认识一元二次方程(二)

合集下载

第2讲解一元二次方程-配方法(教案)

第2讲解一元二次方程-配方法(教案)
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了配方法的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对配方法的理解。我希望大家能够掌握这些知识点,并在解决一元二次方程时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数学运算能力,熟练掌握配方法的运算步骤,提高解题效率。
4.培养学生的直观想象能力,通过分析一元二次方程的图像,理解配方法与方程解的关系。
5.培养学生的数据分析能力,通过对不同类型一元二次方程的解析,学会总结规律,提高解题策略。
6.培养学生的数学抽象能力,让学生从具体的方程中抽象出一般性规律,形成对配方法本质的认识。
2.配方法解一元二次方程的示例解析。
3.练习与巩固:不同类型的一元二次方程配方法解题训练。
4.总结与拓展:配方法在实际问题中的应用实例。
二、核心素养目标
1.培养学生的逻辑推理能力,通过配方法解一元二次方程的过程,使学生理解数学的严谨性和逻辑性。
2.提高学生的数学建模能力,让学生学会将现实问题转化为数学模型,并利用配方法求解。
3.重点难点解析:在讲授过程中,我会特别强调配方法的步骤和x²±px±q=0型方程的解法这两个重点。对于难点部分,比如配方过程中如何选择合适的数,以及如何简化表达式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与配方法相关的实际问题。

北师大版九年级数学上册2.1:认识一元二次方程 教学案

北师大版九年级数学上册2.1:认识一元二次方程 教学案

学科讲义·初三数学 上数学课时,必须全神贯注,心无旁骛,专心听讲,一旦走神,就再也融不进数学老师的世界里了1 第二章 一元二次方程第一节 认识一元二次方程学习目标 1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.能够利用一元二次方程的定义求字母的值;用一元二次方程的根求代数式的值。

3.体会方程的模型思想。

(难点)知识点1: 一元二次方程的定义 如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2. 同时还要注意在判断时,需将方程化成一般形式。

知识点2: 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。

其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。

注意:(1)将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项,则c =0.(3)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(4)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

知识点解析学科讲义·初三数学 数学老师以4G 的速度讲课,学霸以WiFi 的速度听着,学神以3G 的速度记着,而学渣当场掉线,And you? 2 (5)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

知识点3:一元二次方程的解(1)使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。

一元二次方程的解也叫一元二次方程的根。

一元二次方程 二分法

一元二次方程 二分法

一元二次方程二分法一元二次方程是初中数学中的重要内容,而二分法是一种常用的数值计算方法。

本文将以“一元二次方程二分法”为中心,详细阐述一元二次方程的求解过程以及二分法在求解过程中的应用。

通过对一元二次方程的深入理解和二分法的运用,使读者对这两个数学概念有更清晰的认识。

一元二次方程是形如ax^2+bx+c=0的方程,其中a、b、c是已知系数,x是未知数。

对于一元二次方程的求解,常用的方法有因式分解、配方法、求根公式等。

而在本文中,我们将重点介绍二分法在一元二次方程求解过程中的应用。

首先,我们来回顾一下二分法的基本原理。

二分法是一种通过逐步缩小搜索范围的方法,用于求解函数的零点。

其基本思想是将区间不断二分,并根据函数值的符号确定下一步搜索的方向。

具体而言,对于一个闭区间[a,b],通过计算函数在区间中点的值f(c),如果f(c)等于零则找到了零点,如果f(c)小于零则零点在区间[a,c]内,如果f(c)大于零则零点在区间[c,b]内。

