中考数学二次根式知识归纳总结及答案

合集下载

(中考数学)实数与二次根式(知识点梳理)(记诵版)

(中考数学)实数与二次根式(知识点梳理)(记诵版)

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。

2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。

3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。

二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。

2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。

3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。

一个正数a 的正的平方根就是它的算术平方根。

三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。

开平方运算是已知指数和幂求底数。

2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。

3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。

考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。

2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。

3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。

5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。

考点03 二次根式-备战2023届中考数学一轮复习考点梳理(解析版)

考点03 二次根式-备战2023届中考数学一轮复习考点梳理(解析版)

考点03 二次根式数学中考中,对二次根式的考察主要集中在对其取值范围、化简计算、坡比的应用几个方面;取值范围类考点多出选择填空等小题,而化简计算则多以简答题形式考察,还常和锐角三角函数、实数概念结合出题,属于中考必考题;考向一、二次根式的相关概念;考向二、二次根式的性质与化简考向三、二次根式的运算;考向四、二次根式的应用考向一:二次根式的相关概念1.平方根与二次根式【易错警示】1.下列式子一定是二次根式的是( )A.B.C.D.【分析】直接利用二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式分别分析得出答案.【解答】解:A、,a有可能小于0,故不一定是二次根式,不合题意;B、,若﹣1<b<1,a>1时,无意义,不合题意;C、,(a﹣1)2≥0,故一定是二次根式,符合题意;D、,若﹣1<a<1时,无意义,不合题意;故选:C.2.12的平方根为 ± .【分析】由平方根的概念即可求解.【解答】解:12的平方根为±,故答案为:±.3.的算术平方根是( )A.5B.﹣5C.D.【分析】一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.【解答】解:∵=5,∴的算术平方根是.故选:C.4.若(a +)2与|b ﹣1|互为相反数,则a +b 的值是( )A .B .+1C .﹣1D .1﹣【分析】先根据非负数的性质求出a ,b 的值,进而可得出结论.【解答】解:∵(a +)2与|b ﹣1|互为相反数,∴(a +)2+|b ﹣1|=0,∴a +=0,b ﹣1=0,∴a =﹣,b =1,∴a +b =+1.故选:B .5.已知n 是一个正整数,且是整数,那么n 的最小值是( )A .6B .36C .3D .2【分析】先把=2,从而判断出6n 是完全平方数,所以得出答案正整数n 的最小值是6.【解答】解:=2,则6n 是完全平方数,∴正整数n 的最小值是6,故选:A .2..同类二次根式与最简二次根式【易错警示】、都是二次根式。

九年级数学知识点重点总结

九年级数学知识点重点总结

九年级数学知识点重点总结九年级数学知识点重点总结一、二次根式1、二次根式:一般地,式子叫做二次根式。

注意:(1)若这个条件不成立,则不是二次根式。

(2)是一个重要的非负数,即;≥0。

2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。

3、二次根式比较大小的方法:(1)利用近似值比大小。

(2)把二次根式的系数移入二次根号内,然后比大小。

(3)分别平方,然后比大小。

4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。

①被开方数的因数是整数,因式是整式。

②被开方数中不含能开的尽的因数或因式。

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的最后结果必须化为最简二次根式。

7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

中考数学总复习第5课 二次根式

中考数学总复习第5课 二次根式

的值为
()
A.-15
B.15
C.-125
D.125
解析:由二次根式的定义,得 2x-5≥0 且 5-2x≥0,∴x
≥5且 2
x≤52,∴x=52,∴y=-3,∴2xy=2×52×(-3)=-
15.
答案:A
【预测演练 1-3】 化简:( 3-x)2- x2-10x+25.
解析:∵3-x≥0,∴x≤3,原式=3-x-|x-5|=3-x- (5-x)=3-x-5+x=-2.
解析:(1)4 1- 8=4× 2-2 2=2 2-2 2=0.
2
2
(2)原式=( 2+1)( 2-1)× 2=(2-1)× 2= 2.
(3)原式=(3 2)2-1-[(2 2)2-4 2+1]
=18-1-8+4 2-1=8+4 2.
(4)原式=( 10-3)2013·( 10+3)2013·( 10+3)
∴a=m 2+2n 2,b=2m n . 这样,小明找到了把部分 a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决问题: (1)当 a,b,m,n 均为正整数时,若 a+b 3=(m+n 3)2,用含 m,n 的
式子分别表示 a,b 得,a=________,b=________; (2)利用所探索的结论,找一组正整数 a,b,m,n 填空: ______+______ 3=(______+______ 3)2; (3)若 a+4 3=(m+n 3)2 且 a,b,m,n 均为正整数,求 a 的值.
解析:x-3≥0, ∴x≥3.
答案:x ≥3
【预测演练 1-1】
等式 2k-1= k-3
数 k 的取值范围是
2k-1成立,则实 k-3
()

