牛顿运动定律解题

合集下载

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。

已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。

求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。

【答案】(1)1.65m (2)0.928m 【解析】 【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=,求:()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J . 【解析】 【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-=后段运动有:222212L s vt a t -=+, 解得:21t s =,到达A 端的速度226/A v v a t m s =+=动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.3.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F 1、F 2和F 3大小分别为20.8N 、20.4N 和18.4N ,货物受到的阻力恒为其重力的0.02倍.g 取10m/s 2.计算: (1)货物的质量m ;(2)货物上升过程中的最大动能E km 及东东家阳台距地面的高度h . 【答案】(1) m =2kg (2)2112km E mv J == h =56m 【解析】 【分析】 【详解】(1)在货物匀速上升的过程中 由平衡条件得2F mg f =+ 其中0.02f mg = 解得2kg m =(2)设整个过程中的最大速度为v ,在货物匀减速运动阶段 由牛顿运动定律得33–mg f F ma += 由运动学公式得330v a t =- 解得1m v s = 最大动能211J 2m k E mv == 减速阶段的位移3310.5m 2x vt == 匀速阶段的位移2253m x vt ==加速阶段,由牛顿运动定律得11––F mg f ma =,由运动学公式得2112a x v =,解得1 2.5m x =阳台距地面的高度12356m h x x x =++=4.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-=由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤5.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得233t s =故经过时间12310.913t t t s +=+=≈ 物块滑落.6.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.7.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1m/s ,高度为56m .货物质量为2kg ,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10m/s 2.求 (1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力. 【答案】(1)2.5m ;(2)20.8N 【解析】 【详解】(1)无人机匀速上升的高度:h 2=vt 2 无人机匀减速上升的高度:h 3=2v t 3 无人机匀加速上升的高度:h 1=h -h 2-h 3 联立解得:h 1=2.5 m(2)货物匀加速上升过程:v 2=2ah 1货物匀加速上升的过程中,无人机对货物的作用力最大,由牛顿运动定律得: F -mg -0.02mg =ma 联立解得:F =20.8 N8.如图所示,一个质量m =2 kg 的滑块在倾角为θ=37°的固定斜面上,受到一个大小为40 N 的水平推力F 作用,以v 0=20 m/s 的速度沿斜面匀速上滑.(sin 37°=0.6,取g =10 m/s 2)(1)求滑块与斜面间的动摩擦因数;(2)若滑块运动到A 点时立即撤去推力F ,求这以后滑块再返回A 点经过的时间. 【答案】(1)0.5;(2)225s +() 【解析】【分析】 【详解】(1)滑块在水平推力作用下沿斜面向上匀速运动时,合力为零,则有 Fcos37°=mgsin37°+μ(mgcos37°+Fsin37°) 代入解得,μ=0.5(2)撤去F 后,滑块上滑过程:根据牛顿第二定律得:mgsin37°+μmgcos37°=ma 1, 得,a 1=g (sin37°+μcos37°) 上滑的时间为0112v t s a == 上滑的位移为01202v x t m == 滑块下滑过程:mgsin37°-μmgcos37°=ma 2, 得,a 2=g (sin37°-μcos37°)由于下滑与上滑的位移大小相等,则有x=12a 2t 22 解得,22225xt s a ==故 t=t 1+t 2=(2+25)s 【点睛】本题分析滑块的受力情况和运动情况是关键,由牛顿第二定律和运动学公式结合是处理动力学问题的基本方法.9.如图所示为一升降机由静止开始下降..过程中的速度图像,升降机及其载重总质量为2.0t .(1)由图象判断出升降机在哪段时间内出现超重、失重现象;(2)分别求出第2S 内、第5S 内、第7S 内悬挂升降机的钢索的拉力大小.(g 取10m/s 2)【答案】(1)6s -8s 超重;0—2s 失重 (2)41.210N ⨯ 4210N ⨯ 2.8×104N【解析】试题分析:当物体对接触面的压力大于物体的真实重力时,就说物体处于超重状态,此时有向上的加速度;当物体对接触面的压力小于物体的真实重力时,就说物体处于失重状态,此时有向下的加速度;速度时间图象的斜率表示加速度,根据牛顿第二定律求出各段时间内悬挂升降机的钢索的拉力大小.(1)由速度时间图象可知,0-2s 内,升降机向下做匀加速运动,加速度向下,处于失重状态,6s-8s 内升降机减速下降,加速度方向向上,处于超重状态. (2)由加速度定义:∆=∆v a t根据图象得0~2s 内2218/4/2v a m s m s t ∆===∆ 根据牛顿第二定律得:4?11 1.210F mg ma N =-=⨯2s ~6s 内,加速度a 2=0,即匀速运动 悬挂升降机的钢索的拉力F 2=mg =2×104 N 6s ~8s 内,加速度为:22308/4/2v a m s m s t ∆-===-∆ 根据牛顿第二定律得:433 2.810?F mg ma N =-=⨯ 点睛:本题主要考查了对超重失重现象的理解及牛顿第二定律的直接应用,属于基础题.10.如图所示,质量为M=8kg 的小车停放在光滑水平面上,在小车右端施加一水平恒力F ,当小车向右运动速度达 到时,在小车的右端轻轻放置一质量m=2kg 的小物块,经过t 1=2s 的时间,小物块与小车保持相对静止。