然后,再将新的区间继续进行二分,直至找到零点或者达到指定的精度要求。

接下来,我们将二分法应用到一元二次方程的求解中。

对于一个一元二次方程ax^2+bx+c=0,我们可以先确定一个区间[a, b],使得方程在区间两端的函数值异号。

然后,通过二分法逐步缩小区间范围,最终找到方程的一个根。

具体而言,我们可以按照以下步骤来进行一元二次方程的二分法求解:步骤一:确定初始区间[a,b]。

我们可以根据方程的特点和已知条件来选择初始区间。

例如,如果a、b、c都是正数,则可以选择初始区间为[0,1]。

步骤二:计算区间中点的值f(c)。

将区间[a,b]的中点c代入方程,计算出f(c)的值。

步骤三:判断f(c)的符号。

如果f(c)等于零,则已经找到零点,结束计算。

如果f(c)小于零,则零点在区间[a,c]内。

如果f(c)大于零,则零点在区间[c,b]内。

步骤四:根据f(c)的符号更新区间范围。

认识一元二次方程 北师大版九年级数学上册

认识一元二次方程 北师大版九年级数学上册
符合要求的范围.
课堂练习
1. 下表是某同学求代数式x²-x的值的情况,根据表格可知方 程x²-x=2的解是( D )
x x2-x
-2 -1 0 1 2 3 …
6
2 0026…
A. x=-1 C. x=2
B. x=0 D. x1=-1,x2=2
课堂练习
2. 根据表格,选取一元二次方程ax²+bx+c=0(a≠0)的一 个近似解取值范围( C )
解:设所求的宽度为 x m,根据 题意可列方程:
(8 - 2x) (5 - 2x) =18
新知讲解
x 满足方程(8-2x)(5-2x)=18.
(1)x 可能小于 0 吗?可能大于 4 吗?可能大于 2.5 吗?说说 你的理由.
x 不可能小于 0,因为当x<0时,不符合题意; 不可能大于4,因为当x>4时,8-2x<0,不符合题意; 不可能大于2.5,因为当x>2.5时,5-2x<0不符合题意.
2.1 认识一元二次方程
新知导入
1. 什么是一元二次方程? 只含有一个未知数 x 的整式方程 1 ,并且都可以化成ax²+bx +c =0(a,b,c 为常数,a ≠ 0)的形式,这样的方程叫做一元二次方程.
2. 把一元二次方程3x²+2x=5化成一元二次方程的一般形式, 并说出它的二次项、一次项系数和常数项.
1 < x<1.5
x²+12x -15=0
新知讲解
你还能进一步
缩小范围吗? (3)你能猜出滑动距离 x(m)的大致范围吗?
x
x²+12x-15=0
1.1 -0.59
1.2 0.84
1.3 2.29
1.4 3.75

2.2 一元二次方程的解法(2)

2.2 一元二次方程的解法(2)
2.2一元二次方程的解法(2)
首页
上一页
下一页
末页

你能解决这 个问题吗? 3倍有可能相等吗?如果相 一个数的平方与这个数的
x 2 3x.
小亮是这样解的 :
小明是这样解的 :
等,这个数是几?你是怎样求出来的? 小明,小亮都设这个数为x,根据题意得
解 : 方程x 2 3x两 边都同时约去 x, 得. x 3.
(一次项系数为0)(容易x+5
2
25 2 x - 5
x-
2 用配方法解二次项系数是 1 的一元二次方程在时,添 4x+___=(______) 上的常数项与一次项系数之间存在的关系: 2 2 2
常数项是一次项系数的一半的平方 x +6x+___=(______) x-
6x+___=(_______)
2
首页 上一页 下一页 末页
探索发现二:
解方程: x 6 x 1 0
2
只要形成
x m
2
n(n 0)
x 6 x 9 10 0, ( x 3) 10, x 3 10
2 2
x1 3 10, x2 3 10
我们把一元二次方程通 过配方法转换成:
2
形 为
x -2x=8
首页
上一页
下一页
末页
练一练:添上一个适当的数,使下
1 x+1 2 2 x +2x+___=(______) 4 x+2 2 9 x+3
列的多项式成为一个完全平方式:
1 4 x-1 2 x -x - 2
2x+___=(______)

22.3 实际问题与一元二次方程(2)