(中考考点梳理)分式与二次根式-中考数学一遍过

(中考考点梳理)分式与二次根式-中考数学一遍过

考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.学=科网2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C⋅=≠⋅或(0)A A CC B B C ÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除0,0)a b =≥≥;0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一 分式的有关概念1.分式的三要素: (1)形如AB的式子; (2),A B 均为整式;学科!网 (3)分母B 中含有字母. 2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B ≠. (2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1 x 的取值范围是 A .x ≠1B .x ≠0C .x >﹣1且≠0D .x ≥﹣1且x ≠0【答案】D【解析】根据题意得:100x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0.故选:D .1.若分式21xx-在实数范围内无意义,则x 的取值范围是 A .x ≠1 B .x =1C .x =0D .x >1考向二 分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x 、y 的值都扩大到原来的2倍,则分式的值为 A .扩大为原来2倍 B .缩小为原来的12倍 C .不变D .缩小为原来的14倍【答案】B【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.不改变分式的值,下列变形正确的是A .2233a ab b -=-- B .33a ab b -=-- C .55a a b b=--D .7744a a b b=- 考向三 分式的化简与求值约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值; 2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 把分式x x y -,y x y +,222x y-的分母化为x 2-y 2后,各分式的分子之和是 A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy −y 2+2D .x 2−2xy +y 2+2【答案】C【解析】由平方差公式将x 2−y 2可化简为(x +y )(x −y ), 故将xx y-的分母化为x 2−y 2后可得()22x x y x y +-,将y x y+的分母化为x 2−y 2后可得()22y x y x y --, 所以分式的x x y -,y x y +,222x y-的分母化为x 2−y 2后,各分式的分子之和为 x (x +y )+y (x -y )+2,展开得x 2+xy +xy −y 2+2合并同类项,得x 2+2xy −y 2+2, 故选C.【名师点睛】本题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.求最简公分母的方法是: (i )将各个分母分解因式; (ii )找各分母系数的最小公倍数;(iii )找出各分母中不同的因式,相同因式中取次数最高的. 满足(ii )(iii )的因式之积即为各分式的最简公分母.3.下列分式中,是最简分式的是A .2xyx B .222x y -C .22x yx y+- D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 计算(1-1x)÷221x x x -+的结果是A .x -1B .11x - C .1xx -D .1x x-【答案】B【解析】原式=(x x −1x )÷()21x x -=1x x -. •()21x x -=11x -, 故选B .4.先化简,再求值:2221()211x x x x x x+÷--+-,其中x =4.考向五 二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 下列各式: ①;②;③;;;.其中一定是二次根式的有 A .4个 B .3个 C .2个D .1个【答案】B5的取值范围是 A . B. C .D .典例6 下列二次根式是最简二次根式的是 ABCD【答案】Cx 1x ≠1x ≥>1x 0x ≥6;.其中是最简二次根式的有 A .2个 B .3个C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例7 下列计算正确的是A =B 6=C 5+=D 4=【答案】A【解析】A 、原式-B 、原式,错误;C 为最简结果,错误;D 、原式,错误, 故选:A .7.已知x =,y =,则y xx y +=_____________.典例8 比较大小:______5(填“>,<,=”). 【答案】>【解析】因为2228,525==,28>25,所以>5.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a ,b -1,c ,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1.下列根式中属于最简二次根式的是A BCD 2.