圆柱坐标型三自由度机械手设计及其控制
三自由度圆柱坐标型工业机器人设计

三自由度圆柱坐标型工业机器人设计引言工业机器人在现代制造业中起着至关重要的作用。
圆柱坐标型工业机器人是一种具有三个自由度的机器人,它可以在三维空间内进行精确的定位和操作。
本文将着重讨论三自由度圆柱坐标型工业机器人的设计原理和关键技术。
一、设计原理三自由度圆柱坐标型工业机器人的设计原理基于坐标变换。
它由一个立柱状的垂直轴和一个平行于地面的基座组成。
机器人的主要部件包括立柱、支撑臂、关节和末端执行器。
机器人的立柱可以在垂直方向上运动,提供Z轴位移。
支撑臂位于立柱的顶部,可以绕水平方向的Y轴旋转,提供Y轴位移。
末端执行器连接在支撑臂的末端,可以绕垂直方向的Z轴旋转,提供X轴位移。
二、关键技术1.位置传感器:为了实现精确的定位和操作,对机器人的运动进行准确的测量是必不可少的。
位置传感器可以用来测量机器人各个关节的角度以及末端执行器的位置信息。
2.逆运动学:逆运动学是指通过末端执行器的位置和姿态计算出机器人各个关节的角度。
通过逆运动学算法,可以实现机器人在三维空间内的精确定位。
3.控制系统:控制系统是三自由度圆柱坐标型工业机器人的核心。
它接收来自传感器的反馈信息,计算机器人的位姿,并输出相应的指令控制机器人的运动。
控制系统需要具备实时性和稳定性,以确保机器人的运动精度和安全性。
4.动力学分析:动力学分析可以帮助我们理解机器人在运动过程中的力学特性。
通过动力学分析,可以确定机器人在给定任务下所需的扭矩和力,并进行相应的力矩配平和选型。
三、设计步骤1.确定任务需求:在开始机器人设计之前,首先需要明确机器人所要完成的任务和工作环境。
2.选择结构参数:根据任务需求和工作环境,选择机器人的结构参数,包括立柱高度、支撑臂长度和末端执行器负载能力等。
3.逆运动学分析:根据机器人的结构参数和任务需求,进行逆运动学分析,得到机器人各个关节的角度和末端执行器的位姿。
4.控制系统设计:设计机器人的控制系统,选择合适的控制算法和硬件设备,实现机器人的运动控制和姿态调整。
圆柱坐标式机械手

圆柱坐标式机械手
圆柱坐标式机械手是一种基于圆柱坐标系设计的机械手臂,常用于工业生产线
中进行物料搬运、组装等任务。
其设计基于数学中的圆柱坐标系,通过旋转、伸缩等运动实现对工件的精准定位和操作。
结构组成
圆柱坐标式机械手通常由底座、转台、臂架、活动臂、末端执行器等部分组成。
底座固定在地面上,转台可实现水平旋转,臂架通过联轴器与转台相连,活动臂则连接在臂架上,末端执行器负责抓取、放置工件。
工作原理
圆柱坐标式机械手通过控制各关节的运动,实现对工件在水平平面内的定位及
动作。
通过联动转台和臂架,机械手可以在圆柱坐标系内实现三个自由度的运动。
同时,活动臂末端的执行器可根据需要旋转、张合,完成对工件的精确处理。
应用领域
圆柱坐标式机械手适用于需要大范围工作空间及较高精度要求的场景,如汽车
装配线、电子产品制造等。
因其结构简单、操作方便,广泛应用于自动化生产线中,提高了生产效率及产品质量。
发展趋势
随着工业自动化程度的不断提高,圆柱坐标式机械手在工业生产中的应用前景
广阔。
未来,随着技术的不断创新和升级,圆柱坐标式机械手将在精度、速度、功能等方面有所突破,更好地满足各行业的生产需求。
圆柱坐标式机械手的出现,为工业生产带来了更便捷、高效的解决方案,促进
了工业自动化技术的发展。
其优势在于灵活性强、操作简便、可靠性高,将在未来的工业生产中发挥越来越重要的作用。
机械手-三自由度圆柱坐标型工业机器人

机械手-三自由度圆柱坐标型工业机器人目录 (1)中文摘要 (2)Abstract (2)第1章绪论......‥ (3)第2章工业机器人的总体设计 (3)2.1工业机器人的组成及各部分关系概述 (3)2.2工业机器人的设计分析 (4)2.2.1设计要求 (5)2.2.2总体方案拟定 (5)2.2.3工业机器人的主要技术参数 (5)第3章工业机器人的机械系统设计 (6)3.1工业机器人的运动系统分析 (6)3.1.1机器人的运动概述 (6)3.1.2机器人的运动过程分析 (7)3.2工业机器人的执行机构设计 (8)3.2.1末端执行机构设计 (8)3.2.2手臂机构设计 (11)3.2.3腰部和基座设计 (12)3.3工业机器人的机械传动装置设计‥ (18)3.3.1滚珠丝杠的选择 (18)3.3.2谐波齿轮的选择 (19)3.3.3联轴器的选择 (20)第4章工业机器人的计算机控制系统概述 (20)4.1工业机器人控制系统的特点及对控制功能的基本要求‥ (21)4.2计算机控制系统的设计方案 (22)4.3硬件电路的组成 (22)第5章工业机器人运行时应采取的安全措施 (22)5.1安全要求 (22)5.2实施方法 (23)鸣谢 (23)参考文献 (24)中文摘要在工业上,自动控制系统有着广泛的应用,如工业自动化机床控制,计算机系统,机器人等。
而工业机器人是相对较新的电子设备,它正开始改变现代化工业面貌。
本设计为三自由度圆柱坐标型工业机器人,其工作方向为两个直线方向和一个旋转方向。