22.3 实际问题与一元二次方程(2)
30×20–(30–2x)(20–2x)=400 × 整理得 x2– 25x+100=0 得 x1=20, x2=5 舍去);当 当x=20时,20-2x= -20(舍去 当x=5时,20-2x=10 时 舍去 时 这个长方形框的框边宽为5cm 答:这个长方形框的框边宽为 这个长方形框的框边宽为
设长方形框的边宽为xcm,依题意 得 依题意,得 解:设长方形框的边宽为 设长方形框的边宽为 依题意 X
上一节,我们学习了解决“平均增 上一节,我们学习了解决“平均增 下降)率问题 长(下降 率问题”,现在,我们要 下降 率问题” 现在, 学习解决“面积、体积问题。 学习解决“面积、体积问题。
探究3 探究
在长方形钢片上冲去一个长方形, 在长方形钢片上冲去一个长方形,制成一个四 周宽相等的长方形框。已知长方形钢片的长为30cm,宽 周宽相等的长方形框。 2 为20cm,要使制成的长方形框的面积为400cm ,求这个 长方形框的框边宽。 长方形框的框边宽。 分析: 分析 本题关键是如何用x的代数式表示这个长方形框的面积 本题关键是如何用 的代数式表示这个长方形框的面积 X X X X
1 解: (1) 方案 :长为9 米,宽为 米; 方案1: 宽为7米 7
∴ b2 − 4ac = (−16)2 − 4 × 1 × 65 = −4 < 0
方案2:长为 米 宽为4米 方案3: 方案 :长为16米,宽为 米; 方案 :长=宽=8米; 宽 米 注:本题方案有无数种 (2)在长方形花圃周长不变的情况下,长方形花 )在长方形花圃周长不变的情况下, 圃面积不能增加2平方米 平方米. 圃面积不能增加 平方米 由题意得长方形长与宽的和为16米 设长方形花圃 由题意得长方形长与宽的和为 米.设长方形花圃 的长为x米 则宽为(16-x) 的长为x米,则宽为(16-x)米. x(16-x)=63+2, , x2-16x+65=0, , ∴此方程无解. 此方程无解 在周长不变的情况下, ∴在周长不变的情况下,长方形花圃的面积不能 增加2平方米 增加 平方米

二次函数与一元二次方程(2)一元二次方程的图象解法


驶向胜利 的彼岸
利用二次函数的图象求一元二次方程2x2+x-15=0的近 似根.
由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.
一元二次方程的图象解法
(1).用描点法作二次函数y=3x2-x-1的图象; (2).观察估计二次函数y=3x2-x-1的图象与x 轴的交点的横坐标; 由图象可知,图象与x轴有两个交点,其横坐 标一个在-1与0之间,另一个在0与1之间,分 别约为-0.4和0.8(可将单位长再十等分,借 助计算器确定其近似值). (3).确定方程3x2-x-1=0的解;
驶向胜利 的彼岸
利用二次函数的图象求一元二次方程3x2-x-1=0的近 似根.
由此可知,方程3x2-x-1=0的近似根为:x1≈-0.4,x2≈0.8.
结束寄语

不知道并不可怕和有害, 任何人都不可能什么都知 道,可怕的和有害的是不 知道而伪装知道.
驶向胜利 的彼岸
利用二次函数的图象求一元二次方程-2x2+4x+1=0的 近似根.
由此可知,方程-2x2+4x+1=0的近似根为:x1≈-0.2,x2≈2.2.
一元二次方程的图象解法
(1).用描点法作二次函数y=2x2+x-15的图象; (2).观察估计二次函数y=2x2+x-15的图象与 x轴的交点的横坐标; 由图象可知,图象与x轴有两个交点,其横坐 标一个是-3,另一个在2与3之间,分别约为3 和2.5(可将单位长再十等分,借助计算器确 定其近似值). (3).确定方程2x2+x-15=0的解;
驶向胜利 的彼岸
利用二次函数的图象求一元二次方程x2+2x-10=3的近 似根.

北师大版九年级数学上册《认识一元二次方程》第2课时示范公开课教学课件


①先列表确定整数部分,当2<x<3时,-1< x2 -2x -1<2,则正数根在2到3之间;
②再列表确定十分位部分,当2.4<x<2.5时,-0.04< x2 -2x -1<0.25,则正数根在2.4到2.5之间;
③最后确定百分位部分,当x=2.45时, x2 -2x -1的值是否大于0,若大于0,则正数根在2.4到2.45之间;若小于0,则正数根在2.45到2.50之间.再根据精确到0.1,四舍五入取值即可.
x
0
0.5
1
1.5
2
x2 + 12x - 15-15-8.75
-2
5.25
13
下面是小亮的求解过程:
可知x取值的大致范围是:1<x<1.5.
x
1.0
1.1
1.2
1.3
1.4
x2 + 12x - 15
-0.59
0.84
2.29
3.76
-2
所以1.1<x<1.2,因此x整数部分是1,十分位部分是1.
你的结果是怎样的?
一元二次方程 (x+1)2 - x = 3(x2-2) 化成一般形式是 __________________.
3. 近似数 2.36 ≈ _______(精确到0.1).

