八年级数学竞赛题及答案解析

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。

八年级数学竞赛题试卷

八年级数学竞赛题试卷

八年级数学竞赛题试卷一、选择题(每题5分,共30分)1. 若公式,公式,则公式的值为()A. 5B. 6C. 7D. 8解析:根据完全平方公式公式,已知公式,公式,则公式,所以答案是A。

2. 已知公式,则分式公式的值为()A. 公式B. 9C. 1D. 公式解析:由公式可得公式,即公式,公式。

将公式变形为公式,把公式代入可得:公式,所以答案是A。

3. 若关于公式的方程公式有增根,则公式的值为()A. -4或6B. -4或1C. 6或1D. -4或6或1解析:先将方程化为整式方程,方程两边同乘公式得:公式,公式,公式。

因为方程有增根,所以公式或公式。

当公式时,公式,公式,公式;当公式时,公式,公式,公式。

所以答案是A。

二、填空题(每题5分,共30分)1. 分解因式公式______。

解析:先提取公因式公式,再利用平方差公式,公式。

2. 若公式,则公式______。

解析:根据完全平方公式公式,已知公式,则公式,所以公式。

3. 已知公式是方程公式的一个根,则公式______。

解析:因为公式是方程公式的根,所以公式,即公式。

则公式。

三、解答题(每题20分,共40分)1. 先化简,再求值:公式,其中公式。

解析:化简原式:\[\begin{align}&(\frac{(x 1)^{2}}{(x + 1)(x 1)}+\frac{1}{x})\div\frac{1}{x + 1}\\ =&(\frac{x 1}{x + 1}+\frac{1}{x})\div\frac{1}{x + 1}\\=&(\frac{x(x 1)+(x + 1)}{x(x + 1)})\div\frac{1}{x + 1}\\=&\frac{x^{2}-x+x + 1}{x(x + 1)}\times(x + 1)\\=&\frac{x^{2}+1}{x}\end{align}\]当公式时,公式。

八年级上数学竞赛练习题含答案

八年级上数学竞赛练习题含答案

八年级上数学竞赛练习题含答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

八年级(下)竞赛数学试卷(含答案)

八年级(下)竞赛数学试卷(含答案)

