2014届中考数学二轮精品复习专题卷:二次根式
中考数学二轮复习二次根式知识归纳总结附解析

中考数学二轮复习二次根式知识归纳总结附解析一、选择题1.已知21025x x -+=5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列式子中,属于最简二次根式的是( ) A .9B .13C .20D .73.若01x <<,则221144x x x x ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭( ). A .2xB .2x-C .2x -D .2x4.下列各式中,无意义的是( ) A .23-B .()333-C .()23-D .310-5.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .(8﹣3cm 2B .(4﹣3cm 2C .(16﹣3cm 2D .(﹣3)cm 26.下列各式中,运算正确的是( )A .32222=8383-=-.233=D ()222-=-7.下列各式中正确的是( ) A 36 6 B 2(2)2--=-C 8 4D .2(7)=78.1156+ ) A 11 B .330C 330D .119.若化简2816x x -+的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤410.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,2b -|a +b |+|a -c |-222c bc b -+( )A .2c -bB .2c -2aC .-bD .b11.下列运算正确的是( ) A .235+= B .()2228-= C .112222÷=D .()21313-=-12.下列各组二次根式中,能合并的一组是( ) A .1a +和1a - B .3和13C .2a b 和2abD .3和18二、填空题13.已知2216422x x ---=,则22164x x -+-=________.14.甲容器中装有浓度为a 的果汁40kg ,乙容器中装有浓度为b 的果汁90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________. 15.若2x ﹣1=3,则x 2﹣x=_____. 16.化简二次根式2a 1a a+-的结果是_____. 17.将一组数2,2,6,22,10,…,251按图中的方法排列:若32的位置记为(2,3),27的位置记为(3,2),则这组数中最大数的位置记为______.18.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.19.2m 1-1343m --mn =________. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题: (1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=(21)(32+43++10099-+--⋯-)()) =100-1=10-1=9 (2)∵212121(21)(21)a +===+--+, 解法一:∵22(1)(211)2a -=+-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =-- 24(211)3=+--4235=⨯-=点睛:(1)把分母+a b 有理化的方法:分子分母同乘以分母的有理化因式a b -, 得22()()()()+-=-=-a b a b a b a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2007)=2013.24.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(2,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.26.先化简,再求值:24224x x x x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =. 【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.27.一样的式子,其实我3====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2)12. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n++++=.考点:分母有理化.28.计算(1))(121123-⎛⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y+和xy的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y∴+=+=,()11119112224xy=⨯=⨯-=,则()222x xy y x y xy++=+-,22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.29.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.30.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,|5|5x x∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.D解析:D【分析】根据直角二次根式满足的两个条件进行判断即可.【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A错误;=被开方数中含分母,不是最简二次根式,故选项B错误;3=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C错误;是最简二次根式,故选项D正确.故选D.【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.3.D解析:D【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解.【详解】解:∵0<x<1,,∴0<x<1<1x∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.4.A解析:A 【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案. 【详解】AB ,有意义,不合题意;CD 、33110=10-,有意义,不合题意; 故选A. 【点睛】此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.5.D解析:D 【分析】根据正方形的面积求出边长AB =4cm ,BC =()cm ,利用四边形ABCD 的面积减去两个阴影的面积即可列式求出答案. 【详解】∵两张正方形纸片的面积分别为16cm 2和12cm 2,4cm =cm ,∴AB =4cm ,BC =(+4)cm ,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,故选:D.【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.6.A解析:A【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A、-=A正确;B=B错误;C、2不能合并,故C错误;D2=,故D错误;故选:A.【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.7.D解析:D【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A,故A错误;B12=,故B错误;C=C错误;D、2(=7,故D正确;故选:D.