2x2–x -7 = 0
2.4
问题1:下面哪些数是方程 x2 – 2x – 8 = 0 的解? -4,-3,-2,-1,0,1,2,3 ,4
x
-4
-3
-2
-1
0
1
2
3
4
x2 – 2x – 8
16
-8
7
0
-5
-8

一元二次方程的解法(2)

一元二次方程的解法(2)一、新知:解:.522=+x x 原方程两边都加上1,得,15122+=++x x 即,6)1(2=+x 直接开平方,得.61±=+x 所以,61±-=x 即.61,6121--=+-=x x通过方程的简单变形,将左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做 .例1:用配方法解方程:;014)1(2=+-x x .065)2(2=--x x练习:;028)1(2=-+x x .01124)2(2=--x x二、应用:1. 用配方法解方程,0322=-+x x下列配方结果正确的是( ) A. 2)1(2=-x B.4)1(2=-x C.2)1(2=+x D.4)1(2=+x2.)A.3. 用配方法把一元二次方程,0162=+-x x 配成q p x =+2)(的形式,p为 ,q 为 .4. 一元二次方程式4882=-x x 可表示成b a x +=-48)(2的形式,其中a 、b 为整数,求a+b 之值为何( )A. 20B. 12C. −12D. −205. 用配方法解下列方程时,配方有错误的是( )A.09922=--x x化为 100)1(2=-x B.0982=++x x 化为25)4(2=+xC.04722=--t t 化为D.02432=--x x 化为6. 用配方法解方程0122=-+x x时,配方结果正确的是( ) A.2)2(2=+x B.2)1(2=+x C.3)2(2=+x D.3)1(2=+x7. 用配方法解方程,01632=+-x x则方程可变形为( )D.1)13(2=-x 8. 若方程01)1(252=+--x k x 的左边可以写成一个完全平方式;则k 的值为( ) A. −9或11 B. −7或8 C. −8或9 D. −6或7 9. 已知等腰三角形的一边长为8,另一边长为方程0962=+-x x 的根,则该等腰三角形的周长为( )A. 14B. 19C. 14或19D. 不能确定10. 在解方程2x2+4x+1=0时,对方程进行配方,文本框①中是嘉嘉作的,文本框②中是琪琪作的,对于两人的做法,说法正确的是( )A. 两人都正确B. 嘉嘉正确,琪琪不正确C. 嘉嘉不正确,琪琪正确D. 两人都不正确11. 把方程3102-=-x x左边化成含有x 的完全平方式,其中正确的是( ) A.28)5(1022=-+-x xB.22)5(1022=-+-x xC.2251022=++x xD.25102=+-x x12. 用配方法解关于x 的一元二次方程),0(02≠=++a c bx ax 此方程可变形为( )。

一元二次方程应用(二)(知识解读+真题演练+课后巩固)(原卷版)

第6讲 一元二次方程应用(二)1. 懂得运用一元二次方程解决有关销售利润问题;2. 懂得运用一元二次方程解决有关几何面积问题;3. 懂得运用一元二次方程解决几何中的动点问题。