八年级(下)竞赛数学试卷(含答案)一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或72.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.72453.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍C.27.5倍D.m倍4.若x取整数,则使分式的值为整数的x值有()A.3个 B.4个 C.6个 D.8个5.已知a为整数,关于x的方程a2x﹣20=0的根是质数,且满足|ax﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣26.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个 B.4个 C.6个 D.8个7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.5388.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定二、填空题(每小题7分,共84分)9.多项式x2+y2﹣6x+8y+7的最小值为.10.已知=1,则的值等于.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为mm.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ=°.14.设a为常数,多项式x3+ax2+1除以x2﹣1所得的余式为x+3,则a=.15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC=.16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)门课程,最后平均成绩为分.17.已知a+b+c=0,a>b>c,则的取值范围是.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原来输入的某数是.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买只.20.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为.参考答案与试题解析一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或7【考点】因式分解的应用;因式分解﹣分组分解法.【分析】此题先把a2﹣ab﹣ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【解答】解:根据已知a2﹣ab﹣ac+bc=7,即a(a﹣b)﹣c(a﹣b)=7,(a﹣b)(a﹣c)=7,∵a>b,∴a﹣b>0,∴a﹣c>0,∵a、b、c是正整数,∴a﹣c=1或a﹣c=7故选D.2.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.7245【考点】排列与组合问题.【分析】首先找到以2开头的四位数的个数,然后再找到以4开头的四位数的个数,这些数共有12个,则第13个数从5开头,找出这个最小的四位数即可.【解答】解:千位上是2的四位数的个数有3×2×1=6个,千位上是4的四位数的个数有3×2×1=6个,即可知排在第13个四位数是千位上是5,又知这些从小到大排列,第13个数为5247,故选B.3.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍C.27.5倍D.m倍【考点】列代数式.【分析】可以把英国1989年的GDP看作单位1,然后分别表示我国目前的GDP和1989年的GDP,求比即可.【解答】解:根据题意得:我国目前的GDP约为1989年的m≈1.5m倍.故选B.4.若x取整数,则使分式的值为整数的x值有()A.3个 B.4个 C.6个 D.8个【考点】分式的值;整式的除法.【分析】首先把分式转化为3+,则原式的值是整数,即可转化为讨论的整数值有几个的问题.【解答】解:==3+当2x﹣1=±6或±3或±2或±1时,是整数,即原式是整数.当2x﹣1=±6或±2时,x的值不是整数,当等于±3或±1是满足条件.故使分式的值为整数的x值有4个,是2,0和±1.故选B.5.已知a为整数,关于x的方程a2x﹣20=0的根是质数,且满足|ax﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣2【考点】一元二次方程的解;一元二次方程的定义.【分析】本题是道选择题,可用排除法进行选择.【解答】解:当a=2时,x=5是质数,但|ax﹣7|=|2×5﹣7|=3<4,所以不选A,C.当a=5时,x=不是质数,所以不选B.当a=﹣2时,x=5是质数,同时满足|ax﹣7|=|﹣2×5﹣7|=17>4,所以选D.故选D.6.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个 B.4个 C.6个 D.8个【考点】等腰三角形的判定;坐标与图形性质.【分析】本题是开放性试题,根据题意,画出图形结合求解.【解答】解:第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA=PB;第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;∴符合条件的点P有6个点.故选C.7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.538【考点】几何体的表面积.【分析】先求出边长分别是3、5、8的三个正方体的表面积的和,再减去边长是3的两个正方形的面积和的4倍、边长是5的两个正方形的面积和的2倍,即为所求.【解答】解:(3×3+5×5+8×8)×6﹣(3×3)×4﹣(5×5)×2=98×6﹣9×4﹣25×2=588﹣36﹣50=502.故选B.8.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】全等三角形的判定与性质;三角形三边关系.【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB﹣AD=BE,放在△BCE 中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选A.二、填空题(每小题7分,共84分)9.多项式x2+y2﹣6x+8y+7的最小值为﹣18.【考点】完全平方式;非负数的性质:偶次方.