(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。

【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

物理牛顿运动定律的应用练习题20篇及解析

物理牛顿运动定律的应用练习题20篇及解析


B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=3.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值;()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.4.如图所示,质量M=0.5kg 的长木板A 静止在粗糙的水平地面上,质量m=0.3kg 物块B(可视为质点)以大小v 0=6m/s 的速度从木板A 的左端水平向右滑动,若木板A 与地面间的动摩擦因数μ2=0.3,物块B 恰好能滑到木板A 的右端.已知物块B 与木板A 上表面间的动摩擦因数μ1=0.6.认为各接触面间的最大静摩擦力与滑动摩擦力大小相等,取g=10m/s 2.求:(1)木板A 的长度L ;(2)若把A 按放在光滑水平地面上,需要给B 一个多大的初速度,B 才能恰好滑到A 板的右端;(3)在(2)的过程中系统损失的总能量.【答案】(1) 3m (2) /s (3) 5.4J 【解析】 【详解】(1)A 、B 之间的滑动摩擦力大小为:11= 1.8f mg N μ= A 板与地面间的最大静摩擦力为:()22= 2.4f M m g N μ+= 由于12f f <,故A 静止不动B 向右做匀减速直线运动.到达A 的右端时速度为零,有:202v aL =11mg ma μ=解得木板A 的长度 3L m =(2)A 、B 系统水平方向动量守恒,取B v 为正方向,有 ()B mv m M v =+物块B 向右做匀减速直线运动22112B v v a s -=A 板匀加速直线运动 12mg Ma μ=2222v a s =位移关系12s s L -=联立解得/B v s = (3)系统损失的能量都转化为热能1Q mgL μ=解得 5.4Q J =5.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.6.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t =对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W7.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s '=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.8.某研究性学习小组利用图a 所示的实验装置探究物块在恒力F 作用下加速度与斜面倾角的关系。

牛顿运动定律书后习题解答

牛顿运动定律书后习题解答

图 2 唱3
牛顿定律 并 注 意 到 此 时 落 下 部 分 质 量 是 变 化
的 ,故有
ml gx

d dt
m l
xv
xgd t = d( xv )
上式两边乘以 xv ,得
vgx2d t =
1 2
d(
x2
v2


gx2d x =
1 2
d(
x2
v2

(因为


d d
x t

积分上式 ,且利用初始条件 :x = 0 ,v = 0 ,得


∫ ∫ v0

mvd v mg + αmv2

dy

小球自地面可到达的最大高度为


21αln
mg +
αm

2 0
mg
(1 )
小球下落时 ,将受到向下的重力 mg 和向上的阻力 αmv2 ,根据牛顿第二定律 ,

作变量替换后有
- mg +
αm v 2


dv dt
- mg +
αm v 2
T - f = mA aA x
(5 )
mA g - N = mA aA y
(6 )
f = μN
(7 )
B 物体 :
- Tsin θ = mB aBx
(8 )
mB g - Tcos θ = mB aBy
(9 )
由加速度变换关系 ,有
aA x = ar - a0
aA y = 0
aBx = ar sin θ - a0
部释放
,并沿相反方向自由滑下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用牛顿运动定律解决问题
例题精讲
例1.如图所示,长为L=6m、质量m1=4kg的长木板放置于光滑的水平面上,其左端有一大小可忽略,质量为m2=1kg的物块,物块与木板间的动摩擦因数μ=0.4,开始时物块与木板都处于静止状态,现对物块施加F=8N,方向水平向右的恒定拉力,求:(g=10m/s2)
⑴小物块的加速度;
⑵物块从木板左端运动到右端经历的时间。