若分式24x x-的值为0,则x 的值是A .2或﹣2B .2C .﹣2D .03.如果把分式xyx y+中的x 和y 都扩大2倍,则分式的值 A .扩大4倍B .扩大2倍C .不变D .缩小2倍4A BCD5.下列关于分式的判断,正确的是A .当x =2时,12x x +-的值为零 B .当x ≠3时,3x x-有意义C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.若x 、y 为实数,且|2|0x +=,则2019x y ⎛⎫⎪⎝⎭的值为A .2B .−2C .1D .−17的被开方数相同,则a 的值为 A .1B .2C .23D .328.下列运算中,错误的是 A .x y y xx y y x--=-++ B .a ba b--+=−1C −1D a9.已知 1x <,则 化简的结果是A .1x -B .1x -C .1x --D .1x +10.下列分式是最简分式的是A BCD .22121x x x --+11.若分式11x x -+的值为0,则x 的值为 A .1 B .−1 C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y +-=,则x y +的值等于A .1B .32 C .2D .5214a =,则1x x +的值为A .22a - B .2a C .24a -D .不确定15=_____________. 16.当x =_____________时,分式323xx -+的值为零.17.比较大小:(填“>、<、或=”)18.当a =2_____________.19.已知a ,b 互为倒数,代数式222a ab b a b+++÷11a b ⎛⎫+⎪⎝⎭的值为_____________.20.已知::2:3:4x y z =,则23x y zx y z+--+的值为_____________.21.计算:(1)|1|+(2018−π)0;(2+((.22.先化简,再求值:221a b a b a b⎛⎫-÷ ⎪--⎝⎭,其中1a =+,1b =-.23.先化简,再求值:2-,其中,.24.先化简,再求值:2212111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭,其中m 为一元二次方程230x x +-=的根.1.(2018·德阳市)下列计算或运算中,正确的是A .=B =C .÷=D .-=2.(2018·兰州市)下列二次根式中,是最简二次根式的是A BCD3.(2018·绥化市)若y =x 的取值范围是 A .12x ≤且0x ≠ B .12x ≠C .12x ≤D .0x ≠4.(2018·绥化市)下列运算正确的是A .2235a a a +=B 5=-C .3412a a a ⋅=D .0(π3)1-=5.(2018·曲靖市)下列二次根式中能与合并的是ABCD6.(2018·上海市)的结果是A.4 B.3C.D7.(2018·日照市)计算:(12)−1+tan30°•sin60°=A.﹣32B.2C.52D.728.(2018·莱芜市)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是A.2xx y+-B.22yxC.3223yxD.()222yx y-9.(2018·陇南市)有意义的x的取值范围是____________.10.(2018·毕节市)观察下列运算过程:1========-……请运用上面的运算方法计算:+=____________.11.(2018____________.12.(2018·莱芜市)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是和2,则图中阴影部分的面积是____________.13.(2018·镇江市)=____________.14.(2018·梧州市)在实数范围内有意义,则 x 的取值范围是____________.15.(2018·巴彦淖尔市)化简3m m ++269m -÷23m -的结果是____________. 16.(2018·绥化市)当2x =时,代数式211()x x x x x+++÷的值是____________.17.(2018·大连市)计算:+2)2+22-.18.(2018·百色市)已知a 2=19,求22211118a a a --+-的值.19.(2018·福建省b 卷)先化简,再求值:2211(1)m m m m+--÷,其中m .20.(2018·锦州市)先化简,再求值: 233212,322x x x x x x +-+-÷=++(其中.21.(2018·毕节市)先化简,再求值:22214244aa a a a a ⎛⎫-÷⎪--++⎝⎭,其中a 是方程a 2+a ﹣6=0的解.22.(2018·兰州市)计算:101()(π3)1tan452--+-+-.23.(2018·甘孜州)(1()03.144cos45--π- ;(2)化简:2211x xx x x ÷---.24.(2018·益阳市)化简:2()y x y x y x y x+-+⋅+.25.(2018·莱芜市)先化简,再求值:233(111a aa a a -+÷--+,其中a +1.26.(2018·曲靖市)先化简,再求值(1a b -﹣22b a b -)÷2222+a ab a ab b --,其中a ,b 满足a +b ﹣12=0.27.(2018·梧州市)解不等式组36451102x xx x -≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321x x x +-+•(3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值.28.