2.1 认识一元二次方程(第一课时)
北师大版九年级数学上册2.1:认识一元二次方程 教学案

学科讲义·初三数学 上数学课时,必须全神贯注,心无旁骛,专心听讲,一旦走神,就再也融不进数学老师的世界里了1 第二章 一元二次方程第一节 认识一元二次方程学习目标 1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.能够利用一元二次方程的定义求字母的值;用一元二次方程的根求代数式的值。
3.体会方程的模型思想。
(难点)知识点1: 一元二次方程的定义 如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2. 同时还要注意在判断时,需将方程化成一般形式。
知识点2: 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
注意:(1)将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项,则c =0.(3)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(4)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
知识点解析学科讲义·初三数学 数学老师以4G 的速度讲课,学霸以WiFi 的速度听着,学神以3G 的速度记着,而学渣当场掉线,And you? 2 (5)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
知识点3:一元二次方程的解(1)使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
一元二次方程的解也叫一元二次方程的根。
认识一元二次方程教案

认识一元二次方程教案【篇一:2015届九年级数学上册 2.1 认识一元二次方程(第一课时)教学设计 (新版)北师大版】1.认识一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生对方程认识的基础之上,提出了本课的具体学习任务:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
2、会识别一元二次方程及各部分名称。
从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。
三、教学过程分析本节课设计了七个教学环节:第一环节:自主探究问题一;第二环节:自主探究问题二;第三环节:自主探究问题三;第四环节:总结归纳;第五环节:学以致用;第六环节:反思;第七环节:布置作业。
第一环节:自主探究问题一活动内容:出示问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?活动目的:提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。
教学要求与效果:教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的矩形地面、条形区域和地毯区域吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图。
《认识一元二次方程》第一课时教学设计

《认识一元二次方程》第一课时教学设计作者:牛慧芳来源:《学校教育研究》2020年第02期教学内容:2.1 认识一元二次方程教材分析:(一)教材所处的位置认识一元二次方程是九年级《数学》上册第二章一元二次方程的第一节内容。
方程是刻画现实世界中数量关系的一个有效数学模型。
学生在七、八年级已经感受了利用方程解决实际问题的经验。
一元二次方程的知识是后续学习《二次函数》、解决函数及综合题的基础。
(二)教材结构本节通过丰富的实例“花边有多宽”“梯子的底端滑动多少米”等问题,建立一元二次方程,让学生通過观察归纳出一元二次方程的有关概念,并从中体会方程的模型思想。
(三)教学重点1.经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
2.了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
3.能准确说出一元二次方程的二次项,一次项、常数项。
(四)教学难点能准确运用一元二次方程解决现实生活中问题。
学情分析:学生在七年级上册《一元一次方程》一章中,已经结合丰富的现实情景,经历了方程概念的归纳过程,初步掌握了利用方程解决问题的基本步骤,为本节的深入学习奠定了基础。
素质目标:(一)知识点经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
(二)能力训练点1.能利用去分母、去括号、移项、合并同类项等方法将一元二次方程转化为一般形式。
2.能准确确定一元二次方程的二次项,一次项、常数项。
(三)德育渗透点1.使学生在积极参与探索、交流的数学活动中,体验数学与实际活动的密切联系,感受与他人合作的重要性。
2.培养学生转化的数学思想。
教学策略:根据新教材的特点。
结合本班学生的实际情况,为了更好的突出本节重点,突破难点,圆满完成教学任务,取得良好的教学效果,本节采用“问题情景—建立模型—解释—应用与拓展的教学流程。
运用观察、比较、讨论、归纳、知识反馈等策略,引导学生多思善讲,在建立模型处适当给予点拨,以调动学生的自觉性、积极性,从而达到感知、归纳、应用、巩固和深化新知的目的。
2.1认识一元二次方程A(1)改

c分别称为二次项、一次项和常数项,a, b分别称
为二次项系数和一次项系数.
一元二次方程的有关概念: ax2+bx+c=0(a,b,c为常数, a≠0)
二次项 一次项 常数项
系数 系数 注意: (1)任何一个关于x的一元二次方程都可以化为 ax2+bx+c=0(a≠0)的形式,其中a ≠0是定义 的一部分,不能漏掉,否则就不是一元二次方程了。 (2)项、系数都要包括前面的符号。
当堂训练(17分钟)
1. 下列方程是关于x的一元二次方程的是(C )。 1 A. x²+ =0, B. ax² +bx+c=0, x
C. (x-1)(x+2)=1. D. 3x² -2xy-5y² =0
2. 把方程(3x+2)2=4(x-3)2化成一元二次方程 +36x-32=0 , 它的二次项系数 的一般形式 5x² 为 5 ,一次项系数为 36 ,常数项为 -32 。 3. m≠1
是一元二次方程.
时,
6.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,
当k ≠±1 时,是一元二次方程; 当k = -1 时,
是一元一次方程.
点拨(10分钟)
一元二次方程概念
上面的方程都是只含有 一个未知数x 的 整式方程 ,并且都可 以化为 ax2+bx+c=0(a,b,c为常数, a≠0) 的形式,
解:设竹竿的长 为 x 尺,则门的宽 度为(x-4) 尺,长 为 (x-2) 尺,依题 意得方程:
2尺 数学化
x
x-2
(x-4)2+ (x- 2)2= x2
x-4
即 x2-12 x +20 = 0
4尺
9.
a = -1
2.1认识一元二次方程第1课时教学流程