在控制器的作用下,它执行将工件从一条流水线拿到另一条流水线这一简单的动作,本文是对整个设计工作较全面的介绍和总结。
关键词:三自由度,圆柱坐标,工业机器人AbstractIndustrially,automaticcontrolsystemsarefoundinnumerousapplications,suchasautomationmach inetoolcontrol,computersystemsandrobotics.Industrialrobotsarerelativelynewelectromechanicaldev icesthatarebeginningtochangetheappearanceofmodernindustry.Thisschemeintroducedacylindricalr obotforthreedegreeoffreedom.Itiscomposedoftwolinearaxesandonerotaryaxiscurrentcontrolonlyall owsthesedevicesmovefromoneassemblylinetootherassemblylineinspace,performrelativelysimpleta skes.Thispaperismorecomprehensiveintroductionandsumming-upfortheforthewholedesignwork. Keywords:threedegreesoffreedom,cylindrical,Industrialrobot三自由度圆柱坐标型工业机器人设计第一章绪论机器人工程是近二十多年来迅速发展起来的综合学科。
3自由度的机械手控制器设计原理

3自由度的机械手控制器设计原理3自由度的机械手是指可以在三个方向上移动的机械手,通常是由三个关节组成的。
这样的机械手可以进行基本的平移和旋转运动,可以用于各种应用场景,如工业生产、医疗手术和科研实验等。
为了实现对3自由度机械手的精确控制,需要设计一个有效的控制器来实现对机械手的精准运动控制。
3自由度机械手的控制器设计原理主要包括以下几个方面:1.传感器系统设计:传感器系统是机械手控制器的基础,通过传感器系统可以获取机械手的位置、速度和力信息。
在设计3自由度机械手的控制器时,需要选择合适的传感器来获取机械手各个关节的位置信息,以实现对机械手的闭环控制。
常用的传感器包括编码器、惯性传感器和力传感器等。
2.运动控制算法设计:运动控制算法是机械手控制器的核心部分,通过运动控制算法可以实现对机械手的轨迹规划和动态控制。
在设计3自由度机械手的控制器时,通常采用PID控制算法或者模型预测控制算法来实现对机械手的动态控制。
PID控制算法通过调节比例、积分和微分参数来实现对机械手位置和速度的精确控制,而模型预测控制算法则通过对机械手的动态模型进行建模,并利用预测控制器来预测未来的行为,并实现对机械手的精确控制。
3.人机交互界面设计:为了方便用户对机械手进行操作和监控,需要设计一个友好的人机交互界面。
在设计3自由度机械手的控制器时,可以采用图形界面或者虚拟现实界面来实现对机械手的控制和监控。
通过人机交互界面,用户可以实时监控机械手的状态,并进行控制参数的设定和调整,以实现对机械手的精确控制。
总的来说,设计一个有效的3自由度机械手控制器需要综合考虑传感器系统设计、运动控制算法设计和人机交互界面设计等方面,通过合理的设计和实现,可以实现对机械手的精确控制,并满足不同应用场景的需求。
通过不断优化和改进,可以实现对机械手的更精准和高效的控制,为各种应用场景提供更好的解决方案。
圆柱坐标型机械手结构与控制系统设计

5 4・
科 技 论 坛
圆柱坐标型机械手结构 与控制 , 吉林 吉林 1 3 2 0 2 1 ) 摘 要: 本文研制 了一种 可以能够在不同位 置进行抓取和放置工件 的气压驱动 的圆柱 坐标型机械手 , 并根据机械 手的动作要求设计 了其控 制 系统。该机械手控制 系统采 用 P L C发 出控制脉冲控制 步进 电动机进行驱动 , 机械 手的手部采用 气压驱动。 关键词 : 机械手 ; 圆柱 坐标型 ; 气动 系统 ; 控制 系统
现 如今 , 工业 机器人已广泛应用到各 种生产 中 , 机械 手它的一 个重要分支也被应用 到各行各业 中, 常被应用在焊接 、 喷涂 、 激光 、 真空 、 研磨 、 装配等诸多工业领域 。 在工业领域中经常被使用 的机械 手, 根 据其坐标 方式 可分为三类 : 直角坐标 机械手 、 圆柱坐标 机械 手、 极坐标机械 手和关节坐标机械手 。其 中圆柱坐标机械手的结构 紧凑 、 定位准确 、 动作精度高 、 底座小巧 。 因此 , 本文设计 了一种新型 的圆柱坐标机械手及其控制 系统 。
2 . 2 P L C的选 型
参考 文献