例2.如图所示,长为l的长木板A放在动摩擦因数为μ1的水平地面上,一滑块B(大小可不计)从A的左侧以初速度v0向右滑上木板,滑块与木板间的动摩擦因数为μ2(A与水平地面间的最大静摩擦力与滑动摩擦力大小相同).已知A的质量为M=2.0kg,B的质量为m=3.0kg,A的长度为l=3.0m,v0=5.0m/s,μ1=0.2,μ2=0.4,试分别求A、B对地的最大位移.(g 取10m/s2 )
v0
B
A
例3. 质量为2kg的物体静止在足够大的水平面上,物体与地面间的动摩擦因数为0.2,最
大静摩擦力和滑动摩擦力大小视为相等。

从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示。

重力加速度g 取10m/s 2,则物体在t=0到t=12s 这段时间内的位移大小为
A.18m
B.54m
C.72m
D.198m
例4. 放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图所示,取重力加速度g=10 m/s 2.由此两图线可以求得物块的质量m 和物块与地面之间的动摩擦因数μ分别为( )
A.m=0.5 kg, μ=0.4
B.m=1.5 kg, μ=2/15
C.m=0.5 kg, μ=0.2
D.m=1 kg, μ=0.2
1.某科技兴趣小组用实验装置模拟火箭发射卫星.火箭点燃后从地面竖直升空,燃料燃尽后火箭的第一级第二级相继脱落,实验中测得卫星竖直方向的速度—时间图象如图所示,设运动中不计空气阻力,燃料燃烧时产生的推力大小恒定.下列判断正确的是( )
A.t 2时刻卫星到达最高点,t 3时刻卫星落回地面
B.卫星在0~t 1时间内的加速度大于t 1~t 2时间内的加速度
C. t 1~t 2时间内卫星处于超重状态,t 2~t 3时间内卫星处于失重状态
D.卫星在t 2~t 3时间内的加速度等于重力加速度
巩固强化
2.某物体做直线运动的v-t 图象如图甲所示,据此判断图乙(F 表示物体所受合力,x 表示物体的位移)四个选项中正确的是 ( )
3.一个静止的质点,在0~5s 时间内受到力F 的作用,力的方向始终在同一直线上,力F 随时间t 的变化图线如图所示。

则质点在 ( )
A .第2 S 末速度方向改变
B .第2 s 末加速度为零
C .第4 S 末运动速度为零
D .第4 s 末回到原出发点
4.质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上,已知t =0时质点的速度为零,在图3-13-30示的t l 、t 2、t 3和t 4各时刻中 ( )
A .t 1时刻质点速度最大
B .t 2时刻质点速度最大
C .t 3时刻质点离出发点最远
D .t 4时刻质点离出发点最远
5.如图所示,是一辆汽车在两站间行驶的速度图像,汽车所受到的阻力大小为2000N 不变,且BC 段的牵引力为零,已知汽车的质量为4000kg ,则汽车在此段的加速度大小为_______,OA 段汽车的牵引力大小为_________
6、如图所示,质量M =3kg 、长L =3m 的长木板放在光滑的水平面上,其右端有一质量m =2kg 、
大小可忽略的物体,对板施加一大小为12N 的水平拉力F ,使物体和板从静止开始运动,已知物体和板间的动摩擦因数为0.15,求物体运动多长时间恰好滑到板的左端.(取g =10m/s 2)
7、一质量为m=40kg 的小孩在电梯内的体重计上,电梯从t=0时刻由静止开始上升,在0到6s 内体重计示数F 的变化如图所示.试问:在这段时间内电梯上升的高度是多少?取重力加速度g =10m/s 2.
8、固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ;
(2)细杆与地面间的倾角α ?
F /N 100 320 400 440 t /s
0 1 2 3 4 6 5 F /N v /ms -1 5.5 1 F 5 α
0 2 4 6 t /s 0 2 4 6 t /s F L M m。

相关文档
最新文档