【分析】将原式配成(x﹣3)2+(y+4)2﹣18的形式,然后根据完全平方的非负性即可解答.【解答】解:原式=(x﹣3)2+(y+4)2﹣18,当两完全平方式都取0时原式取得最小值=﹣18.故答案为:﹣18.10.已知=1,则的值等于0.【考点】分式的化简求值.【分析】先根据已知条件可求出a﹣b=﹣ab,再把a﹣b的值整体代入所求式子计算即可.【解答】解:∵=1,∴b﹣a=ab,∴a﹣b=﹣ab,∴==0.故答案是0.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为96mm.【考点】矩形的性质.【分析】题目中是一个多边形,求周长应把图中的多边形分成各个矩形求解或把多边形变为整体一个矩形求解即可.【解答】解:如图:矩形的长为24mm,AB+CD+GH+EF+4=24.∵GD=HE=4.∴矩形的周长为24+GD+HE+20+24+16+4=96mm.故答案为:96.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为12r2﹣3πr2..【考点】面积及等积变换.【分析】首先理解题意,求出(1)的面积,根据砂轮磨不到的部分的面积为12个图(1)的面积,计算即可得出答案.【解答】解:如图,连接OA、OC,则OA⊥AB、OC⊥BC,OA=OC,∵∠ABC=90°,∴四边形OABC是正方形,且OA=r,∴图形(1)的面积是r•r﹣πr2,∴砂轮磨不到的部分的面积为12(r•r﹣πr2)=12r2﹣3πr2.故答案为:12r2﹣3πr2.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ=345°.【考点】角的计算.【分析】分别计算15×23°=345°,15×24°=360°,15×25°=375°,则345°、360°、375°三个数值其中一个是α、β、γ三个角的和,由于三角中,有两个锐角,一个钝角,根据锐角和钝角的定义知,α+β+γ<360°,所以345°是正确的.【解答】解:∵α、β、γ中有两个锐角和一个钝角,∴0°<α<90°,0°<β<90°,90°<γ<180°,∴α+β+γ<360°,∵15×23°=345°,15×24°=360°,15×25°=375°,∴α+β+γ=345°.故答案是345°14.设a为常数,多项式x3+ax2+1除以x2﹣1所得的余式为x+3,则a=2.【考点】余式定理.【分析】首先由多项式x3+ax2+1除以x2﹣1所得的余式为x+3,根据余式定理可设x3+ax2+1﹣(x+3)=(x2﹣1)(x+b),然后分别整理等式的左右两边,再根据多项式相等时对应系数相等,即可得方程,则可求得a的值.【解答】解:∵多项式x3+ax2+1除以x2﹣1所得的余式为x+3,∴可设x3+ax2+1﹣(x+3)=(x2﹣1)(x+b),整理可得:x3+ax2﹣x﹣2=x3+bx2﹣x﹣b,∴,∴a=2.故答案为:2.15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC= 120°或60°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形外角的性质及三角形的内角和定理.分∠BOC在△ABC内,及∠BOC在△ABC外两种情况讨论.【解答】解:若∠BOC在△ABC内,如下图:∵BD、CE是△ABC的高,∴∠BOC=360°﹣∠A﹣∠ADO﹣∠AEO=120°;若∠BOC在△ABC外,如下图:∵BD、CE是△ABC的高,∴∠BOC=90°﹣∠DCO=90°﹣∠ACE=∠A=60°.故答案为:120°或60°.16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)10门课程,最后平均成绩为88分.【考点】二元一次方程组的应用;加权平均数.【分析】可以设小王前面共考了x门课程,平均成绩为y分.根据加试了一门比最初的平均成绩提高了1分.加试了二门比最初的平均成绩下降了1分.可以分别列方程,解方程组即可.【解答】解:小王前面共考了x门课程,平均成绩为y分,根据题意得:,解得:.即小王共考了(含加试的两门)8+2=10门课程,最后平均成绩为89﹣1=88分.故答案为:10,88.17.已知a+b+c=0,a>b>c,则的取值范围是﹣2<<﹣.【考点】一元一次不等式的应用.【分析】首先将a+b+c=0变形为b=﹣a﹣c.再将b=﹣a﹣c代入不等式a>b,b>c,解这两个不等式,即可求得a与c的比值关系,联立求得的取值范围.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c ②解得>﹣2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c ③解得<﹣,∴﹣2<<﹣.故答案为:﹣2<<﹣.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原来输入的某数是5.【考点】计算器—有理数;倒数.【分析】设原来输入的数为a,根据题意列出方程﹣1=﹣0.75,解之可得答案.【解答】解:设原来输入的数为a,根据题意,得:﹣1=﹣0.75,解得:a=5,经检验:a=5是分式方程的解,∴原来输入的某数是5,故答案为:5.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买48只.【考点】三元一次方程组的应用.【分析】先设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z元,能买C型W只根据题意列出方程组,求出方程组的解即可.【解答】解:设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z元,能买C型W只,根据题意得:,解得:代入4x+18y+16z=Wz得:W=48.故答案为:48.20.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为4.【考点】全等三角形的判定与性质.【分析】可延长DE至F,使EF=BC,可得△ABC≌△AEF,连AC,AD,AF,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求出结论.【解答】解:延长DE至F,使EF=BC,连AC,AD,AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,由题中条件可得Rt△ABC≌Rt△AEF,△ACD≌△AFD,∴S ABCDE=2S△ADF=2וDF•AE=2××2×2=4.故答案为:4.。