(2018·抚顺市)先化简,再求值:(1﹣x +31x +)÷2441x x x +++,其中x =tan45°+(12)−1.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1﹣x =0,即x =1, 故选:B .3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y -,错误;C 、22x y x y +-=1x y -,错误;D 、22xx +是最简分式,正确. 故选D .4.【答案】21x x -;163.【解析】2221()211x x x x x x+÷--+- =2(+1)2(111)()()x x x x x x x --÷-- =2()(+1)111)(x x x x x x -⋅-+ =21x x -, 当x =4时,原式=2416413=-. 5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,要使.故选B .6.【答案】B= =, =,∴. 故选:B .8.【答案】D【解析】a −1),b ,c ), >1,∴a >b >c .故选D . 101x x -≥⇒≥【解析】A、该二次根式符合最简二次根式的定义,故本选项正确;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选A.【名师点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【答案】A【解析】∵分式24xx-的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.3.【答案】B【解析】把分式xyx y+中的x和y都扩大2倍,则22222x y xyx y x y⋅=++,故选B.5.【答案】D【解析】A选项:当x=2时,该分式的分母20x-=,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义.显然,x=0满足x≠3.由此可见,当x≠3时,该分式不一定有意义,故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0,该分式的分子3>0.由此可知,无论x为何值,该分式的值总为正数,故D选项正确.故本题应选D.【名师点睛】本题考查了与分式概念相关的知识.分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零.分式的值为零的条件是分式的分母不等于零且分式的分子等于零.在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.【解析】由非负数的性质可得:x+2=0,y−2=0,即x=−2,y=2,∴2019xy⎛⎫⎪⎝⎭=(−1)2019=−1.故选C.7.【答案】D【解析】31+4,2a a a=-=解得,故选D.8.【答案】D【解析】A.x y y xx y y x--=-++,正确,故不符合题意;B.a ba b--+=−1,正确,故不符合题意;C−1,正确,故不符合题意;D=|a|,错误,故符合题意.故选D.9.【答案】B【解析】∵x<1,∴x-1<0x-1|=1-x.故选:B.10.【答案】C【解析】A选项:化简该分式,得()222a ba ab bam am m+++==,故A选项不符合题意.B选项:化简该分式,得623xy xya a=,故B选项不符合题意.C选项:对该分式的分子进行因式分解,得()()222111x xxx x+--=.由此可见,该分式的分子与分母没有公因式,符合最简分式的定义,故C选项符合题意.D选项:化简该分式,得()()()22211112111x xx xx x xx+--+==-+--,故D选项不符合题意.故本题应选C.11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A . 12.【答案】B(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 15==. 16.【答案】3【解析】依题意得:3﹣x =0且2x +3≠0.解得x =3,故答案为:3.17.【答案】<【解析】将两式进行平方可得:(2=12,(2=18,因为12<18,所以<18.【答案】3- 【解析】∵()()2121214122121a a a a a a +--==-++,∴当a =2时,原式=1223-⨯=-.故本题应填写:3-.19.【答案】1 【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ab =, ∵a ,b 互为倒数,∴ab =1,∴原式=1.故本题应填写:1.20.【答案】411【解析】根据分式的性质(分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变)解答.∵::2:3:4x y z =,∴可设234x k y k z k ===、、,∴226444323121111x y z k k k k x y z k k k k +-+-===-+-+, 故答案为:411.21.【答案】(1);(2)【解析】(1)原式−1−+1=.(2)原式=3−−5=2−.22.【答案】化简见解析,结果为. 【解析】221a b a b a b ⎛⎫-÷ ⎪--⎝⎭ ()()a b a b a a b a b b+--+=⋅- ()()a b a b b a b b+-=⋅- a b =+,当1a =+,1b =时,原式11++-=23.