(α+β)-sin(α-β)]?
2?
1?
cosα?cosβ=-[cos(α+β)+cos(α-β)]?
2?
1?
sinα?sinβ=—-[cos(α+β)-cos(α-β)]?
2?
化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式
集合、函数?
(2)x>0,y∈R?
图象经过(1,0)?
a>1时,x>1,y>0;0<x<1,y<0?
0<a<1时,x>1,y<0;0<x<1,y>0?
a>1时,y=logax是增函数?
0<a<1时,y=logax是减函数?
指数方程和对数方程?
基本型?
logaf(x)=bf(x)=ab(a>0,a≠1)?
同底型?
tan(2π-α)=-tanα?
cot(2π-α)=-cotα?
sin(2kπ+α)=sinα?
cos(2kπ+α)=cosα?
tan(2kπ+α)=tanα?
cot(2kπ+α)=cotα?
(其中k∈Z)?
两角和与差的三角函数公式万能公式?
sin(α+β)=sinαcosβ+cosαsinβ?
sin(α-β)=sinαcosβ-cosαsinβ?
人教版高中数学必修一知识点规纳数学公式

人教版高中数学必修一知识点规纳数学公式高中数学必修一是我们学习的一门重要课程,其中的数学公式是我们学习的基础。
下面我将从函数、方程、几何等不同角度来规纳一些常见的数学公式。
一、函数相关公式1. 一次函数的公式:y = ax + b其中,a为直线的斜率,b为直线在y轴上的截距。
2. 二次函数的公式:y = ax^2 + bx + c其中,a、b、c为常数,a≠0。
3.两点间距离公式:d=√[(x2-x1)^2+(y2-y1)^2]其中,(x1,y1)和(x2,y2)为两个点的坐标。
4. 判别式公式:Δ = b^2 - 4ac对于二次函数,根据判别式的值可以判断方程的根的情况。
5.直线与圆的位置关系公式:(1)直线与圆相切时,直线与圆心之间的距离等于圆的半径。
(2)直线与圆相离时,直线与圆心之间的距离大于圆的半径。
(3)直线与圆相交时,直线与圆心之间的距离小于圆的半径。
二、方程相关公式1.二次方程的求根公式:x=(-b±√Δ)/2a其中,Δ为判别式,a、b、c为二次方程的系数。
2.一元二次方程求解:(1) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,可用来解决一些特殊的二次方程。
(2)因式分解法:将二次方程进行因式分解,使得两个因子相乘等于0,从而找到根。
3.绝对值方程的求解:(1),x,=a,有两个解:x=a和x=-a。
(2),f(x),=,g(x),等价于f(x)=±g(x),求解此方程即可。
4.三角方程的求解:(1) 正弦方程的求解:sinx = a,可利用反正弦函数求得解。
(2) 余弦方程的求解:cosx = a,可利用反余弦函数求得解。
(3) 正切方程的求解:tanx = a,可利用反正切函数求得解。
三、几何相关公式1.直角三角形相关公式:(1)勾股定理:a^2+b^2=c^2,其中c为斜边的长度。
(2) 正弦定理:a/sinA = b/sinB = c/sinC,其中A、B、C为三个角度,a、b、c为相应边长。
人教版高中数学必背公式定理名句

人教版高中数学必背公式定理名句目录1. 公式2. 定理3. 名句公式下面是一些人教版高中数学中必背的重要公式:1. 二次函数顶点坐标公式:$$\begin{align*}x_0 &= -\frac{b}{2a} \\y_0 &= f(x_0) = -\frac{\Delta}{4a}\end{align*}$$2. 三角函数和角度的关系:$$\begin{align*}\sin{\theta} &= \frac{y}{r} \\\cos{\theta} &= \frac{x}{r} \\\tan{\theta} &= \frac{y}{x}\end{align*}$$3. 高中数学必背的导数公式:$$\begin{align*}(k \cdot f(x))' &= k \cdot f'(x) \\(f(x) + g(x))' &= f'(x) + g'(x) \\(f(x) \cdot g(x))' &= f'(x) \cdot g(x) + f(x) \cdot g'(x) \\ \frac{f'(x)}{g(x)} &= \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}\end{align*}$$定理下面是人教版高中数学中必背的一些重要定理:1. 皮克定理(Pick's Theorem):一个简单多边形,其顶点都在整点上,内部没有其他整点。
那么该多边形的面积 $A$ 和边上整点的个数 $B$、内部整点的个数 $C$ 满足以下关系:$$A = B/2 - C + 1$$2. 牛顿-莱布尼茨公式(Fundamental Theorem of Calculus):如果 $f(x)$ 在区间 $[a, b]$ 上连续,$F(x)$ 是 $f(x)$ 的一个原函数,则有:$$\int_a^b f(x) \,dx = F(b) - F(a)$$3. 激励相等定律:一个杠杆在平衡时,杠杆两端的力矩相等。
人教版高中数学必修一知识点规纳数学公式大全