八年级数学竞赛试卷及解答

八年级数学竞赛试卷及解答

一、选择题(每题5分,共20分)1. 下列各数中,是正有理数的是()A. -3B. 0C. -1/2D. 2解答:D2. 若a < b,且a、b都是正数,那么下列不等式中正确的是()A. a² < b²B. a³ < b³C. a < b²D. a² < b解答:B3. 已知方程3x - 2 = 5,则x的值为()A. 1B. 2C. 3D. 4解答:C4. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)解答:A5. 若等腰三角形底边长为4,腰长为6,则该三角形的周长为()A. 14B. 16C. 18D. 20解答:B二、填空题(每题5分,共25分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a + b = __________。

解答:52. 在等差数列{an}中,a₁ = 3,公差d = 2,则第10项a₁₀ = __________。

解答:213. 若a² + b² = 25,且a - b = 3,则ab的值为 __________。

解答:164. 已知正方形的对角线长为10,则该正方形的面积是 __________。

解答:505. 若a、b、c是等比数列,且a + b + c = 6,ab = 12,则c²的值为__________。

解答:18三、解答题(共55分)1. 解方程:2(x - 3) + 3(x + 1) = 5。

解答:2x - 6 + 3x + 3 = 55x - 3 = 55x = 8x = 8/52. 已知数列{an}是等差数列,且a₁ = 3,公差d = 2,求第10项a₁₀。

解答:a₁₀ = a₁ + (10 - 1)da₁₀ = 3 + 9 2a₁₀ = 213. 已知三角形的三边长分别为3、4、5,求该三角形的面积。

八年级数学竞赛题及答案

八年级数学竞赛题及答案

八年级数学竞赛试题 姓名 成绩 。

1、某公园门票价格,对达到一定人数的团队,按团体票优惠,现有A 、B 、C 三个旅游团共72人,如果各团单独购票,门票依次为360元、、384元、480元;如果三个团合起来购票,总共可少花72元. ⑴这三个旅游团各有多少人?⑵在下面填写一种票价方案,使其与上述购票情况相符:2、如图,已知梯形ABCD 中,AD ∥BC ,CA 平分∠BCD ,AD =12,BC =22,CE =10, (1)试说明: AB =DE; (2)求CD 的长。

3、如图,D 为等腰△ABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.又已知∠EDF = 90°,ED = DF = 1,AD = 5.求线段BC 的长.EDCBAFEDC B A参考答案解答题: 1、解:(1)360+384+480-72=1152(元),1152÷72=16(元/人),即团体票是每人16元。