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.8.C解析:C【解析】30,故选C.点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.9.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.10.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.11.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A错误;选项B,(2428-=⨯=,选项B正确;选项C124==,选项C错误;选项D1,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.12.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A 、是最简二次根式,被开方数不同,不是同类二次根式;BCD故选B .【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.二、填空题13.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为:点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.14.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.故答案为:5 【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.15.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3 ∴4x2﹣4x+1=3 ∴4(x2﹣x)=2 ∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.16.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为17.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.18.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,.故答案为-2a .【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题. 19.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343n m m -=⎧⎨-=-⎩, 解得,73m n =⎧⎨=⎩, ∴7321.mn =⨯=故答案为21.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
中考数学总复习《二次根式》专项测试卷含答案

中考数学总复习《二次根式》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.若式子√2m-3有意义,则m的取值范围是( )A.m≤23B.m≥-32C.m≥32D.m≤-232.若二次根式√2-x在实数范围内有意义,则实数x的取值范围在数轴上表示正确的是( )3.(已知实数a=√3(√3+√5)(√5-√3),则下列判断正确的是( )A.2<a<3B.3<a<4C.4<a<5D.1<a<34.(2024·青岛一模)下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24÷√6=45.(2024·盐城中考)矩形相邻两边长分别为√2cm、√5cm,设其面积为S cm2,则S 在哪两个连续整数之间( )A.1和2B.2和3C.3和4D.4和56.(2024·贵州中考)计算√2×√3的结果是.7.(2024·广安中考)3-√9=.8.(2024·济宁二模)计算:√8+|√2-1|-sin 45°+(√2+π)0.9.计算:√27÷√32×2√2-6√2.B 层·能力提升10.(2024·广东中考)完全相同的4个正方形面积之和是100,则正方形的边长是( ) A .2B .5C .10D .2011.(2024·德阳中考)将一组数√2,2,√6,2√2,√10,2√3,…,√2n ,…,按以下方式进行排列:则第八行左起第1个数是( )A .7√2B .8√2C .√58D .4√712.(2024·济宁北湖区三模)若x =√3-1,则代数式x 2+2x +3的值为( ) A .7B .4√3C .3-2√3D .513.(2024·泰安一模)斐波那契数列中的第n 个数可以用√5[(1+√52)n -(1-√52)n]表示(其中n ≥1),这是用无理数表示有理数的一个范例,请计算斐波那契数列中的第2个数的值是 .14.(2024·滨州三模)计算:√3-(√3-2)0-|-√12|+(12)-1+tan 60°.15.(2024·东营三模)先化简,再求值:(xx -1-1)÷x 2+2x+1x 2-1,其中x =√3-2.C层·素养挑战16.阅读下面材料:将边长分别为a,a+√b,a+2√b,a+3√b的正方形面积分别记为S1,S2,S3,S4.则S2-S1=(a+√b)2-a2=[(a+√b)+a]·[(a+√b)-a]=(2a+√b)·√b=b+2a√b.例如:当a=1,b=3时,S2-S1=3+2√3.根据以上材料解答下列问题:(1)当a=1,b=3时,S3-S2=9+2√3,S4-S3=15+2√3;(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2-S1,t2=S3-S2,t3=S4-S3,…,t n=S n+1-S n,且T=t1+t2+t3+…+t50,求T 的值.参考答案A层·基础过关1.(2024·绥化中考)若式子√2m-3有意义,则m的取值范围是(C)A.m≤23B.m≥-32C.m≥32D.m≤-232.(若二次根式√2-x在实数范围内有意义,则实数x的取值范围在数轴上表示正确的是(C)3.(已知实数a=√3(√3+√5)(√5-√3),则下列判断正确的是(B)A.2<a<3B.3<a<4C.4<a<5D.1<a<34.(2024·青岛一模)下列运算正确的是(C)A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24÷√6=45.(2024·盐城中考)矩形相邻两边长分别为√2cm、√5cm,设其面积为S cm2,则S 在哪两个连续整数之间(C)A.1和2B.2和3C.3和4D.4和56.(2024·贵州中考)计算√2×√3的结果是√6.7.(2024·广安中考)3-√9=0.8.(2024·济宁二模)计算:√8+|√2-1|-sin 45°+(√2+π)0.【解析】√8+|√2-1|-sin 45°+(√2+π)0=2√2+√2-1-√22+1=5√22.9.计算:√27÷√32×2√2-6√2.【解析】原式=3√3×√3×2√2-6√2=12√2-6√2=6√2.B 层·能力提升10.(2024·广东中考)完全相同的4个正方形面积之和是100,则正方形的边长是(B) A .2B .5C .10D .2011.(2024·德阳中考)将一组数√2,2,√6,2√2,√10,2√3,…,√2n ,…,按以下方式进行排列:则第八行左起第1个数是(C)A .7√2B .8√2C .√58D .4√712.(2024·济宁北湖区三模)若x =√3-1,则代数式x 2+2x +3的值为(D) A .7B .4√3C .3-2√3D .513.