人教版高中数学必修一知识点规纳数学公式大全高中数学必修一知识点一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N_或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A?B, B?C ,那么 A?C④如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).设S是一个集合,A 是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CSA= 韦恩图示性质 A A=AA Φ=ΦA B=B AA B AA B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .4.设集合A= ,B= ,若A B,则的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学公式整理1. ,.2..3.4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.5.二次函数的解析式的三种形式(1)一般式;(2)顶点式;当已知抛物线的顶点坐标时,设为此式(3)零点式;当已知抛物线与轴的交点坐标为时,设为此式4切线式:。
当已知抛物线与直线相切且切点的横坐标为时,设为此式6.解连不等式常有以下转化形式.7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,若,则;,,.(2)当a<0时,若,则,若,则,.9.一元二次方程=0的实根分布1方程在区间内有根的充要条件为或;2方程在区间内有根的充要条件为或或;3方程在区间内有根的充要条件为或 .10.定区间上含参数的不等式恒成立(或有解)的条件依据(1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。
(2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是。
(3) 在给定区间的子区间上含参数的不等式(为参数)的有解充要条件是。
(4) 在给定区间的子区间上含参数的不等式(为参数)有解的充要条件是。
对于参数及函数.若恒成立,则;若恒成立,则;若有解,则;若有解,则;若有解,则.若函数无最大值或最小值的情况,可以仿此推出相应结论11.真值表12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个至多有个 小于不小于至多有个 至少有个对所有,成立 存在某,不成立 或 且 对任何,不成立存在某,成立且或p q 非p p或q p且q 真 真 假 真 真真 假 假 真 假假 真 真 真 假 假 假真假假13.四种命题的相互关系(右图):14.充要条件记表示条件,表示结论1充分条件:若,则是充分条件.2必要条件:若,则是必要条件.3充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.15.函数的单调性的等价关系(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.16.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和都是增函数,则在公共定义域内,和函数也是增函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数;如果函数和在其对应的定义域上都是增函数,则复合函数是增函数;如果函数和在其对应的定义域上一个是减函数而另一个是增函数,则复合函数是减函数. 17.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.18.常见函数的图像:19.对于函数(),恒成立,则函数的对称轴是;两个函数与的图象关于直线对称.20.若,则函数的图象关于点对称;若,则函数为周期为的周期函数.21.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.22.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.23.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.24.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.25.几个常见的函数方程(1)正比例函数.(2)指数函数.(3)对数函数.(4)幂函数.(5)余弦函数,正弦函数,,.26.几个函数方程的周期(约定a>0)1,则的周期T=a;2,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;27.分数指数幂(1),且.(2),且.28.根式的性质1.2当为奇数时,;当为偶数时,.29.有理指数幂的运算性质(1) .(2) .(3).注:若a>0,p是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.30.指数式与对数式的互化式:.31.对数的换底公式 : (,且,,且,).对数恒等式:(,且,).推论(,且,).32.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1); (2) ;(3); (4) 。
33.设函数,记.若的定义域为,则且;若的值域为,则,且。