P L C所需 的 I / O点个数 :输人信号端: 4个检测机械 手运动状态 【 1 ] 黄伟, 胡青龙. 机械 手 P L C控 制 系统的设计f J 1 . 机 电. Y - 程技 术, 2 0 0 8 的行程开关信号 , 分别用来控制机械手臂 的伸缩极限 、 升降极 限 。7 ( 1 1 ) . 个 手动控制的按钮开关 , 分别控制上 升 / 下降 、 伸臂 , 缩臂 和夹 紧。 『 2 】 陶建国, 刘 廷 荣, 杨文凯. 一 种模 块 式 气动 机 械 手 及 其 作 业 分 析 【 J J . 另外根据系统控制 的要求 ,需要 1 个开始 和 1 个停止按 钮信号开 机 械 工 程 师 , 1 9 9 7 ( 3 ) . 关, 还需要 4个控制机械手运行方式 的开关和 1 个复位按钮 。即共 f 3 】 王巍, 汪 玉风 . 基于 P L C的 气动 机 械 手 研 究 辽 宁 工 程 技 术 大 学 有1 7 个输人信号 , 且均为开关量。输出信号端: 用来 驱动三个气缸 学报 , 2 0 0 5 ( S 1 ) . 及夹紧 / 放松的电磁阀需要 7 个输 出信 号 。也就是 , 本控制 系统有 『 4 1 郭 洪红 . 工 业机 器人 技 术 【 M] . 西安 : 西 安 电子 科 技 大 学 出版 社 , 2 0 0 6 . 1 7个输人信号 , 5个输 出信号 , 并考虑到今后调整和扩充 , 一般应加 『 5 1 王刚, 孙学俭 . 机械手运 动学仿 真 问 ̄ - [ J 1 . 北京石油化 工学 院学报 ,
圆柱坐标式机械手设计概述

圆柱坐标式机械手设计概述圆柱坐标式机械手是一种广泛应用于工业生产线的机械设备,它可以在三维空间内进行各种运动控制,并完成各种任务,如搬运、装卸、加工等。
本文将对圆柱坐标式机械手的设计概述进行分析和讨论。
一、圆柱坐标系介绍圆柱坐标系是一种三维空间坐标系,其重要特点是使用极坐标系描述位置,即使用径向位置、角度和高度三个坐标描述三维空间内的任意一点。
在工业生产过程中,往往需要机械手能够在三维空间内进行移动、夹取等操作,因此圆柱坐标系的运动学性能就显得尤为重要。
二、圆柱坐标式机械手的结构设计圆柱坐标式机械手一般由底座、支臂、旋转关节、手臂、手腕和末端执行器等部分组成。
其中,底座是支架的基础结构,在整个机械手的运动过程中起到了稳定支撑的作用;支臂是机械手上升了一定高度后的支撑结构,通过旋转关节的转动实现机械手的转动操作;手臂是机械手的伸缩结构,它与旋转关节之间通过伸缩体连接,可以实现手臂的伸缩操作;手腕是机械手的转动结构,可以使整个手臂和末端执行器以各种不同的角度进行转动;末端执行器是机械手的活动手指,可以进行抓取、松开、旋转等操作。
三、圆柱坐标式机械手的动力学设计圆柱坐标式机械手在运动控制中需要考虑其负载能力和加速度等因素,这就需要进行动力学设计和分析。
主要考虑的参数包括机械手的载重能力、速度限制、加速度、惯性、运动惯量等。
这些参数的合理设定才能保证机械手在使用过程中的安全性和稳定性,从而达到高效地完成工作的目标。
四、圆柱坐标式机械手的控制系统设计圆柱坐标式机械手的控制系统设计包括硬件和软件两个方面。
硬件部分主要包括电机、传感器、执行器等元器件,这些元器件需要在系统之间进行良好的连接和配合,以实现机械手的各项运动和动作。
软件部分主要包括核心的程序控制器、编程、监控和数据处理等方面的设计,是整个控制系统的核心和基础,决定了机械手的操作精度和稳定性。
五、圆柱坐标式机械手的应用领域圆柱坐标式机械手的应用范围非常广泛,它可以应用于制造业、物流、医疗、农业等领域。
圆柱坐标式机械手结构设计

圆柱坐标式机械手结构设计引言圆柱坐标式机械手广泛应用于工业自动化领域,具有较高的灵活性和精度。
本文将对圆柱坐标式机械手的结构设计进行详细分析与探讨。
结构设计方案圆柱坐标式机械手的结构设计包括机械结构和控制系统两个方面。
机械结构设计1. 基座:机械手的基座是安装机械手关节的支撑结构,通常采用坚固的钢板焊接而成,以确保机械手在工作中的稳定性和刚性。
2. 旋转关节:旋转关节是机械手的第一关节,它负责控制机械手在水平面内的旋转运动。
通常采用电机驱动的齿轮传动机构实现旋转运动,并通过编码器测量旋转角度,以提供反馈控制。
3. 升降臂:升降臂是机械手的第二关节,它负责控制机械手的垂直运动。
升降臂通常由伸缩式气缸或电动升降装置实现,通过伸缩运动来控制机械手的升降。
4. 伸缩臂:伸缩臂是机械手的第三关节,它负责控制机械手在水平方向的伸缩运动。
伸缩臂通常采用液压缸或气缸驱动,通过伸缩运动来控制机械手的伸缩距离。
5. 夹爪:夹爪是机械手的末端执行器,用于抓取和放置工件。
夹爪通常采用气动或电动夹持机构,以实现对工件的抓取和释放操作。
控制系统设计1. 运动控制:机械手的运动控制系统通常由计算机或嵌入式控制器控制。
控制系统接收传感器反馈的位置信息和运动目标,通过控制算法计算出适当的控制信号,并驱动相应的执行机构,实现机械手的运动控制。
2. 位置检测:位置检测是机械手控制系统的关键环节,通过编码器、光电开关或激光测距传感器等设备,实时检测机械手各关节的位置,并将位置信息反馈给控制系统,以实现精确的位置控制。
3. 安全保护:机械手在工作中需要与人类共同操作,在设计控制系统时需要考虑安全保护措施。
例如,设置急停开关、防止碰撞传感器和安全光栅等设备,以确保机械手在意外情况下能够停止运动并保护操作人员的安全。