(2024·泰安一模)斐波那契数列中的第n 个数可以用√5[(1+√52)n -(1-√52)n]表示(其中n ≥1),这是用无理数表示有理数的一个范例,请计算斐波那契数列中的第2个数的值是 1 .14.(2024·滨州三模)计算:√3-(√3-2)0-|-√12|+(12)-1+tan 60°.【解析】√3-(√3-2)0-|-√12|+(12)-1+tan 60°=√3-1-2√3+2+√3 =115.(2024·东营三模)先化简,再求值:(xx -1-1)÷x 2+2x+1x 2-1,其中x =√3-2. 【解析】(xx -1-1)÷x 2+2x+1x 2-1=(x x -1-x -1x -1)÷(x+1)2(x+1)(x -1)=1x -1·x -1x+1=1x+1当x =√3-2时 原式=√3-2+1=√3-1=√3+12. C 层·素养挑战16.阅读下面材料:将边长分别为a ,a +√b ,a +2√b ,a +3√b 的正方形面积分别记为S 1,S 2,S 3,S 4. 则S 2-S 1=(a +√b )2-a 2 =[(a +√b )+a ]·[(a +√b )-a ] =(2a +√b )·√b =b +2a √b .例如:当a =1,b =3时,S 2-S 1=3+2√3. 根据以上材料解答下列问题:(1)当a =1,b =3时,S 3-S 2=9+2√3,S 4-S 3=15+2√3;【解析】(1)S 3-S 2=(a +2√b )2-(a +√b )2=a 2+4a √b +4b -a 2-2a √b -b =2a √b +3b当a =1,b =3时,S 3-S 2=9+2√3;S 4-S 3=(a +3√b )2-(a +2√b )2=a 2+6a √b +9b -a 2-4a √b -4b =2a √b +5b 当a =1,b =3时,S 4-S 3=15+2√3;(2)当a =1,b =3时,把边长为a +n √b 的正方形面积记作S n +1,其中n 是正整数,从(1)中的计算结果,你能猜出S n +1-S n 等于多少吗?并证明你的猜想; 【解析】(2)S n +1-S n =6n -3+2√3; 证明如下:S n +1-S n =(1+√3n )2-[1+√3(n -1)]2=[2+√3(2n-1)]×√3=3(2n-1)+2√3=6n-3+2√3;(3)当a=1,b=3时,令t1=S2-S1,t2=S3-S2,t3=S4-S3,…,t n=S n+1-S n,且T=t1+t2+t3+…+t50,求T 的值.【解析】(3)当a=1,b=3时,T=t1+t2+t3+…+t50=S2-S1+S3-S2+S4-S3+…+S51-S50=S51-S1=(1+50√3)2-1=7 500+100√3.。
2014年中考数学总复习二轮复习54页

六 方程专题6.1方程专题 一1.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间2.不等式组221x x -⎧⎨-<⎩≤的整数解共有( ) A.3个 B.4个 C.5个 D.6个 3.已知x 2+16x+k 是完全平方式,则常数k 等于( ) A.64B.48C.32D.164.若3x =4,9y =7,则3x ﹣2y 的值为( ) A.74 B.47 C.﹣3 D.72 5.已知关于x 的方程01)1(2=--+x k kx ,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解 6.方程(k-1)x 2-1k -x+14=0有两个实数根,则k 的取值范围是( )A .k ≥1B .k ≤1C .k >1D .k <17.已知m 、n 是方程x 2+22x+1=0的两根,则代数式mn n m 322++的值为( ) A .9B . ±3C .3 D . 58.已知βα,是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足βα11+=-1,则m 的值是( ) A.3或﹣1 B.3 C.1D.﹣3或19.已知实数x 满足31=+x x ,则221xx +的值为 10.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 11.已知A=2x+y ,B=2x ﹣y ,计算A 2﹣B 2 =12.若(x 1,y 1)•(x 2,y 2)=x 1x 2+y 1y 2,则(4,5)•(6,8)= 13.一种书包经两次降价10%,现在售价a 元,则原售价为_______元.14.已知关于x 的一元二次方程x 2-x-3=0的两个实数根分别为α,β,则(α+3)(β+3)= 15.已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台. 16.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的31,另一根露出水面的长度是它的51.两根铁棒长度之和为220cm ,此时木桶中水的深度是 cm .17.解方程:22011x x x -=+-18.解不等式组:⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x xx19.关于x,y 方程组⎩⎨⎧=++=+my x m y x 32253满足x+y=2,求m 2-2m+1的值。
中考数学总复习《二次根式》专项测试卷带答案

中考数学总复习《二次根式》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.若二次根式√x-2有意义,则实数x的取值范围是( )A.x≥2B.x>2C.x≥0D.x>02.(2024·凯里一模)下列二次根式是最简二次根式的是( )B.√0.5C.√8D.√6A.√133.若√(x-3)(4-x)=√x-3·√4-x成立,则x的取值范围是( )A.x>3B.x<4C.3≤x≤4D.3<x≤44.下列计算正确的是( )A.3√3×3√2=3√6B.√(-3)2=-3C.2√3+4√2=6√5D.√27÷√3=35.下列各数中,与√3的积为有理数的是( )A.√2B.2-√3C.3D.√3是整数,则整数x的值是( )6.若√2×√6xA.1或3B.3或6C.3或12D.6或12有意义,那么x的取值范围是.7.二次根式√12-x8.计算:(√6+√3)(√6-√3)的结果为.9.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为.10.(2024·甘肃中考)计算:√18-√12×√3.2)-1+2 0250.11.(2024·临夏州中考)计算:|-√4|-(13【B层·能力提升】12.估计√2(√8+√10)的值应在( )A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·乐山中考)已知1<x<2,化简√(x-1)2+|x-2|的结果为( )A.-1B.1C.2x-3D.3-2x14.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积S=√p(p-a)(p-b)(p-c).这个公式也被称为海伦-秦九韶公式.若p=a+b+c2p=5,c=4,则此三角形面积的最大值为( )A.√5B.4C.2√5D.515.下面是小明和小亮的计算过程,下列判断正确的是( )小明:√3×√6=√3×6=√3×3×2=√32×2=3√2;小亮:2√5×√10=2√5×√5×2=2√5×√5×√2=2(√5)2×√2=10√2.A.只有小明的做法正确B.两人的做法都不正确C.小明在计算时用到了√a·√b=√ab(a≥0,b≥0)D.小亮在计算时用到了√a2=a(a≥0)16.请写出一个正整数m的值使得√8m是整数,m=.17.实数m在数轴上的位置如图所示,则化简|m-1|+√m2的结果为.18.已知m=√7+1,则代数式(m+1)2-4(m+1)+4的值是.19.比较大小:√15-√14√14-√13(选填“>”“<”或“=”).20.