知识点 1:销售利润问题 :(1)常用公式:利润=售价-成本;总利润=每件利润×销售量; (2)每每问题中,单价每涨a 元,少买y 件。

若涨价y 元,则少买的数量为知识点2:几何面积问题(1)如图①,设空白部分的宽为x,则; (2)如图②,设阴影道路的宽为x,则(3)如图③,栏杆总长为a ,BC 的长为b,则知识点3 :动点与几何问题关键是将点的运动关系表示出来,找出未知量与已知量的内在联系,根据面积或体积公式列出方程.件y ab【题型 1销售利润问题】【典例1】(2022秋•信宜市校级期中)某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)y与x之间的函数关系式为;(2)当每千克干果降价1元时,超市获利多少元?(3)若超市要想获利2210元,且让顾客获得更大实惠,这种干果每千克应降价多少元?【变式1-1】(2021秋•天府新区期末)2022年冬奥会即将在北京召开,某文化用品店购进了一批以冬奥会为主题的手抄本进行销售,手抄本的进价每本3元,已知这种手抄本每天销售量y(本)与销售单价x(元)(3≤x≤9)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)若销售这款手抄本每天所获得的利润仅为120元,求销售单价应为多少元?【变式1-2】(2022秋•顺德区期中)佛山市加快建设制造业创新高地,全球每生产两台微波炉就有一台出自顺德.一商场从顺德以每台430元的价格进货一批微波炉,计划以每台500元销售.在销售过程中发现:每月微波炉的销售量y(台)与每台微波炉上涨价格x(元)之间满足一次函数关系,如图是y与x的函数图象.(1)求y与x之间的函数解析式;(2)若该商场要求微波炉的月销售量不少于750台,并且每月销售微波炉的利润率不低于20%,当该商场每月微波炉的销售利润为71250元时,微波炉的销售单价应定为多少?【变式1-3】(2023•临川区校级一模)某超市经销一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:40455560销售单价x(元/千克)80705040销售量y(千克)(1)求y(千克)与x(元/千克)之间的函数表达式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少千克?【典例2】(2022•南海区一模)某商场以每件210元的价格购进一批商品,当每件商品售价为270元时,每天可售出30件,为了迎接“双十一购物节”,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?【变式2-1】(2023春•西湖区校级期中)“抖音”平台爆红网络,某电商在“抖音”上直播带货,已知该产品的进货价为70元/件,为吸引流量,该电商在直播中承诺自家商品价格永远不会超过99元/件,根据一个月的市场调研,商家发现当售价为110元/件时,日销售量为20件,售价每降低1元,日销售量增加2件.(1)当销售量为30件时,产品售价为元/件;(2)直接写出日销售量y(件)与售价x(元/件)的函数关系式;(3)该产品的售价每件应定为多少,电商每天可盈利1200元?【变式2-2】(2023春•余姚市校级期中)2023年杭州亚运会吉祥物一开售,就深受大家的喜欢.某商店销售亚运会吉祥物,在销售过程中发现,当每件获利125元时,每天可出售50件,为了扩大销售量增加利润,该商店决定采取适当的降价措施,经市场调查发现,如果每件吉祥物降价5元,平均可多售出1件.(1)若每件吉祥物降价20元,商家平均每天能盈利多少元?(2)每件吉祥物降价多少元时,能尽量让利于顾客并且让商家平均每天盈利5980元?【变式2-3】(2022秋•宁德期末)随着正定旅游业的快速发展,外来游客对住宿的需求明显增大,某宾馆拥有的床位数不断增加.(1)该宾馆床位数从2016年底的200个增长到2018年底的288个,求该宾馆这两年(从2016年底到2018年底)拥有的床位数的年平均增长率;(2)根据市场表现发现每床每日收费40元,288张床可全部租出,若每床每日收费提高10元,则租出床位减少20张.若想平均每天获利14880元,同时又减轻游客的经济负担每张床位应定价多少元?【题型2 几何面积问题】【典例3】(2022春•长兴县月考)某单位要兴建一个长方形的活动区(图中阴影部分),根据规划活动区的长和宽分别为21m和12m,同时要在它四周外围修建宽度相等的小路.已知活动区和小路的总面积为400m2.(1)求小路的宽度;(2)某公司希望用50万元承包这项工程,该单位认为金额太高需要降价,通过两次协商,最终以40.5万元达成一致.若两次降价的百分率相同,求每次降价的百分率.【变式3-1】(2023•大连一模)如图,物业公司计划整理出一块矩形绿地,为充分利用现有资源,该矩形绿地一面靠墙(墙的长度为10m),另外三面用栅栏围成,已知栅栏总长度为18m,若矩形绿地的面积为36m2,求矩形垂直于墙的一边,即AB的长.【变式3-2】(2023春•苍南县期中)园林部门计划在某公园建一个长方形花圃ABCD,花圃的一面靠墙(墙足够长),另外三边用木栏围成,如图2所示BC=2AB,建成后所用木栏总长120米,在图2总面积不变的情况下,园林部门在花圃内部设计了一个正方形的网红打卡点和两条宽度相等的小路如图3,小路的宽度是正方形网红打卡点边长的,其余部分种植花卉,花卉种植的面积为1728平方米.(1)求长方形ABCD花圃的长和宽;(2)求出网红打卡点的面积.【变式3-3】(2021秋•萍乡期末)如图,利用一面墙(墙EF最长可利用28m),围成一个矩形花园ABCD,与墙平行的一边BC上要预留2m宽的入口(如图中MN所示,不用砌墙),现有砌60m长的墙的材料.(1)当矩形的长BC为多少米时,矩形花园的面积为300m2;(2)能否围成面积为480m2的矩形花园,为什么?【题型3 动点与几何问题】【典例4】(2022•霍林)如图所示,在Rt△ABC中.∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B 开始沿BC边向点C以2cm/s的速度移动.当P、Q两点中有一点到达终点,则同时停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积为4cm2.(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm.(3)在(1)中△PBQ的面积能否等于7cm2?说明理由.【变式4-1】(2023春•西湖区校级期中)如图,在△ABC中,∠B=90°,AB =5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC向点C以2cm/s的速度移动,当点Q到达点C时,P,Q 均停止运动,若△PBQ的面积等于4cm2,则运动时间为()A.1秒B.4秒C.1秒或4秒D.1秒或秒【变式4-2】(2022秋•澄迈县期末)如图,△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q 从点B开始,沿BC边向点C以2cm/s的速度移动,点Q到达点C后,点P 停止运动.