各类排序算法总结
十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
10种常用典型算法

10种常用典型算法1. 冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它通过依次比较相邻的两个元素,如果顺序不对则交换位置。
这样,每一趟排序都会将最大的元素移动到末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
2. 选择排序(Selection Sort)选择排序也是一种简单的排序算法。
它通过每次从未排序的部分中选出最小的元素,放到已排序部分的末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
3. 插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。
它通过将未排序的元素逐个插入到已排序部分的正确位置。
每次插入一个元素,已排序部分都是有序的。
通过多次重复这个过程,直到所有元素按照升序排列为止。
4. 快速排序(Quick Sort)快速排序是一种高效的排序算法。
它通过选择一个基准元素,将数组分成两部分,一部分元素小于基准,另一部分元素大于基准。
然后对这两部分递归地进行快速排序。
通过多次重复这个过程,直到所有元素按照升序排列为止。
5. 归并排序(Merge Sort)归并排序是一种稳定的排序算法。
它通过将数组递归地分成两半,分别对这两半进行归并排序,然后将排序好的两部分合并起来。
通过多次重复这个过程,直到所有元素按照升序排列为止。
6. 堆排序(Heap Sort)堆排序是一种高效的排序算法。
它利用堆的性质来进行排序,通过构建一个最大堆或最小堆,并不断地取出堆顶元素并调整堆。
通过多次重复这个过程,直到所有元素按照升序排列为止。
7. 计数排序(Counting Sort)计数排序是一种非比较性的整数排序算法。
它通过统计每个元素的个数来排序。
首先统计每个元素出现的次数,然后根据元素的大小顺序将其放入新的数组中。
通过多次重复这个过程,直到所有元素按照升序排列为止。
8. 桶排序(Bucket Sort)桶排序是一种非比较性的排序算法。
它通过将元素划分到不同的桶中,每个桶内再使用其他排序算法进行排序。
各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。
从本质上来说,它是归并排序的就地版本。
快速排序可以由下面四步组成。
(1 )如果不多于1 个数据,直接返回。
(2 )一般选择序列最左边的值作为支点数据。
(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。
(4 )对两边利用递归排序数列。
快速排序比大部分排序算法都要快。
尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。
快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。
2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。
合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。
3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。
堆排序不需要大量的递归或者多维的暂存数组。
这对于数据量非常巨大的序列是合适的。
比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。
堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。
接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。
4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。
平均效率是O(nlogn) 。
其中分组的合理性会对算法产生重要的影响。
现在多用D.E.Knuth 的分组方法。
Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。
Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。
各种排序方法总结

选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:l og2(n)*n堆排序:l og2(n)*n希尔排序:算法的复杂度为n的1.2次幂这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(lo g2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的midd le都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
排序题方法总结

排序题方法总结
排序方法可以总结为以下几种:
1. 冒泡排序:重复比较相邻的两个元素,若顺序错误则交换位置,直至整个数组有序。
时间复杂度为O(n^2)。
2. 选择排序:每次从数组中选择最小(或最大)的元素,放到已排序的末尾,直至整个数组有序。
时间复杂度为O(n^2)。
3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分中取出一个元素,并插入到已排序部分的适当位置,直至整个数组有序。
时间复杂度为O(n^2)。
4. 归并排序:将数组不断地分割成更小的子数组,然后再将子数组合并,直至整个数组有序。
时间复杂度为O(nlogn)。
5. 快速排序:选择一个基准元素,将数组分为小于和大于基准元素的两部分,再对两部分分别进行快速排序,直至整个数组有序。
时间复杂度为O(nlogn)。
6. 堆排序:将数组构建成大顶堆(或小顶堆),然后不断地将堆顶元素与最后一个元素交换,并重新调整堆,直至整个数组有序。
时间复杂度为O(nlogn)。
7. 计数排序:统计数组中每个元素出现的次数,然后根据计数从小到大将元素重新排列。
时间复杂度为O(n+k),其中k是值的范围。
8. 基数排序:按照位数从低到高的顺序,将数组分配到桶中,然后重组桶中的元素,直至整个数组有序。
时间复杂度为
O(d*(n+k)),其中d是最大位数,k是每个桶的大小。
以上是常见的排序算法,每种算法都有不同的适用场景和特点,需要根据实际问题选择合适的算法。
排序的几种方式