某小区有一块长方形绿地ABCD,长BC为√128米,宽AB为√50米,现在要在长方形绿地中修建两个形状大小相同的小长方形花坛(即图中阴影部分),每个小长方形花坛的长为(√13+1)米,宽为(√13-1)米.(1)求长方形绿地ABCD的周长;(2)除花坛外,其他地方全修建成通道,通道需铺上造价为55元/平方米的地砖,则购买地砖需要多少钱?【C层·素养挑战】21.已知三角形三边长分别为√6,√6,2√3,则此三角形的最大边上的高等于.22.关于x的方程3x-12=11+√3+1√3+√5+1√5+√7+…+1√97+√99的解是.参考答案【A层·基础过关】1.若二次根式√x-2有意义,则实数x的取值范围是(A)A.x≥2B.x>2C.x≥0D.x>02.(2024·凯里一模)下列二次根式是最简二次根式的是(D)B.√0.5C.√8D.√6A.√133.若√(x-3)(4-x)=√x-3·√4-x成立,则x的取值范围是(C)A.x>3B.x<4C.3≤x≤4D.3<x≤44.下列计算正确的是(D)A.3√3×3√2=3√6B.√(-3)2=-3C.2√3+4√2=6√5D.√27÷√3=35.下列各数中,与√3的积为有理数的是(D)A.√2B.2-√3C.3D.√3是整数,则整数x的值是(C)6.若√2×√6xA.1或3B.3或6C.3或12D.6或12有意义,那么x的取值范围是x<2. 7.二次根式√12-x8.计算:(√6+√3)(√6-√3)的结果为3.9.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为1..10.(2024·甘肃中考)计算:√18-√12×√32【解析】原式=3√2-3√2=0.)-1+2 0250.11.(2024·临夏州中考)计算:|-√4|-(13【解析】原式=|-2|-3+1=2-3+1=2+1-3=0.【B层·能力提升】12.估计√2(√8+√10)的值应在(B)A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·乐山中考)已知1<x<2,化简√(x-1)2+|x-2|的结果为(B)A.-1B.1C.2x-3D.3-2x14.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=a+b+c,则其面积S=√p(p-a)(p-b)(p-c).这个公式也被称为海伦-秦九韶公式.若2p=5,c=4,则此三角形面积的最大值为(C)A.√5B.4C.2√5D.515.下面是小明和小亮的计算过程,下列判断正确的是(C)小明:√3×√6=√3×6=√3×3×2=√32×2=3√2;小亮:2√5×√10=2√5×√5×2=2√5×√5×√2=2(√5)2×√2=10√2.A.只有小明的做法正确B.两人的做法都不正确C.小明在计算时用到了√a·√b=√ab(a≥0,b≥0)D.小亮在计算时用到了√a2=a(a≥0)16.请写出一个正整数m的值使得√8m是整数,m=2(答案不唯一).17.实数m在数轴上的位置如图所示,则化简|m-1|+√m2的结果为1.18.已知m=√7+1,则代数式(m+1)2-4(m+1)+4的值是7.19.比较大小:√15-√14<√14-√13(选填“>”“<”或“=”).20.某小区有一块长方形绿地ABCD,长BC为√128米,宽AB为√50米,现在要在长方形绿地中修建两个形状大小相同的小长方形花坛(即图中阴影部分),每个小长方形花坛的长为(√13+1)米,宽为(√13-1)米.(1)求长方形绿地ABCD的周长;【解析】(1)2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD的周长为26√2米.(2)除花坛外,其他地方全修建成通道,通道需铺上造价为55元/平方米的地砖,则购买地砖需要多少钱?【解析】(2)√128×√50-2×(√13+1)×(√13-1)=80-2×12=56(平方米)则56×55=3 080(元)∴要铺完整个通道,则购买地砖需要花费3 080元.【C 层·素养挑战】21.已知三角形三边长分别为√6,√6,2√3,则此三角形的最大边上的高等于 √3.22.关于x 的方程3x -12=11+√3+1√3+√5+1√5+√7+…+1√97+√99的解是 x =√112.。
【备考2014 志鸿优化设计】2013版中考数学总复习 基础讲练 第4讲 二次根式(含答案点拨) 新

第4讲 二次根式考纲要求命题趋势1.掌握二次根式有意义的条件和基本性质(a )2=a (a ≥0).2.能用二次根式的性质a 2=|a |来化简根式.3.能识别最简二次根式、同类二次根式.4.能根据运算法则进行二次根式的加减乘除运算以及混合运算.二次根式的知识点是新课标的基本考查内容之一,常常以客观题形式进行考查,重点要求熟练掌握基本运算.二次根式运算的另一考查形式是求二次根式的值,尤其是分母中含有根式或根式中含有字母类型的题目是考查的热点.知识梳理 一、二次根式 1.概念形如________的式子叫做二次根式. 2.二次根式有意义的条件 要使二次根式a 有意义,则a ≥0. 二、二次根式的性质 1.(a )2=a (______). 2.a 2=|a |=⎩⎪⎨⎪⎧a ≥0,a <0.3.ab =______(a ≥0,b ≥0). 4.ab=______(a ≥0,b >0). 三、最简二次根式、同类二次根式 1.概念我们把满足被开方数不含分母,被开方数中不含能开得尽方的______或______的二次根式,叫做最简二次根式.2.同类二次根式的概念几个二次根式化成________________以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.四、二次根式的运算 1.二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.2.二次根式的乘除法(1)二次根式的乘法:a ·b =____(a ≥0,b ≥0). (2)二次根式的除法:ab=____(a ≥0,b >0). 自主测试1.使3x -1有意义的x 的取值X 围是( ) A .x >13 B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152D .1523.下列二次根式中,与3是同类二次根式的是( ) A .18 B .27C .23D .324.下列运算正确的是( ) A .25=±5 B.43-27=1 C .18÷2=9 D .24·32=6 5.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 6.化简:27-12+43.考点一、二次根式有意义的条件 【例1】若使x +12-x有意义,则x 的取值X 围是________.解析:x +1与2-x 都是二次根式的被开方数,都要大于等于零.又因2-x 不能为零,可得不等式组⎩⎪⎨⎪⎧x +1≥0,2-x >0,解得-1≤x <2.答案:-1≤x <2方法总结 利用二次根式有意义的条件求字母的取值X 围时,首先考虑被开方数为非负数,其次还要考虑其他限制条件,如分母不等于零,最后解不等式(组).触类旁通1 要使式子a +2a有意义,则a 的取值X 围为__________. 考点二、二次根式的性质 【例2】把二次根式a-1a化简后,结果正确的是( )A .-aB .--aC .-aD .a 解析:要使a-1a 有意义,必须-1a>0,即a <0.所以a -1a=a-a a 2=a -a-a=--a . 答案:B方法总结 如果题目中对根号内的字母给出了取值X 围,那么应在这个X 围内对根式进行化简,如果题目中没有给出明确的取值X 围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值X 围显现出来,在允许的取值X 围内进行化简.