【答案】8-+.【解析】原式2(2)x y x y =---+22x y x y =--+-2y =-.当34x y ==,时,原式=2−2×4=4 −8. 24.【答案】化简见解析,结果为13. 【解析】原式=()()()22122111111m m m m m m m --+--÷++-- =()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++=()()11m m m m --+ =()11m m + =21m m +. 由m 是方程230x x +-=的根,得到23m m +=,所以原式=13. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.1.【答案】B【解析】A 、=,此选项错误; B =,此选项正确;C 、÷=D 、-=,此选项错误;故选:B .2.【答案】B【解析】A =不是最简二次根式,错误;B 是最简二次根式,正确;C =不是最简二次根式,错误;D =不是最简二次根式,错误,故选B .3.【答案】A【解析】由题意可知:1200x x -≥⎧⎨≠⎩,解得:12x ≤且0x ≠, 故选A .4.【答案】D 【解析】A. 23a a +=5a ,故A 选项错误;B. =5,故B 选项错误;C. 347a a a ⋅=,故C 选项错误;D. 0(π3)1-=,故D 选项正确,故选D.5.【答案】B【解析】A =,不能与B 合并,故该选项正确;C =不能与D 3不能与故选B .6.【答案】C【解析】,故选C .7.【答案】C【解析】(12)−1+tan30°•sin60°=2+12 =52, 故选C .9.【答案】x >3有意义, ∴x ﹣3>0,∴x >3, ∴x 的取值范围是x >3,故答案为:x >3.10.【解析】原式=12﹣1)+12+12+ (12)+12=12…). 11.【答案】6【解析】原式.故答案为:6.12.【答案】2【解析】设正三角形的边长为a ,则12a 2解得a .则图中阴影部分的面积.故答案是2.13.【答案】2,故答案为2. 14.【答案】x ≥3【解析】由题意可得:x ﹣3≥0,解得:x ≥3,故答案为:x ≥3.15.【答案】1 【解析】3m m ++269m -÷23m - =()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为1.16.【答案】3【解析】原式221()1x x x x x x +=+⋅+ =2(1)1x x x x +⋅+ 1x =+,当2x =时,原式213=+=,故答案为:3.17.【答案】294【解析】原式﹣14=294. 18.【答案】16- 【解析】原式=22121a a a ---()﹣118 =221a ---118, ∵a 2=19,∴原式=2191--﹣118=﹣318=﹣16.19.【解析】2211(1)m m m m+--÷ =()()2111m m m m m m +-⋅+- =()()111m m m m m +⋅+- =11m -,当m +1时,原式==. 20.【答案】11;12x -- 【解析】原式=()23322)21x x x x ++-⨯+-( , ()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x =3时,原式=113-=12-. 21.【答案】13 【解析】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ =()()()()222222a a a a a a -++⋅+-=2222a a a a a--+⋅- =222a a a a-+⋅-, =2a a +,由a 2+a ﹣6=0,得a =﹣3或a =2,∵a ﹣2≠0,∴a ≠2,∴a =﹣3,当a =﹣3时,原式=32133-+=-. 22.1.【解析】101()(π3)1tan 2--+-+-45°=2111-++1=.(2)2211x x x x x ÷--- =()()211·1x x x x x+---x =x (x +1)-x=x 2.24.【答案】x 【解析】原式=222x y y x y x y x-++⋅+ =2x x y x y x+⋅+ =x .25.【答案】【解析】当a +1时,原式=()()333111a a a a a a++-+⨯-+=()()4111a a a a a+⨯-+ =41a -. 26.【答案】原式=1a b+=2 【解析】(1a b -﹣22b a b -)÷2222+a ab a ab b -- =()()()()2•a b a b b a b a b a a b -+-+-- =1a b+, 由a +b ﹣12=0,得到a +b =12, 则原式=112=2. 27.【答案】原式=11x -,当x =2,原式=1. 【解析】解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3, 原式=()231x x +-•[()()2333x x x x --+- ()()333x x x -+-] =()231x x +-•()()()()1333x x x x --+- =11x -, ∵x ≠±3、1,∴x =2, 则原式=1.28.【答案】-1 5【解析】原式=(21311xx x-+++)÷()221xx++=()()()2 221·12x x xx x +-+++=22xx -+,当x=tan45°+(12)−1=1+2=3时,原式=231235-=-+。