因为16不能整除360,所以A 团未达到优惠人数,若三个团都未达到优惠人数, 则三个团的人数比为360︰384︰480=15︰16︰20,即三个团的人数分别为725115⨯、725116⨯、725120⨯,均不是整数,不可能, 所以B 、C 两团至少有一个团本来就已达到优惠人数,这有两种可能:①只有C 团达到;②B 、C 两团都达到.对于①,可得C 团人数为480÷16=30(人),A 、B 两团共有42人,A 团人数为423115⨯,B 团人数为423116⨯,不是整数,不可能;所以必是②成立,即C 团有30人,B 团有24人,A 团有18人. (2)2、先由AD 平行且等于BE 得到四边形ABED 为平行四边形,因此AB=DE ,再由角平分线得等腰,从而AD=CD=12;3、作DG ⊥AC 于G ,得△ABD 与△ADG 为相似变换,又DG=1/2EF=221,由勾股定理得AG=227,从而BD=75,BC=710;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学竞赛题C.3屈-晶=3 ( a > 0)D.屈•傢=會虜(a >0,b > 0)5. 满足下列条件的三角形中,不是直角三角形的是(A.三内角之比为1 : 2 : 3 C.三边长之比为3 : 4 : 5 6. 已知直角三角形两边的长分别为 B . 7 + -.7 C . 12或7+ , 7 D .以上都不对7. 将一根24 cm 的筷子置于底面直径为 15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯 子外面的长度为h cm ,则h 的取值范围是( )A . h w 17B . h > 8C . 15< h < 16D . 7w h < 168. 在直角坐标系中,将点(一2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( ) A. ( 4, — 3) B. (-4, 3) C. (0, - 3)D. (0, 3)9. 在平面直角坐标系中,△ ABC 的三个顶点坐标分别为 A (4, 5), B (1, 2) , C (4, 2), 将厶ABC 向左平移5个单位长度后,A 的对应点A1的坐标是( ) A . ( 0, 5)B . (- 1, 5)C . ( 9, 5)D . (- 1, 0)10. 平面直角坐标系中,过点(-2, 3)的直线l 经过第一、二、三象限,若点(0, a ), (-1,b ), (c , -1 )都在直线I 上,则下列判断正确的是( )A. a < bB. a 3C. b 3D. c :: 一2二、填空题(每小题3分,共24分)11. 函数y =妆- 2的自变量x 的取值范围是 __________ .12. 点P ( a , a -3)在第四象限,贝U a 的取值范围是 __________13. 已知点P( 3, - 1)关于y 轴的对称点 Q 的坐标是(a+b , 1-b ),则a b 的值为 _________________ . 14. 某水库的水位在 5小时内持续上涨,初始的水位高度为6米,水位以每小时 0.3米的速度匀速上升,则水库的水位高度 y 米与时间x 小时(0w x w 5)的函数关系式为 _______________ . 15. 在厶ABC 中,a , b , c 为其三边长,肛=3, “=?,旷=北,则△ ABC 是 ____________________ .(本检测题满分: 班级: ________________________ 姓名: 一、选择题(每小题3分,共30分)1. 下列四个实数中,绝对值最小的数是( A . - 5B . - 22.下120分,时间:120分钟)得分:) C . 1D . 4A. . (-9)2 二-9B. . 25 二 5 3.若 k -.90 ::: k 1 (k 是整数), 则k=A. 6B. 74.下列计算正确的是()C.8D. 9A. ab ab=2ab :.:■ -)B.三边长的平方之比为 1 : 2 : 3 D.三内角之比为3 : 4 : 5 3和4,则此三角形的周长为(A . 12二一 1 C.)16. _________________________________________________________________ 在等腰△ ABC 中,AB=AC=10 cm , BC=12 cm ,贝U BC 边上的高是 _____________________ cm .(3) (、..5-一 7)( .一5 .7) 2; (4) ,1452 -242.21. (8分)在平面直角坐标系中,顺次连接A (-2, 1) , B (-2,- 1) , C (2,- 2) , D (2, 3)各点,你会得到一个什么图形 ?试求出该图形的面积. 22.(8分)已知 d - 3a 和丨8b — 3丨互为相反数,求ab ° — 27的值.23. (8分)设一次函数 y=kx+b ( k 老)的图象经过 A (1,3),B (0,— 2)两点,试求k ,b 的值.24. (8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1 )这个梯子的顶端 A 距地面有多高?后,乙以50米/分的速度沿同一路线行走.设甲、乙两 人相距S (米),甲行走的时间为t (分),S 关于t 的函数图象的一部分如图所示 . (1)求甲行走的速度; (2)在坐标系中,补画 s 关于t 的函数图象的其余部分; (3)问甲、乙两人何时相距 360米?26. ( 10分)某服装公司招工广告承诺:熟练工人每月工资至少 3 000元,每天工作8小时,一个月工作25天,月工资底薪 800元,另加计件工资.