触类旁通2 如果2a -12=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥12考点三、最简二次根式与同类二次根式【例3】(1)下列二次根式中,最简二次根式是( ) A .2x 2B .b 2+1 C .4a D .1x(2)在下列二次根式中,与a 是同类二次根式的是( ) A .2a B .3a 2C .a 3D .a 4解析:(1)A 选项中的被开方数中含开得尽方的因式,C 选项中的被开方数中含开得尽方的因数,D 选项中的被开方数中含有分母,故B 选项正确;(2)将各选项中能化简的二次根式分别化简后,可得出3a 2=3|a |,a 3=a a ,a 4=a 2,结合同类二次根式的概念,可得出a 3与a 是同类二次根式.答案:(1)B (2)C方法总结 1.最简二次根式的判断方法: 最简二次根式必须同时满足如下条件:(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1. 2.判断同类二次根式的步骤:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断.要注意同类二次根式与根号外的因式无关.触类旁通3 若最简二次根式a +b3a 与a +2b 是同类二次根式,则ab =__________.考点四、二次根式的运算 【例4】计算:(50-8)÷ 2.解:原式=(52-22)÷2=32÷2=3.方法总结 1.二次根式加减法运算的步骤:(1)将每个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式.2.二次根式乘除法运算的步骤:先利用法则将被开方数化为积(或商)的二次根式,再化简;最后结果要化为最简二次根式或整式或分式.1.(2012某某株洲)要使二次根式2x -4有意义,那么x 的取值X 围是( ) A .x >2 B .x <2 C .x ≥2 D.x ≤22.(2012某某义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 3.(2012某某某某)已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-54.(2012某某)若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y2 012的值是__________.5.(2012某某德阳)有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)1.下列各式计算正确的是( ) A .2+3= 5 B .2+2=2 2 C .32-2=22D .12-102=6- 5 2.估计8×12+3的运算结果在( ) A .1到2之间 B .2到3之间 C .3到4之间 D .4到5之间 3.若a <1,化简a -12-1等于( )A .a -2B .2-aC .aD .-a4.已知实数a 满足|2 011-a |+a -2 012=a ,则a -2 0112的值是( ) A .2 011 B .2 010 C .2 012 D .2 009 5.计算212-613+8的结果是( ) A .32-2 3 B .5- 2 C .5-3D .2 26.若x +1+(y -2 012)2=0,则x y=__________. 7.当-1<x <3时,化简:x -32+x 2+2x +1=__________.8.如果代数式4x -3有意义,则x 的取值X 围是________. 9.计算:(-3)0+12×3=__________. 10.计算:⎝⎛⎭⎪⎫13-1-23-(π-2)0+|-1|. 11.计算:(3+2)(3-2)-|1-2|. 12.计算:(-3)0-27+|1-2|+13+2.参考答案导学必备知识 自主测试1.C 由题意得3x -1≥0,所以x ≥13.2.A 由题意得2x -5≥0且5-2x ≥0,解得x =52,此时y =-3,所以2xy =2×52×(-3)=-15.3.B 18=32,27=33,23=63,32=62. 4.D 25=5,43-27=43-33=3,18÷2=9=3,24·32=24×32=36=6.5.B 因为3=9,4=16,9<11<16,所以11在3到4之间. 6.解:原式=33-23+233=⎝⎛⎭⎪⎫3-2+233=533.探究考点方法触类旁通1.a ≥-2且a ≠0 由题意,得⎩⎪⎨⎪⎧a +2≥0,a ≠0,解得a ≥-2且a ≠0.触类旁通2.B 因为二次根式具有非负性, 所以1-2a ≥0,解得a ≤12,故选B.触类旁通3.1 由题意,得⎩⎪⎨⎪⎧a +b =2,3a =a +2b ,解得⎩⎪⎨⎪⎧a =1,b =1.∴ab =1. 品鉴经典考题1.C 因为二次根式有意义,则2x -4≥0,所以x ≥2.2.B 因为面积是15,则边长为15,则边长大小在3与4之间. 3.A m =⎝ ⎛⎭⎪⎫-33×(-221)=233×21=23×37=27=28,∵25<28<36,∴5<28<6,即5<m <6,故选A.4.1 由题意得x -3=0,y +3=0,则x =3,y =-3,所以⎝ ⎛⎭⎪⎫x y 2 012=(-1)2 012=1.5.①④⑤②4a 2-4a +1=(2a -1)2=|2a -1|,③m 6÷m 2=m6-2=m 4,这两个运算是错误的.研习预测试题1.CA项中2与3不是同类二次根式,B项中2与2不是同类二次根式,C项中32-2=(3-1)2=22,D项中原式=124-104=3-52=3-102.2.C 原式=2+3,1<3<2,所以3<2+3<4.3.D(a-1)2-1=|a-1|-1=1-a-1=-a.4.C 由算术平方根的意义知,a≥2 012,则2 011-a<0,∴a-2 011+a-2 012=a.∴a-2 012=2 011.∴a-2 012=2 0112,∴a-2 0112=2 012.5.A 原式=2×22-6×33+22=2-23+22=32-2 3.6.1 因为由题意得x+1=0,y-2 012=0,所以x=-1,y=2 012,所以x y=(-1)2 012=1.7.4 原式=(x-3)2+(x+1)2=|x-3|+|x+1|=3-x+x+1=4.8.x>39.解:原式=1+23×3=1+6=7.10.解:原式=3-23-1+1=- 3.11.解:原式=(3)2-(2)2-(2-1)=3-2-2+1=2- 2.12.解:原式=1-33+2-1+3-2=-2 3.。
初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
中考数学复习:专题1-15 巧用二次根式两个非负性解题
专题15 巧用二次根式两个非负性解题【专题综述】 一般地,形如a (a ≥0)的式子叫做二次根式.注意到a 表示非负数a 的算术平方根,那么二次根式定义中隐含着两个非负数:一个是被开方数a 的值,另一个是二次根式a 的值.解答某些与二次根式有关的问题时,要注意灵活巧用这两个非负数. 【方法解读】例1:如果2211a a a +-+=,那么a 的取值范围是( )A.a =0B.a =1C.a =0或a =1D.a ≤1 .【举一反三】已知3233x x x x +=-+,那么( )A.x ≤0B.x ≥-3C.0<x <3D.-3≤x ≤0.二、化简问题例2:当ab <0时,化简2ab ,得( )A.b a -B.b aC.b a -D.b a -- .【举一反三】把-a 1a -中根号外面的因式移到根号内的结果是( ) A.a - B. -a C. -a - D. a三、求值问题例3:若x 、y 都为实数,且21124x x y -+-+=,则xy 的值为( )A.0B.12C.2D.不能确定.【举一反三】已知5260x y x -++=,则31x y ++=______ .【强化训练】1.若21x x =,请写出一个符合条件的x 的值__________. 2.若1221n n -+-有意义,则(﹣n )2的平方根是( )A. 14B. 12C. 14±D. 12± 3.若12x <<,则23(1)x x -+-的值为( )A. 24x -B. 2C. 42x -D. 2-4.化简2961x x -+-(35x -)2的结果是( )A. 6x -6B. -6x +6C. -4D. 45.已知xy <0,化简二次根式x 2y x-的正确结果为 . 6.当x 取某一范围的实数时,代数式()()221613x x -+-的值是一个常数,该常数是( ) A. 29 B. 16 C. 13D. 3 7.已知a 满足|2017﹣a |+2018a -=a ,则a ﹣20172的值是_____.8.若x 、y 满足y <2x - +2x -+4,化简|y -4|-21025y y -+=__________.9.实践与探索:(1)填空: 23= ; 25-()= ; (2)观察第(1)的结果填空:当a ≥0时,2a = ;当a <0时, 2a = ; (3)利用你总结的规律计算: 2223x x -+-()(),其中2<x <3.10.阅读材料,解答下列问题:例:当错误!未找到引用源。