(1)经过ts后(t>0),△PBQ的面积等于4cm2,求t的值;(2)经过ts后,(t>0),PQ的长度为5cm,求t的值;(3)△PBQ的面积能否等于8cm2?【变式4-3】(2022•泗阳县期末)如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.(1)BP=cm;BQ=cm;(用t的代数式表示)(2)D是AC的中点,连接PD、QD,t为何值时△PDQ的面积为40cm2?1.(2022•河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为()A.30(1+x)2=50B.30(1﹣x)2=50C.30(1+x2)=50D.30(1﹣x2)=50 2.(2019•广西)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×303.(2022•青海)如图,小明同学用一张长11cm,宽7cm的矩形纸板制作一个底面积为21cm2的无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,将四周向上折叠即可(损耗不计).设剪去的正方形边长为xcm,则可列出关于x的方程为.4.(2020•西藏)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.5.(2021•日照)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?6.(2022•德州)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.7.(2022•南岸区自主招生)北京冬奥会期间,某商店购进600个纪念品,每个纪念品的进价为6元,第一周以每个10元的价格售出200个.第二周商店为了适当增加销售量,决定降价销售.根据市场调查,单价每降低1元,可多售出50个(售价不得低于进价).第三周商店把每个纪念品的售价再在第二周售价的基础上降低20%,剩余纪念品全部售完.注:销售利润=销售量×(售价﹣进价)(1)若第二周每个纪念品降价m元,用含m的代数式表示这批纪念品第二周的销售利润;(2)若前两周商店销售这批纪念品的利润为1400元,求第二周每个纪念品的售价;(3)若这批纪念品共获得销售利润1730元,求这批纪念品第三周的销售数量.1.(2022秋•大渡口区校级期末)某网店以每件100元的价格购进一批商品,若每件商品的售价为120元,则平均每天可销售30件,为了尽快减少库存,网店决定采取适当的降价措施,经调查发现,每件商品每降价1元,平均每天可多售出5件,每件商品售价为多少元时,该网店日盈利可达到800元?设每件商品售价为x元时,该网店日盈利可达到800元,则可列方程为()A.(20﹣x)(30+5x)=800B.(20﹣x)(30+x)=800C.(x﹣100)(630﹣5x)=800D.(x﹣100)(630﹣x)=800 2.(2022秋•河北区期末)某超市购进一批商品,单价40元.经市场调查,销售定价为52元时,可售出180个,定价每增加1元,销售量减少10个,因受库存的影响,每批次进货个数不得超过180个,超市若将准备获利2000元,则定价为多少元?()A.50B.60C.50或60D.100 3.(2022秋•江岸区校级月考)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽度为xcm(风景画四周的金色纸边宽度相同),则x的值为()A.10B.8C.7D.54.(2022秋•甘井子区校级月考)如图,把一块长为40cm,宽为20cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为576cm2,求剪去小正方形的边长.5.(2021秋•平定县期末)如图所示,某景区计划在一个长为36m,宽为20m 的矩形空地上修建一个停车场,停车场中修建三块相同的矩形停车区域,它们的面积之和为336m2,三块停车区域之间以及周边留有宽度相等的行车通道,问行车通道的宽度是多少m?6.(2021秋•昌图县期末)如图,要使用长为27米的篱笆,一面利用墙(墙的最大可用长度为12米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为54平方米的花圃,那么AD的长为多少米?(2)能否围成面积为90平方米的花圃?若能,请求出AD的长;若不能,请说明理由.7.(2021秋•平山区校级月考)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润为320元?8.(2021秋•铁西区校级月考)宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价加10元时,就会空一间房,如果有游客居住,宾馆还需对居住的每间房每天支出20元的费用.若宾馆每天想获得的利润为10890元,应该将每间房每天定价为多少元?9.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)EF =cm,GH=cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长10.(2022秋•兴城市期中)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动(到达点B即停止运动),点Q从点B开始沿BC边向点C以2cm/s的速度移动(到达点C即停止运动).(1)如果点P,Q分别从A,B两点同时出发,经过几秒钟,△PBQ的面积等于△ABC面积的三分之一?(2)如果P,Q两点分别从A,B两点同时出发,几秒钟后,点P,Q相距6cm?11.(2022秋•江都区期中)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?12.(2022秋•市北区校级月考)如图,在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C 出发,沿线段CB向点B方向运动.如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动的时间为ts,(0≤t≤5)求:(1)当t为多少秒时,P、Q两点之间的距离是10cm?(2)用含t的代数式表示Rt△CPQ的面积S;(3)当t为多少秒时,?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1认识一元二次方程(二)
【教学目标】经历估计一元二次方程的解的过程,增进对方程解的认识,进一步培养估算意识和能力。