排序的几种方式在日常生活中,我们经常需要对事物进行排序,以便更好地组织和理解信息。
排序是一种将元素按照一定的规则进行排列的方法,可以应用于各种领域,如数字排序、字母排序、时间排序等。
本文将介绍几种常用的排序方式,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单直观的排序方法,通过比较相邻元素的大小,将较大的元素逐渐“冒泡”到右侧,较小的元素逐渐“沉底”到左侧。
这个过程会不断重复,直到所有元素都按照升序排列。
冒泡排序的基本思想是从第一个元素开始,依次比较相邻的两个元素,如果前面的元素大于后面的元素,则交换它们的位置。
经过一轮比较后,最大的元素会“冒泡”到最右侧,然后再对剩下的元素进行相同的比较,直到所有元素都有序排列。
二、选择排序选择排序是一种简单直观的排序方法,它的基本思想是每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到所有元素都有序排列。
选择排序的过程可以分为两个部分:首先,在未排序的序列中找到最小(或最大)的元素,然后将其放到已排序序列的末尾;其次,将剩下的未排序序列中的最小(或最大)元素找到,并放到已排序序列的末尾。
这个过程会不断重复,直到所有元素都有序排列。
三、插入排序插入排序是一种简单直观的排序方法,它的基本思想是将待排序的元素逐个插入到已排序序列的适当位置,最终得到一个有序序列。
插入排序的过程可以分为两个部分:首先,将第一个元素看作已排序序列,将剩下的元素依次插入到已排序序列的适当位置;其次,重复上述过程,直到所有元素都有序排列。
插入排序的过程类似于整理扑克牌,将新抓到的牌插入到已有的牌中。
四、快速排序快速排序是一种常用的排序方法,它的基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的所有元素都小于另一部分的所有元素。
然后对这两部分继续进行排序,直到整个序列有序。
快速排序的过程可以分为三个步骤:首先,从序列中选择一个基准元素;其次,将比基准元素小的元素放在左侧,比基准元素大的元素放在右侧;最后,递归地对左右两个部分进行排序。
排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
10大排序方法