加工1件A 型服装计酬16元,加 工1件B 型服装计酬12元.在工作中发现一名熟练工加工 1件A 型服装和2件B 型服装 需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资) (1) 一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2) —段时间后,公司规定:“每名工人每月必须加工 A,B 两种型号的服装,且加工 A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工 A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?17.若A (a, b )在第二、四象限的角平分线上 ,a 与b 的关系是 _________ . 18已知:m 、n 为两个连续的整数,且 mv ^T v n ,则m+n= ________________三、解答题(共66分)19. (8分)如图,已知等腰△求这个三角形各边的长. 20. (8分)计算:(2)-,底边上的高 的长是,(1 - 3)°(2)第24题图 25. ( 8 分)一地书馆 那么梯子的底部在水平方向也是滑动了的周长是 4 m吗?从同 的图 分钟年级数学竞赛答题卡、选择题(每题3分,共30 分)题目 12345答案题目678910答案、填空题(每小题3分,共24分)11. ________ 12. _________ 13. _________ 14. _________ 15. ________ 16. _________ 17. _________ 18. _________三、解答题(共66分)19.三角形各边的长 20. ( 8分)计算:21. ( 8分)在平面直角坐标系中,顺次连接A (-2,1) , B (-2,- 1), C ( 2,- 2), D (2,3) 各点,你会得到一个什么图形 ?试求出该图形的面积.22. ( 8分)已知 J-3a 和丨8b — 3丨互为相反数,求 ab ' — 27的值.23. (8分)设一次函数 y=kx+b (k 和)的图象经过 A (1,3),B (0,— 2)两点,试求k ,b 的值.24. (8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1 )这个梯子的顶端 A 距地面有多高?(2 )如果梯子的顶端下滑了 4 m ,那么梯子的底部在水平方向也是滑 动了 4 m 吗?25. (8分)甲、乙两人匀速从同一地点到 1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人 相距S (米),甲行走的时间为t (分),S 关于t 的函数图象的一部 分如图所示.(1)求甲行走的速度;(2) 在坐标系中,补画 s 关于t 的函数图象的其余部分; (3) 问甲、乙两人何时相距 360米?26. (10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作 25天,月工资底薪 800元,另加计 件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在 工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1) ..1.44 - .1.21 ;2 12 3(1- . 3)0 ;(3) ( .5-、7)( •一5 7) 2 ;/2 2145 -24 .第19题图(8分)如图,已知等腰△上的高 ,求这个(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)—段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半” •设一名熟练工人每月加工A型服装a件,工资总额为W元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?期中检测题参考答案一、选择题1. C 解析:I —5|=5; I —- 2 |= -.2 , | 1|= 1, | 4|=4,所以绝对值最小的数是1,故选C .2. C 解析:选项A中> (-9)2-9,选项B中「25 = 5,选项D中(--、一2)2 = 2,所以只有选项C中\(_1)3二-1正确.3. D解析:T 81v 90V 100, •••;窥竄%喪迤冬:蟲硕,即9…10,二k=9.4. D 解析:因为ab ab二a2b2,所以A项错误;因为(2a)3=8a3,所以B项错误;因为...a =2'、a(a > 0),所以 C 项错误;因为= .. ab(a > 0,b> 0),所以 D项正确.5. D 解析:判断一个三角形是不是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半•由A得有一个角是直角•B、C满足勾股定理的逆定理,故选 D.6. C 解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或•. 7,所以直角三角形的周长为3+ 4+ 5= 12或3+ 4+ -;7 = 7+ - <1,故选C.7. D 解析:筷子在杯中的最大长度为J152+82= 17 (cm),最短长度为8 cm,则筷子露在杯子外面的长度h的取值范围是24 —17W h< 24 —8,即卩7< h< 16,故选D.8. C 解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(一2, 3)关于原点的对称点为(2,—3).