结论圆柱坐标式机械手的结构设计是实现其高精度、高效率工作的基础。
合理的机械结构和控制系统设计可以提高机械手的运动灵活性和精度,从而满足各种工业生产需求。
圆柱坐标式三自由度机械手解析

圆柱坐标式三自由度机械手摘要机器人不仅是一种自动化的机器。
机器人是一种可重新编程的、多功能的、机械手,为实现各种任务设计成通过可改变的程序动作来移动材料、零部件、工具或是其他专用装置。
本设计设计的是一种圆柱坐标式机械手,该装置具有三个独立运动(两个直线运动、一个旋转运动),也就是所说的三个自由度。
该机构中立柱可相对于机座旋转180度,回转速度15r/min,可水平伸缩距离400mm,移动速度约0.2m/s,机械手可上下垂直运动,其垂直升降量1000mm,移动速度约0.15m/s,机械手最大夹持重量10kg,所夹持工件为圆柱形,直径范围:Ф30mm—Ф120mm。
根据课题要求经过认真思考和请教指导老师,本设计的旋转运动采用摆动液压马达(旋转液压缸)驱动,水平伸缩运动采用液压缸驱动,垂直升降运动仍采用液压缸驱动。
关键词:三自由度,圆柱坐标式,工业机器人,机械手CYLINDRICAL COORDINATE ROBOT OFTHREE DEGREES OF FREEDOMABSTRACTA robot is not simply another automated machine. A robot is a reprogrammable multifunctional manipulator designed to move material, parts, tool, or specialized devices through variable programmed motions for the performance of a variety of task.This design is a cylindrical coordinate manipulator, the device has three separate campaigns (two straight-line movement, a rotating Movement), that is to say that the device has three degrees of freedom. The bodies of the column can be compared to frame 180-degree rotation, with the rotation speed 15 r / min. The manipulator may be stretching from the level of 400mm, with the moving speed about 0.2 m/ s. From the top to the bottom, the manipulator can do vertical movement and its vertical take-off and landing is 1000mm, with the moving speed about 0.15 m/ s. The largest weight that the device grip can lead to 10kg.The workpiece with the diameter from 30mm to 120mm that the device can grip is cylindrical.According to the issue demands ,besides, careful thinking and ask the teacher, the rotating movements of the design opts rotating hydraulic motor (rotating cylinder) , the level of stretching movements are driven by hydraulic cylinders, vertical take-off and landing movements are still driven by hydraulic cylinders.KEY WORDS:Three degrees of freedom, Cylindrical,Industrial robot, Manipulator目录前言 (1)第1章概述 (2)§1.1 工业机械手的概述 (2)§1.2 工业机械手的发展 (5)§1.3 工业机械手在我国的发展与应用 (6)第2章总体设计方案 (8)§2.1 总体设计的思路 (8)§2.1.1 思路 (8)§2.2 总体方案的确定 (8)§2.2.1 方案 (8)第3章机械手相关的设计与计算 (10)§3.1 手指的相关设计与计算 (10)§3.1.1 手指夹紧力的计算 (10)§3.1.2 手部液压缸的选取 (13)§3.1.3 水平伸缩缸尺寸计算 (15)§3.1.4垂直升降液压缸主要参数的确定 (16)§3.2 升降手臂的设计 (17)§3.3 立柱与托盘的设计 (19)第4章相关的校核 (25)§4.1 手爪扇形齿轮与齿条强度校核 (25)§4.1.1 齿轮齿条强度校核 (25)第5章结论 (26)参考文献 (27)致谢 (28)前言机器人技术的发展,可以说是科学技术发展共同的一个综合性的结果,同时,也是为社会经济发展产生了重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.3 控制机构 在机械手控制上,有点动控制和连续控制两种,大多数用插销板进行点动控制,