专题04二次根式的核心知识点精讲(讲义)(原卷版)中考数学一轮复习

专题04二次根式的核心知识点精讲(讲义)(原卷版)中考数学一轮复习

专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。

其中“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。

3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D .()244-=-2.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12 B .10C .8D .63.计算12718483--的结果是( ) A .1B .﹣1C .32--D .23-4.下列计算正确的是( ) A .532-=B .223212⨯=C .933÷=D .423214+=5.要使2020x -有意义,x 的取值范围是( ) A .x≥2020B .x≤2020C .x> 2020D .x< 2020 6.下列式子一定是二次根式的是 ( ) A .2aB .-aC .3aD .a7.设,n k 为正整数,()()1314A n n =+-+,()2154A n A =++,()3274A n A =++,()4394A n A =++,…()1214k k A n k A -=+++,….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .40118.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C 24D 0.39.1272a -是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .210.如果实数x ,y 23x y xy y =-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上二、填空题11.比较实数的大小:(1)5?-______3 ;(2)514_______1212.设42-的整数部分为 a,小数部分为 b.则1a b-= __________________________. 13.已知2216422x x ---=,则22164x x -+-=________.14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.15.化简二次根式2a 1a +-_____. 16.已知2,n=1222m n mn +-的值________. 17.36,3,2315,,则第100个数是_______.18.已知4a2(3)|2|a a +--=_____.19.化简(32)(322)+-的结果为_________. 20.函数y =42xx --中,自变量x 的取值范围是____________. 三、解答题21.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b 26a ++2b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b 2;(3)1.【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可; (2)根据二次根式及绝对值的非负性得到2a +6=0,b 2=0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)21343=(123)--;(3)14a =或46. 【解析】 试题分析: (1)把等式()233a b m n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:21343(123)-=-;(3)将()2655a m n +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵233a b m n +=+(), ∴223323a b m n mn +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1, ∴()21343=123--;(3)∵22265(5)525a m n m n mn +=+=++, ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.23.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269a a-+,其中a=﹣2018.【答案】(1)小亮(2)2a=-a(a<0)(3)2013.【解析】试题分析:(1)根据二次根式的性质2a=|a|,判断出小亮的计算是错误的;(2)错误原因是:二次根式的性质2a=|a|的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可.试题解析:(1)小亮(2)2a=-a(a<0)(3)原式=a+2()23a-=a+2(3-a)=6-a=6-(-2007)=2013.24.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:甲010*******乙2311021101请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.26.计算:(1821 2(2244a a-+|a﹣1|,其中1<a2【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1 (2)∵1<a,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.27.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9 =13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-, ∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(233⨯⨯-⨯=-⨯=3⎫⨯⎪⎪⎭=6-;(2)原式=3﹣4+12﹣=12﹣. 【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.B解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,则ABC 的周长为24410++=, 故选:B . 【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.3.C解析:C 【解析】解:原式=故选C .4.B解析:B 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 不符合题意;∵12=,故选项B 符合题意;C 不符合题意;∵=D不符合题意;故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.6.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;a<B错误;B、0C是三次根式,故C错误;a<D错误;D、0故选:A.【点睛】a≥)是二次根式,注意二次根式的被开方数是非负数.7.A解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A1,A2,A3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n2+2n-3+4=n2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k =n+(2k-1)∴A 100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A 1,A 2,A 3,从而找出规律写出规律的表达式是解题的关键.8.B解析:B【详解】A 不是同类二次根式,故此选项错误;B 3C =不是同类二次根式,故此选项错误;D =10不是同类二次根式,故此选项错误; 故选B . 9.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D .【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<1=2∵3=<∴1 4< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.12.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=22==1故填:12-. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.13.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.14.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 15.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为16.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====.故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.17.【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.18.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a ,∴a+3<0,2-a>0,|2|a -=-a-3-2+a=-5,故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.19.1【分析】根据平方差公式进行计算即可.【详解】原式=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键.解析:1【分析】根据平方差公式进行计算即可.【详解】原式=(223981-=-=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键.20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

相关文档
最新文档