根据平移的性质,结合直角坐标系,(2,—3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C.9. B 解析:T △ ABC向左平移5个单位长度,A (4,5),4 —5=—1,•••点A1的坐标为(一1,5),故选B .10. D 解析:设直线I的表达式为y = kx ■ b k = 0,:直线l经过第一、二、三象限,k 0,函数值y随x的增大而增大.T 0 • -1 , a b,故A项错误;T 0 • -2 ,a 3,故B 项错误;;-1 .-2 ,b 3,故C 项错误;丁 -仁:3 ,c :::-2 ,故D项正确.二、填空题11. x丝解析:因为使二次根式有意义的条件是被开方数为,所以x —2为,所以X》.12. 0 v a v3 解析:本题考查了各象限内点的坐标的符号特征以及不等式的解法.•••点P (a, a—3)在第四象限,•••a>0, a—3<0,解得0v a v 3.13.25 解析:本题考查了关于y轴对称的点的坐标特点,关于y轴对称的点的横坐标互为相反数,纵坐标相同,可得a+ b=—3, 1 一b=—1,解得b = 2, a= —5, • a b= 25. 14. y=0.3x+6 解析:因为水库的初始水位高度是6米,每小时上升0.3米,所以y与x的函数关系式为y=0.3x+6 (0< x< 5).15. 直角三角形解析:因为「一…小-:;■;一「所以△—一是直角三角形.16. 8 解析:如图,AD是BC边上的高线.AB=AC=10 cm , BC=12 cm ,BD=CD=6 cm,在Rt△ ABD中,由勾股定理,得第16题答图AD= AB2-BD2 = 102-62 =8 (cm).17. 互为相反数解析:第二、四象限的角平分线上的点的横、纵坐标的绝对值相等,?符号相反.18. 7 解析:T 9v 11v 16 ,• 3 v —v 4.又T m、n为两个连续的整数,•m= 3, n= 4,「. m+ n = 3+ 4 = 7.三、解答题19. 解:设__ ,由等腰三角形的性质,知:总二畫-.?.由勾股定理,得*:.椚二勰肿广,即;二一略’,解得所以.匚一.一二,_ 一二右20. 解:(1) 二二……亠.(2、礙七縣厂趣」腻恥Z癞「蕊J煎.(3「刃(止3二辽9二28・3.*3 3 3 3(4)2 123(1_、.3)° =4331 =5 .仁6.<3v'3(5) - - - __. --(6) 二-一二:「上…二:…21. 解:梯形.因为AB // CD , AB 的长为2, CD 的长为5, AB 与CD 之间的距离为4,22. 解:因为•. 1 - 3a > 0, | 8b — 3 |> 0,且丨1 - 3a 和| 8b — 3 |互为相反数,所以 J -3a 二 0,1 8b — 3 | 二 0,1 3 2所以 a ,b ,所以 ab — 27= 64 — 27 = 37.3 823. 分析:直接把 A 点和B 点的坐标分别代入 y=kx+b ,得到关于k 和b 的方程组,然后解方 程组即可.f k+b 二 3,解:把(1, 3)、(0,— 2)分别代入y=kx+b ,得\[b =—2,k —5解得k 一5'即k , b 的值分别为5,— 2.l b =-2,24. 分析:(1)可设这个梯子的顶端 A 距地面有x m 高,因为云梯长、梯子底端离墙距离、梯子的顶端距地面高度是直角三角形的三边长,所以x 2+72=252,解出x 即可.(2)如果梯子的顶端下滑了 4 m ,那么梯子的底部在水平方向不一定滑动了 4 m ,应计算才能确定.解:(1)设这个梯子的顶端 A 距地面有x m 高,根据题意,得 AB 2+BC 2=AC 2,即 x 2+72=252,解得 x=24 , 即这个梯子的顶端 A 距地面有24 m 高. (2)不是.理由如下:如果梯子的顶端下滑了 4 m , 即卩AD=4 m,BD=20 m. 设梯子底端E 离墙距离为y m ,根据题意,得 BD 2+BE 2=DE 2,即 202+y 2=252,解得 y=15. 此时 CE=15 — 7=8 (m ). 所以梯子的底部在水平方向滑动了8 m.25. 解:(1)甲行走的速度:150亠5=30 (米/分)(2)补画的图象如图所示(横轴上对应的时间为所以S 梯形ABCD =(2+5)如=14 250)(3) 由函数图象可知,当 t=12.5时,s=0; 当 12.5弐€5 时,s=20t-250; 当 35<t 老0 时,s=-30t+1 500.当甲、乙两人相距 360米时,即s=360, 360=20t- 250,解得 t =30.5, 360 =- 30t+1 500.解得 t =38■当甲行走30.5分钟或38分钟时,甲、乙两人相距 360米.26. 解:(1)设一名熟练工加工1件 A 型服装需要x 小时,加工1件B 型服装需要y 小时,答:一名熟练工加工 1件A 型服装需要2小时,加工1件B 型服装需要1小时. (2)当一名熟练工一个月加工A 型服装a 件时,则还可以加工B 型服装(25X8-2a )件.W = 16a+12 (25X8-2a ) +800, A W = -8a+3 200.又 a 》-(200-2a ),解得 a >50. eJ-••• -8<0, ••• W 随着a 的增大而减小. •••当a=50时,W 有最大值2 800.••• 2 800<3 000, •该服装公司执行规定后违背了广告承诺由题意H fic+2y =4得.。

相关文档
最新文档