也有用 PLC 进行控制,主要控制的是坐标位置。
2.2 机械手的规格参数
抓重:2kg 自由度:3 个 坐标形式:圆柱坐标式 输入电压:220V 或 24V 功率:50W 伸缩行程(X): 200mm 伸缩速度: 3mm/s 升降行程(Z): 200mm 升降速度: 3mm/s 回转范围: 0-270 度 回转速度: 20° / s
4 珠丝杠螺母副的选型 ........................................ 10
4.1 提升机构滚珠丝杠副的计算及选型 ................................. 10 4.2 伸缩机构滚珠丝杠副的计算及选型 ................................. 13
3.1 手部设计基本要求 ................................................. 4 3.2 手部手部力学分析 ................................................. 5 3.3 夹紧力与驱动力计算 ............................................... 5 3.4 手爪夹持范围计算 ................................................. 7 3.5 手爪夹持精度的计算 ............................................... 8
2.1 机械手组成 ..................................................... 2 2.2 机械手的规格参数 .............................................. 10
3 机械手手部设计计算 ......................................... 4
圆柱坐标型三自由度机械手设计及其控制
2
2 机械手总体设计方案
2.1 机械手的组成
工业机械手由执行机构、驱动机构和控制机构三部分组成。
2.1.1 执行机构 (1)手部 即直接与工件接触的部分,一般是回转型或平移型,(多为回转型,因其
结构简单),手部多为二指(也由多指),根据需要分为外抓式和内抓式两种,也可以用 负压式或真空式的空气吸盘和电磁吸盘。
关键词:机械手,设计,手部,手腕,手臂,机身,结构
圆柱坐标型三自由度机械手设计及其控制
II
Abstract
Robot arm to mimic certain actions of staff and functions, to capture a fixed procedure, carrying objects or operating tools, automation equipment. It can replace human labor in order to achieve the heavy mechanization and automation of production, can operate in hazardous environments to protect the personal safety, which is widely used in machine building, metallurgy, electronics, light industry and nuclear power sectors.Manipulator mainly by hand, sports bodies and the control system has three major components. Task of hand is holding the workpiece of the components, according to grasping objects by shape, size, weight, material and operational requirements of the various structural forms, such as clamp type, care support and the adsorption type, etc. . Sports organizations to accomplish a variety of hand rotation, move, or complex movement to achieve the required