10大排序方法10大排序方法在计算机科学和数据处理中,排序是一项基础且重要的任务。
通过排序,我们可以将一组数据按照特定规则进行排列,使得数据更易于查找和分析。
下面介绍了10种常用的排序方法,它们在不同场景下具有不同的优势和适用性。
1. 冒泡排序(Bubble Sort)冒泡排序是一种简单而直观的排序算法,它通过重复地比较相邻元素并交换位置来实现排序。
该算法的核心思想是将较大的元素逐渐“冒泡”到数列的末尾。
2. 选择排序(Selection Sort)选择排序的思想是从待排序的数据中选择出最小(或最大)的元素,放在已排序序列的末尾。
该过程不断重复,直到所有元素排序完成。
3. 插入排序(Insertion Sort)插入排序是一种简单且高效的排序算法,它的基本思想是将待排序数据分为已排序和未排序两部分,每次从未排序数据中取出一个元素,将其插入到已排序数据的合适位置。
希尔排序是插入排序的改进版本,它通过使用不同的间隔序列对数据进行多次分组排序,最终实现整体有序。
希尔排序在处理中等大小的数据集时具有较好的性能。
5. 归并排序(Merge Sort)归并排序是一种分治法的典型应用,它将待排序数据不断地分割成小块,然后逐步合并这些小块,以得到完整的有序序列。
归并排序在处理大规模数据时具有较好的稳定性和效率。
6. 快速排序(Quick Sort)快速排序是一种高效的排序算法,它采用分治的思想,通过选取一个基准元素将数据分为左右两部分,并分别对左右两部分进行排序。
快速排序通常是性能最好的排序算法之一。
7. 堆排序(Heap Sort)堆排序是利用堆这种数据结构的一种排序算法。
它通过建立最大(或最小)堆,并不断从堆顶取出最大(或最小)元素,实现排序的过程。
堆排序在处理大规模数据时具有较好的性能。
8. 计数排序(Counting Sort)计数排序是一种非比较性的排序算法,适用于数据范围较小且取值离散的情况。
计数排序通过统计每个元素出现的次数,从而确定每个元素在有序序列中的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类排序算法总结
一.排序的基本概念
排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素某个项值有序的序列。
有n个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。
通过排序,要求找出当前下标序列1,2,…,n的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。
作为排序依据的数据项称为“排序码”,也即数据元素的关键码。
若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可能不唯一。
实现排序的基本操作有两个:
(1)“比较”序列中两个关键字的大小;
(2)“移动”记录。
若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。
二.插入类排序
1.直接插入排序
直接插入排序是最简单的插入类排序。
仅有一个记录的表总是有序的,因此,对n个记录的表,可从第二个记录开始直到第n个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。
它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。
注意直接插入排序算法的三个要点:
(1)从R[i-1]起向前进行顺序查找,监视哨设置在R[0];
[cpp]view plaincopyprint?
1.R[0]=R[i];//设置“哨兵”
2.
3.for(j=i-1;R[0].key<R[j].key;--j)//从后往前找
4.
5.return j+1;//返回R[i]的插入位置为j+1
(2)对于在查找过程中找到的那些关键字不小于R[i].key的记录,可以在查找的同时实现向后移动,即:查找与移动同时进行.
[cpp]view plaincopyprint?
1.for(j=i-1;R[0].key<R[j].key;--j)
2.{
3.R[j+1]=R[j];
4.}
(3)i=2,3,…,n,实现整个序列的排序(从i=2开始).
【算法如下】
[cpp]view plaincopyprint?
1.//C++代码,确保能够运行
2.void insertionSort(int*R,int length)
3.{
4.for(int i=2;i<=length;++i)
5.{
6.R[0]=R[i];//设为监视哨
7.
8.int j;
9.for(j=i-1;R[0]<R[j];--j)
10.{
11.R[j+1]=R[j];//边查找边后移
12.}
13.
14.R[j+1]=R[0];//插入到正确位置
15.}
16.}
【性能分析】
(1)空间效率:仅用了一个辅助单元,空间复杂度为O(1)。
只需R[0]做辅助.
(2)时间效率:向有序表中逐个插入记录的操作,进行了n-1趟,每趟操作分为比较关键码和移动记录,而比较的次数和移动记录的次数取决于待排序列按关键码的初始排列。
直接插入排序的最好情况的时间复杂度为O(n),平均时间复杂度为O(n^2)。
(3)稳定性:直接插入排序是一个稳定的排序方法。
总体来说:直接插入排序比较适用于带排序数目少,且基本有序的情况下.
2.折半插入排序
直接插入排序的基本操作是向有序表中插入一个记录,插入位置的确定通过对有序表中记录按关键码逐个比较得到的。
平均情况下总比较次数约为(n^2)/4。
既然是在有序表中确定插入位置,可以不断二分有序表来确定插入位置,即一次比较,通过待插入记录与有序表居中的记录按关键码比较,将有序表一分为二,下次比较在其中一个有序子表中进行,将子表又一分为二。
这样继续下去,直到要比较的子表中只有一个记录时,比较一次便确定了插入位置。
折半插入排序是利用折半查找实现“在R[1..i-1]中查找R[i]的插入位置”。
综上:折半插入排序只是减少了比较的次数,因此折半插入排序总的时间复杂度仍是
O(n^2).
3.希尔排序
希尔排序又称缩小增量排序,较直接插入排序和折半插入排序方法有较大的改进。
直接插入排序算法简单,在n值较小时,效率比较高,在n值很大时,若序列按关键码基本有序,效率依然较高,其时间效率可提高到O(n)。
希尔排序即是从这两点出发,给出插入排序的改进方法。
希尔排序的基本思想是:先将待排序记录序列分割成若干个“较稀疏的”子序列,分别进行直接插入排序。
经过上述粗略调整,整个序列中的记录已经基本有序,最后再对
全部记录进行一次直接插入排序。
具体实现时,首先选定两个记录间的距离d1,在整个待排序记录序列中将所有间隔为d1的记录分成一组,进行组内直接插入排序,然后再取两个记录间的距离d2<d1,在整个待排序记录序列中,将所有间隔为d2的记录分成一组,进行组内直接插入排序,直至选定两个记录间的距离dt=1为止,此时只有一个子序列,即整个待排序记录序列。
【性能分析】
(1)空间效率:仅用了一个辅助单元,空间复杂度为O(1)。
(2)时间效率:希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于步长因子序列的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。
目前还没有人给出选取最好的步长因子序列的方法。
步长因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:步长因子中除1外没有公因子,且最后一个步长因子必须为1。
O(log2n)~O(n^2)之间的一个值.
(3)稳定性:希尔排序方法是一个不稳定的排序方法。
三.交换类排序
交换排序主要是通过两两比较待排记录的关键码,若发生与排序要求相逆,则交换之。
1.冒泡排序(相邻比较法)
冒泡排序是最简单的一种交换排序。
假设在排序过程中,记录序列R[1..n]的状态为:
则第i趟起泡插入排序的基本思想为:借助对无序序列中的记录进行“交换”的操作,将无序序列中关键字最大的记录“交换”到R[n-i+1]的位置上。
【算法如下】
[cpp]view plaincopyprint?
1.//C++代码
2.void bubbleSort(int*R,int length)
3.{
4.bool change=true;
5.
6.for(int i=0;i!=length-1&&change;++i)
7.{
8.change=false;
9.
10.for(int j=0;j!=length-i-1;++j)
11.{
12.if(R[j]>R[j+1])//如果相邻元素中大者在前,交换之
13.{
14.int temp=R[j];
15.R[j]=R[j+1];
16.R[j+1]=temp;
17.
18.change=true;
19.}
20.}
21.}
22.}
【性能分析】
(1)空间效率:仅用了一个辅助单元,空间复杂度为O(1)。
(2)时间效率:最好情况的时间复杂度为O(n),平均时间复杂度为O(n^2)。
(3)稳定性:冒泡排序法是一种稳定的排序方法
总比较次数。