2014年中考数学二轮精品复习试卷分式
2014年中考数学二轮精品复习试卷分式学校:___________姓名:___________班级:___________考号:___________一、选择题1x 的取值范围是 A .全体实数 B .x=1 C .x≠1 D .x=02x 的取值范围是 .3.若x=-1,y=2,则A 40,则x 的值是A . 1B .0C .-1D .±1 5.下列运算错误的是A .C 6.对于非零实数a b 、,规定,则x 的值为7 A. x +1 B. C.x - D. x8 】A .x 1≠B .x >1C .x <1D .x 1≠-9.化简分式A .2B .-210A11】A. 0B.1C. -1D. x12】A.﹣1 B.1 C13x的值为A.﹣1 B.0 C.±1 D.1140,你认为x可取得数是A.9 B.±3 C.﹣3 D.315.下列选项中,从左边到右边的变形正确的是()A.B.C.D.16x的取值范围是A.x≤3 B.x≥3 C.x≠3 D.x=317.若分式的值为0,则x的值为()A. 4 B.﹣4 C.±4 D. 318.下列从左到右的变形过程中,等式成立的是()A.=B.=C.=D.=19)A20.若分式的值为零,则的值是()A、0B、1C、D、-2二、填空题21有意义,则的取值范围是。
22.当x=时,分式23.当x= 时,分式的值是零.24.将分式约分时,分子和分母的公因式是.25.计算:=262728的取值范围是.2930.已知,分式的值为.31x= .32.(2013年四川资阳3分)已知直线上有n(n≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳n次后必须回到第1个点;③这n次跳跃将每个点全部到达,设跳过的所有路程之和为S n33.当m=时,分式34.定义运算“*”为:a m m=.35x的取值范围是________.三、计算题++=的根.36m是方程2x3x1038x=﹣4.3940.(1(241 42.(1)已知2121632x x --=,求代数式4x的值;(243442,2,-1,1中选取一个恰当的数作为x 的值代入求值.45.(8分)已知12,4-=-=+xy y x ,求四、解答题 46.计算 ①(2﹣)2012(2+)2013﹣2﹣()0.②先化简,再求值:,其中x 满足x 2+x ﹣2=0.47.阅读下面材料,并解答问题.解:由分母为2x 1-+,可设()()4222x x 3x 1x a b --+=-+++则()()()()422242242x x 3x 1x a b x ax x a b x a 1x a b --+=-+++=--+++=---++∵对应任意x ,上述等式均成立,∴a 11a b 3-=⎧⎨+=⎩,∴a=2,b=1。
2014年中考数学二轮精品复习试卷分式
2014年中考数学二轮精品复习试卷分式学校:___________姓名:___________班级:___________考号:___________一、选择题 1.如果分式3x 1-有意义,则x 的取值范围是 A .全体实数 B .x=1 C .x≠1D .x=02.使代数式32x 1-有意义的x 的取值范围是 . 3.若x=-1,y=2,则222x 1x 64y x 8y---的值等于 A .117-B .117C .116D .1154.如果分式2x 12x 2-+的值为0,则x 的值是A . 1B .0C .-1D .±1 5.下列运算错误的是A . ()()22a b 1b a -=- B .a b1a b--=-+ C .0.5a b 5a 10b 0.2a 0.3b 2a 3b ++=-- D .a b b aa b b a--=++ 6.对于非零实数a b 、,规定1ab 1a b ⊕=-,若()22x 11⊕-=,则x 的值为A.56B. 54C. 32D. 16- 7.化简2x xx 11x+--的结果是 A. x +1 B.x 1- C.x - D. x8.要使分式5x 1-有意义,则X的取值范围是【 】A .x 1≠B .x >1C .x <1D .x 1≠-9.化简分式2221x 1x 1x 1⎛⎫÷+ ⎪--+⎝⎭的结果是 A .2 B .2x 1+ C .2x 1- D .-2 10.化简2a 121a 2a 1a 1+⎛⎫÷+ ⎪-+-⎝⎭的结果是A.1a1-B.1a1+C.21a1-D.21a1+11.计算2xx2x2---的结果是【】A. 0B.1C. -1D. x12.化简a1a11a+--的结果为【】A.﹣1 B.1 C.a1a1+-D.a11a+-13.分式2x1x1-+的值为零,则x的值为A.﹣1 B.0 C.±1 D.114.要使分式2x93x9-+的值为0,你认为x可取得数是A.9 B.±3 C.﹣3 D.315.下列选项中,从左边到右边的变形正确的是()A.B.C.D.16.使分式2x3-有意义的x的取值范围是A.x≤3 B.x≥3 C.x≠3 D.x=3 17.若分式的值为0,则x的值为()A. 4 B.﹣4 C.±4 D. 318.下列从左到右的变形过程中,等式成立的是()A.=B.=C.=D.=19)A20.若分式的值为零,则的值是()A、0B、1 C 、 D、-2二、填空题21.若分式2x1-有意义,则的取值范围是。
中考数学总复习《二次根式》专项测试卷有答案
中考数学总复习《二次根式》专项测试卷有答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.如果二次根式√a 有意义,那么a 的值可以是( ) A .-3 B .-2.5 C .-1 D .12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是( ) A .2 B .5 C .10 D .203.计算√92−62所得结果是( ) A .3 B .√6C .3√5D .±3√54.估计√6的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是( )A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 .9.(2024·广东)计算:20×|-13|+√4-3-1.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.B层·能力提升=( )11.若a=√2,b=√7,则√14a2b2A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在( )A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数.14.(2024·上海)已知√2x−1=1,则.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形=10,S正方形GHIJ=1,则正方形DEFG的边长可以是.