展数感。

【教学过程】一. 复习回顾:
A. 3X - 1=0
B. y ²-2x ²-1=0
C. x ²-3 = 0
D. x ²+
x
1
-1=0 2. 方程(x-2)(x+3)=3化成一般形式是 , 其中二次项系数是 , 一次项系数是 ,常数项是 。

二.探索新知:
1.在上一节课的问题中,你能设法估计四周未铺地毯部分的宽度x (m )吗? x 满足方程
()()182x 52x 8=--, 一般形式是
(1) x 可能小于0吗?可能大于4吗? 可能大于2.5吗?说说你的理由。

(2) 你能确定x 的大致范围吗? (3)填写下表:
(4)你知道所求宽度x(m)是多少吗? 还有其他求解方法吗?与同伴进行交流
2. 上节课的梯子问题中,梯子底端滑动的距离x(m)满足方程
()22
21076x =++,把这个方程化为一般形式为
(1)小明认为底端也滑动了1 m ,他的说法正确吗?为什么? (2)底端滑动的距离可能是2 m 吗?可能是3 m 吗?为什么? (3)你能猜出滑动距离x(m)的大致范围吗? (4)x 的整数部分是几?十分位是几? 填写下表:
所以 <x <
进一步计算:
所以 <x <
因此,x 的整数部分是1,小数部分也是1. 三.巩固新知:
1.根据下表中的对应值,判断一元二次方程x ²-4x+2=0的解的取值范围。

A 0<x <0.25或3.5<x <4
B 0.5<x <1或2<x <2.5
C 0.5<x <1或3<x <3.5
D 1<x <1.5或3.5<x <4
2.五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个整数分别是多少吗?
3.一个面积为120m ²的矩形苗圃,它的长比宽多2m ,苗圃的长和宽各是多少?
四.课堂小结:通过本节课的学习你有哪些收获?谈谈你的感想。

五.自我检测:
1.一元二次方程02
=++c bx ax ,若有一个根为—1,则=+-c b a ,若=+-c b a 0,则有一个根为 。

2
由此可判断方程x ²-2x-8=0的解是 。

3.有一条长为16m 的绳子,你能否用它围出一个面积为15 m ²的矩形?若能,则矩形的长、宽各是多少
4.一名跳水运动员进行10m 跳台跳水训练,在正常情况下,运动员必须在距水面5m 以前完成规定的翻腾动作,并且调整好入水姿势,否则就容易出现失误,假设运动员起跳后的运动时间t (s )和运动员距离水面的高度h (m )满足关系:h=10+2.5t-5t ²,那么他最多有多长时间完成规定动作?。

相关文档
最新文档