34.对数换底不等式及其推广:设,,,且,则1. 2.35.平均增长率的问题负增长时如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.36.数列的通项公式与前n项的和的关系:( 数列的前n项的和为).37.等差数列的通项公式:;其前n项和公式为:.38.等比数列的通项公式:;其前n项的和公式为或.39.等比差数列:的通项公式为;其前n项和公式为:.40.分期付款(按揭贷款) :每次还款元(贷款元,次还清,每期利率为). 41.常见三角不等式1若,则.(2) 若,则.(3) .42.同角三角函数的基本关系式:,=,.43.正弦、余弦的诱导公式奇变偶不变,符号看象限,44.和角与差角公式;;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).45.二倍角公式及降幂公式...46.三角函数的周期公式函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0)的周期;函数,(A,ω,为常数,且A≠0)的周期.三角函数的图像:五点法作图列表:0 π/2π3π/22π47.正弦定理:R为外接圆的半径.48.余弦定理;;.53.面积定理1分别表示a、b、c边上的高.2.3.49.三角形内角和定理在△ABC中,有.50.简单的三角方程的通解...特别地,有...51.最简单的三角不等式及其解集......52.实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μ)=(λμ) ;(2)第一分配律:(λ+μ) =λ+μ;(3)第二分配律:λ(+)=λ+λ.53.向量的数量积的运算律:(1)·= ·交换律;(2)·= ·=·=·;(3)+·=· +·.54.平面向量基本定理如果、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得=λ1+λ2.不共线的向量、叫做表示这一平面内所有向量的一组基底.三点A、B、C共线的充要条件:(M为任意点)55.向量平行的坐标表示设=,=,且,则 ().56. 与的数量积(或内积):·=||||。
57.·的几何意义:数量积·等于的长度||与在的方向上的投影||的乘积.向量在向量上的投影:||=.58.平面向量的坐标运算(1)设=,=,则+=.(2)设=,=,则-=.(3)设A,B,则.(4)设=,则=.(5)设=,=,则·=.59.两向量的夹角公式(=,=).60.平面两点间的距离公式=(A,B).61.向量的平行与垂直:设=,=,且,则||=λ.()·=0.62.线段的定比分公式:设,,是线段的分点,是实数,且,则.63.三角形的重心坐标公式△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.64.点的平移公式.注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.65.“按向量平移”的几个结论1点按向量=平移后得到点.(2) 函数的图象按向量=平移后得到图象,则的函数解析式为.(3) 图象按向量=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量=平移后得到图象,则的方程为.(5) 向量=按向量=平移后得到的向量仍然为=.66.三角形五“心”向量形式的充要条件设为所在平面上一点,角所对边长分别为,则1为的外心.2为的重心.3为的垂心.4为的内心.5为的的旁心.67.常用不等式:1(当且仅当a=b时取“=”号).2(当且仅当a=b时取“=”号).345.6(当且仅当a=b时取“=”号)。
68.最值定理:已知都是正数,则有1若积是定值,则当时和有最小值;2若和是定值,则当时积有最大值.3已知,若则有。
4已知,若则有69.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.;.70.含有绝对值的不等式:当a> 0时,有.或.71.无理不等式1 .2.3.72.指数不等式与对数不等式(1)当时,; .(2)当时,;73.斜率公式、.74.直线的五种方程1点斜式(直线过点,且斜率为).2斜截式(b为直线在y轴上的截距).3两点式()(、 ()). 两点式的推广:无任何限制条件!(4)截距式(分别为直线的横、纵截距,)5一般式(其中A、B不同时为0).直线的法向量:,方向向量:75.两条直线的平行和垂直(1)若,①;②.(2)若,,且A1、A2、B1、B2都不为零,①;②;,,,此时直线76.四种常用直线系方程及直线系与给定的线段相交:(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数.(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.(4)垂直直线系方程:与直线(A≠0,B≠0)垂直的直线系方程是,λ是参变量.(5)直线系与线段相交。
77.点到直线的距离:(点,直线:).78. 或所表示的平面区域设直线,则或所表示的平面区域是:若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左。
79. 或所表示的平面区域或所表示的平面区域是两直线和所成的对顶角区域上下或左右两部分。
80. 圆的四种方程1圆的标准方程.2圆的一般方程(>0).3圆的参数方程.4圆的直径式方程(圆的直径的端点是、).81. 圆系方程(1)过点,的圆系方程是,其中是直线的方程,λ是待定的系数.(2)过直线:与圆:的交点的圆系方程是,λ是待定的系数.(3) 过圆:与圆:的交点的圆系方程是,λ是待定的系数.特别地,当时,就是表示:①当两圆相交时,为公共弦所在的直线方程;②向两圆所引切线长相等的点的轨迹直线方程82.点与圆的位置关系:点与圆的位置关系有三种若,则点在圆外;点在圆上;点在圆内.83.直线与圆的位置关系直线与圆的位置关系有三种():;;.84.两圆位置关系的判定方法:设两圆圆心分别为O1,O2,半径分别为r1,r2,;;;;.85.圆的切线方程及切线长公式(1)已知圆.①若已知切点在圆上,则切线只有一条,其方程是.当圆外时, 表示过两个切点的切点弦方程.求切点弦方程,还可以通过连心线为直径的圆与原圆的公共弦确定。