(写出一个答案即可) ABCD16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC a,b,c,记p=a+b+c2中,a=7,b=5,c=6,则BC边上的高为.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.C层·挑战冲A+19.阅读下面材料:将边长分别为a,a+√b,a+2√b,a+3√b的正方形面积分别记为S1,S2,S3,S4.则S2-S1=(a+√b)2-a2=[(a+√b)+a]·[(a+√b)-a]=(2a+√b)·√b=b+2a√b.例如:当a=1,b=3时,S2-S1=3+2√3.根据以上材料解答下列问题:(1)当a=1,b=3时,S3-S2=,S4-S3=;(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.参考答案A层·基础过关1.(2024·南宁模拟)如果二次根式√a有意义,那么a的值可以是(D)A.-3B.-2.5C.-1D.12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是(B) A .2 B .5 C .10 D .203.(2024·包头)计算√92−62所得结果是(C) A .3 B .√6C .3√5D .±3√54.估计√6的值在(B)A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是(A)A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 x ≥1 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 3 . 9.(2024·广东)计算:20×|-13|+√4-3-1.【解析】原式=20×13+2-4=203-2=143.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.【解析】原式=3-32+(-5)×15=3-32-1=12.B 层·能力提升11.若a =√2,b =√7,则√14a 2b 2=(A)A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在(B)A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数2(或3).14.(2024·上海)已知√2x−1=1,则x=1.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD=10,S正方形GHIJ=1,则正方形DEFG的边长可以是2(答案不唯一).(写出一个答案即可)16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c2,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC中,a=7,b=5,c=6,则BC边上的高为12√67.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.【解析】原式=3+1+2×√32+2-√3=4+√3+2-√3=6.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.【解析】原式=(3x+yx 2−y 2-2xx 2−y 2)÷2x 2y−xy 2=3x+y−2x (x−y)(x+y)·xy(x−y)2 =x+y (x−y)(x+y)·xy(x−y)2=xy 2当x =√3+1,y =√3时 原式=√3(√3+1)2=3+√32. C 层·挑战冲A +19.阅读下面材料:将边长分别为a ,a +√b ,a +2√b ,a +3√b 的正方形面积分别记为S 1,S 2,S 3,S 4. 则S 2-S 1=(a +√b )2-a 2 =[(a +√b )+a ]·[(a +√b )-a ] =(2a +√b )·√b =b +2a √b .例如:当a =1,b =3时,S 2-S 1=3+2√3. 根据以上材料解答下列问题:(1)当a =1,b =3时,S 3-S 2= 9+2√3 ,S 4-S 3= 15+2√3 ; 【解析】(1)S 3-S 2=(a +2√b )2-(a +√b )2 =a 2+4a √b +4b -a 2-2a √b -b =2a √b +3b当a =1,b =3时,S 3-S 2=9+2√3;S 4-S 3=(a +3√b )2-(a +2√b )2=a 2+6a √b +9b -a 2-4a √b -4b =2a √b +5b当a=1,b=3时,S4-S3=15+2√3.(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.【解析】(2)S n+1-S n=6n-3+2√3;证明:S n+1-S n=(1+√3n)2-[1+(n-1)√3]2=[2+(2n-1)√3]×√3=3(2n-1)+2√3=6n-3+2√3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2013-2014学年度数学中考二轮复习专题卷-二次根式 学校:___________姓名:___________班级:___________考号:___________
一、选择题 1.若使二次根式1a在实数范围内有意义,则x的取值范围是( ) A.1a B.1a C.1a D.1a 2.二次根式2-3)(的值是( ) A.-3 B.3或-3 C.9 D.3 3. 使式子x2有意义的x的范围是( ) A. x2 B. x2 C. x2 D. x2
4.在下列各数:3.1415926;10049;0.2;1;7;11131;327;中,无理数的个数( ). A.2 B.3 C.4 D.5 5.二次根式23的值是( ) A.3 B.3或3 C.9 D.3 6.要使二次根式x1有意义,字母x必须满足的条件是( ) A.x≥1 B.x-1 C.x≥-1 D.x1 7.如果实数y、x满足y=111xx,那么3yx的值是( ). A.0 B.1 C.2 D.-2 8.下列说法正确的是( ).
A.1的立方根是1 B.42 C.81的平方根是±3 D.0x 9.下列运算正确的是( )
A.525 B.12734 C.9218 D.62324
10.观察下列各等式:24131;39142;416153;525164;……,则第n个等式可表示为( )
A.nnnn21)1( B.1)1(1)1(2nnnn C.1)1(1)2(2nnnn D.2)2(1)3(2nnnn 2
11.下列计算错误..的是( ) A.2+3=6 B.23=6 C.123=2 D.8=22 12.下列各式计算正确的是( ) A. B.
C. D. 13.下列二次根式中与2是同类二次根式的是 ( )
A.12 B.23 C.32 D.18 14.若230ab,则ab的值为( ) A.-1 B.1 C.5 D.6 15.估算171的值在( ). A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间 16.估计56的大小应在( ) (A)5~6之间 (B)6~7之间 (C)8~9之间 (D)7~8之间 17.已知yx,为实数,且02312yx,则yx的值为( ) (A) 3 (B) 3 (C) 1 (D) 1 18.估计11的值在( )之间. A.1与2之间 B.2与3之间 C.3与4之间 D.4与5之间 19.(2013年四川攀枝花3分)已知实数x,y,m满足x2|3xym|0,且y为负数,则m的取值范围是【 】 A.m>6 B.m<6 C.m>﹣6 D.m<﹣6 20.下列各式计算正确的是
A、3a3+2a2=5a6 B、2aa3a C、a4•a2=a8 D、(ab2)3=ab6
二、填空题 21.若代数式25x有意义,则x的取值范围是____________.