九上数《2.1认识一元二次方程(第1课时)》教学流程
注:“H”指课件中的幻灯片,如“H4”指课件中的第4张幻灯片。
)
前面已学习了一元一次方程及其解
法。
提问学生,简单过。
学生齐读
通过此三题复习一元一次方程的概念及其解法。
(H3)3´
生2´,师1´
探究新知知识点1
通过此活动理解一元二
次方程的概念。
(H4、H5)①头天晚修自学完成;②生展示答案;③师精讲并归纳一元二次方程的概念。
2 通过此环节进一步掌握
一元二次方程的一般形
式及其相关概念。
(H6)
①分组+普做;②对答案,师点评;
③师傅再教徒弟小组合作学习。
内容二)
进一步掌握一元二次方
程的概念(H7)
对本节课所学知识的归
学生自由谈纳总结(H8)。
一元二次方程ppt课件

b 称为一次项系数.
c 称为常数项.
注意 ①若a<0,那么最好在方程的左右两边同乘-1,使二次项系数变为 正整数;②指出一元二次方程的各个系数时,一定要带上前面的符号.
即学即练,趁热打铁
1.下列方程哪些是一元二次方程? 为什么?
(1)8x3 - 5x2 - 4 = 0
最高指数是3
(2)7x2 - 4y + 6= 0
方程中同时出现x、y两个未知数
(3) 2x 1 1 0 3x
(4) y2 0 2
(5) x2 + 2x - 3 = 1 + x2
非整式方程
√
化简后是一元一次方程
2.把下列方程化为一元二次方程的一般形式,并写出它的
二次项系数、一次项系数和常数项:
方程
一般形式
二次项 一次项 常数 系数 系数 项
经化简得x2 - 8x - 20=0(一般式).
例3:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面 的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多 少米?(列出方程即可)
解:由勾股定理可知,滑动前梯子底端
距墙 6 m. 如果设梯子底端滑动x m ,那么滑动后 梯子底端距墙 (x+6) m ;
2.1 认识一元二次方程
学习目标
1.了解一元二次方程的概念;(重点) 2.掌握一元二次方程的一般形式ax2+bx+c=0(a, b, c为常数,a≠0).
(重点) 3.能根据具体问题的数量关系,建立一元二次方程的模型,培养学
生的数形结合思想. (难点)
导入新课
(一 )、学前准备: 1、什么叫方程?
3x2= 5x - 1
3x2 - + 2) (x - 1)=6
《认识一元二次方程》一元二次方程PPT(第1课时)教学课件

你还能找到五个连续整数,使前三个数的平方 和等于后两个数的平方和吗?
如果将这五个连续整数中的第一个数设为x,那 么怎样用含x的代数式表示其余四个数?根据题意, 你能列出怎样的方程?
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地 面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯 子的底端滑动多少米?
(来自《点拨》)
知3-练
1 随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计, 2014年约为20万人次,2016年约为28.8万人次,设观赏人数年 均增长率为x,则下列方程中正确的是( ) A.20(1+2x)=28.8 B.28.8(1+x)2=20 C.20(1+x2)=28.8 D. 20+(1+2x)+20(1+x)2=28.8
油利画用的长面方积形与的整面个积挂公 图式的和面油积画.面积与整个
90+2x
挂图面积之间的关系
解:(90+2x)(40+2x)×54%=90×40.
列(方来程自《点拨》)
总结
知3-讲
建立一元二次方程模型解决实际问题时,既要 根据题目条件中给出的等量关系,又要抓住题目中隐 含的一些常用关系式(如面积公式、体积公式、利润 公式等)进行列方程.
到右依次填写28,18,10,4. (4)通过分析表格中的数值,估计方程的解,对表格中所填数值
的分析应至少包括以下两个方面:①表格中,当x的值从小到 大变化时,(8-2x)(5-2x)的值逐渐减小,经历了从大于 18到等于18再到小于18的过程. ②由表格可知,当x=1时, (8-2x)(5-2x)-18,由方程的解得意义,可以得出“x-1是 方程,(8-2x)(5-2x)-18的解得结论,从而所求宽度为1 m.
2.1认识一元二次方程教学设计2024—2025学年北师大版数学九年级上册

将方程转化为一般形式的一元二次方程:
0.8x - y = 0
求解这个方程,得到商品的原价 x。
【答案】
x - 5y = 0
解得:
x = 5y
5. 题型五:应用一元二次方程解决实际问题
【例题】一个长方体的长、宽、高分别为 l、w、h,其体积 V 可以用一元二次方程表示为:
V = lwh
强调一元二次方程在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用一元二次方程。
布置课后作业:让学生撰写一篇关于一元二次方程的短文或报告,以巩固学习效果。
学生学习效果
1. 理解一元二次方程的定义和标准形式,能够正确识别和写出一般形式的一元二次方程。
2. 掌握一元二次方程的解法,包括因式分解法、配方法、公式法等,并能够灵活运用这些方法解决实际问题。
6. 作业布置:布置课后作业,巩固所学知识,为下一节课做好铺垫。
核心素养目标
本节课的核心素养目标主要有以下几点:
1. 逻辑推理:通过学习一元二次方程的定义和性质,培养学生的逻辑推理能力,使其能够正确理解和运用一元二次方程。
2. 数学建模:引导学生将实际问题转化为数学模型,培养学生的数学建模能力,使其能够运用一元二次方程解决实际问题。
- 问题描述:某商品打折后的价格为一元二次方程的形式
- 方程设定:设商品原价为x元,折扣为a(0<a<1),则打折后价格为ax^2 + bx + c元
- 求解目标:求出商品的原价x
④ 艺术性和趣味性
- 使用颜色、图标、图形等元素,使板书设计更具艺术性
- 通过有趣的例子、生活情境或小故事,将一元二次方程与现实生活相结合,提高学生的学习兴趣