22.计算:1212= . 23.要使二次根式1x有意义,字母x必须满足的条件是 . 3
24.把7的平方根和立方根按从小到大的顺序排列为 . 25.52的相反数是_____ _,绝对值是____ __倒数是____ __.
26.若最简二次根式a1与2a3是同类二次根式,则a= . 27.在数轴上,点A与点B对应的数分别是3、11,则点A与点B之间的整数点对应的数是 . 28.已知x,y都是实数,且y=x22x3,xy的值 . 29.求9的平方根的值为 . 30.若实数a、b满足a2b40,则2ab .
31.函数yx3中自变量x的取值范围是 ;若分式2x3x1的值为0,则x= . 32.化简: 3232463 = .
33.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为 .
34.如图,OP=1,过P作PP1⊥OP,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= .
35.无论x取任何实数,代数式2x6xm都有意义,则m的取值范围为 . 4
三、计算题 36.计算:41893.
37.计算:01412; 38.(1)计算: 12)21(30tan3)21(01
(2)先化简再求值2112xxxxx,其中21x. 39.3272483 40.18232; 41.(1)计算(4分) — + — (2)解方程(4分) 225 —144=0 42.计算 01)23()112()32(
43.(1)02313()(3)22π; (2)23(3)558--
四、解答题 44.小丽想用一块面积为2400cm的正方形纸片,沿着边的方向裁出一块面积为2300cm
的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片. 45.计算
①(2﹣)2012(2+)2013﹣2﹣()0.
②先化简,再求值:,其中x满足x2+x﹣2=0. 46.等腰三角形的一边长为23,周长为437,求这个等腰三角形的腰长. 47.先化简,再求值:222ab2abbaaa,其中,a221b1,.
48.(2013年四川攀枝花6分)先化简,再求值:2a24aaa,其中a=3. 5
49.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212(),善于思考的小明进行了以下探索:
设2ab2mn2(其中abm、、、均为整数),则有 22ab2m2n2mn2.
∴22am2nb2mn,.这样小明就找到了一种把部分ab2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:
当abmn、、、均为正整数时,若2ab3mn3,用含m、n的式子分别表示ab、,得 a= ,b= ; (2)利用所探索的结论,找一组正整数abmn、、、,填空: + 3=( +
3)2;
(3)若2a43mn3+,且abmn、、、均为正整数,求a的值. 50.一病人发高烧进医院进行治疗,医生给他开了药并挂了水,同时护士每隔1小时对病人测体温,及时了解病人的好转情况,现护士对病人测体温的变化数据如下表: 时 间 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00
体温0C(与前一次比较) 升0.2 降1.0 降0.8 降1.0 降0.6 升0.4 降0.2 降0.2 降0
注:病人早晨进院时医生测得病人体温是40.2℃。 问:(1)病人什么时候体温达到最高,最高体温是多少? (2)病人中午12点时体温多高? (3)病人几点后体温稳定正常?(正常体温是37℃) 6
参考答案 1.B 【解析】根据题意,a-10,a1. 试题分析:当被开方数为非负数时,二次根式有意义,根据题意,得到a的不等式. 考点:二次根式有意义的条件(被开方数为非负数). 2.D
【解析】2333.
试题分析: 2aa,由题, 2333. 考点:二次根式的化简. 3.A. 【解析】
试题分析:根据二次根式被开方数必须是非负数的条件,要使x2在实数范围内有意义,必须x20x2.故选A. 考点:二次根式有意义的条件. 4.B 【解析】
试题分析:无理数即无限不循环小数,而10710049,3273,所以无理数有3个,即:
1,7,11131,故选B
考点:无理数的定义. 5.D 【解析】
试题分析:根据二次根式的性质:当0a时,aa2;当0a时,aa2;332.
考点:二次根式的性质 6.C. 【解析】
试题分析:根据二次根式被开方数必须是非负数的条件,要使x1在实数范围内有意义,必须x10x1. 故选C. 考点:二次根式有意义的条件. 7.C 【解析】
试题分析:由题意可知,01x,01x,所以x1,y1,所以3yx2. 7
故选C. 考点:1、算术平方根的非负性. 8.C 【解析】
试题分析:根据一个数的立方根只有一个,且正数的立方根是正数,选项A错误;4表示
求4的算术平方根,所以24,选项B错误;981,所以81的平方根有两个,是3,选项C正确;因为x的值不确定,当0x时,x0,当x0时,x0,当
x0时,x无意义,所以选项D错误.故选C.
考点:1、平方根的定义.2、立方根的定义. 9.D 【解析】 试题分析:根据二次根式的混合运算的法则依次分析各选项即可作出判断.
A.525,B.333342734,C.39218,均错误;
D.6362324,本选项正确. 考点:二次根式的混合运算 10.C 【解析】从题目条件中的几个等式,可以观察出规律:两个相隔一个数的整数相乘加1开方等于这两个整数中间的数的平方开方,最终就等于这个中间的整数,设第一个整数为n,则
第二个整数是n+2,中间的整数是n+1,写出来就是1)1(1)2(2nnnn. 试题分析:先找出几个等式中的不变量和变量,不变的是根式中加的数都是1,变的是两个相乘的整数,这两个整数相隔一个整数,等于这个整数的平方再开方,最终等于这个整数,设第一个整数为n,则第二个整数是n+2,中间的整数是n+1,写出来就是
1)1(1)2(2nnnn.
考点:找规律. 11.A
【解析】A选项2和3不是同类二次根式,无法继续合并,其它选项是正确的. 试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式n=mn0,0mmn,
m=0,0nmmnn,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,
并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式. 考点:二次根式的加减乘除运算.