action to change the location of objects by grasping and posture. Sports organizations lifting, stretching and rotating the independence movement, is known as freedom manipulator. Crawl space to an arbitrary position and orientation of objects, the need for six degrees of freedom. Freedom is the mechanical design of the key parameters of hand. More freedom, greater flexibility of the manipulator, the more wide versatility。
目前国内机械手的保有量在4000台左右,并将以每年800~1000台左右的速度快速 增长。2005年底,我国工业机械手实际安装量为11557台,比2004年底安装量的7096台, 增长了63%。增长慢于2004年。2006年底,我国工业机械手实际安装量为17327台,增长 47%。2007年底,实际安装量为23900台,增长31%,平均增长45%以上。
1.1 国内生产量 ...................................................... 1 1.2 国内机械手区域市场分析 .......................................... 1
2 机械手总体设计方案 ......................................... 2
6 电机的计算和选型 .......................................... 21
6.1 提升步进电机的计算及选型 ....................................... 21 6.2 伸缩步进电机的计算与选型 ....................................... 25 6.3 蜗轮蜗杆电机的计算及选型 ....................................... 28
圆柱坐标型三自由度机械手设计及其控制
I
摘要
本设计中机械手可模仿人的动作功能,用以按固定程序抓取、搬运物件或操作工具 的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境 下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。 机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件的部件, 根据被抓持物件的形状、尺寸、重量、材料和作业要求设计为夹持型。运动机构,使手 部完成各种转动、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。 运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中 任意位置和方位的物体,需有 3 个自由度。
1.2 国内机械手区域市场分析
虽然目前国内生产工业机械手的企业并不多,很多产品的生产技术还主要依靠进 口,高科技的技术主要还掌握在国际龙头厂商手里。我国本土企业生产的机械手产品还 主要流通在中低端市场,因此决定了很多本土生产企业在争夺市场时主要还是采取价格 战。随着技术的进步,日臻成熟,会有更多的厂商加入此行业。我国目前比较大的生产 企业有上海 ABB 工程有限公司、沈阳新松机器人自动化股份有限公司、柯马(上海)汽 车设备有限公司、青岛欧地希机电(青岛)有限公司等。
5 蜗轮蜗杆传动的设计计算 .................................... 17
5.1 面接触疲劳强度设计 ............................................. 17 5.2 蜗轮蜗杆的主要参数和几何尺寸设计............................... 18 5.3 齿根弯曲疲劳强度的校核......................................... 16 5.4 精度等级公差和表面粗糙度的确定................................. 20
8 机械手 PLC 控制系统设计 .................... 错误!未定义书签。
7.1 接近开关的工作原理及选型 ...................................... 31 7.2 限位开关的工作原理及选型 ...................... 错误!未定义书签。 7.3 系统的结构功能和总体设计方案 ................................... 31 7.4 PLC 的选型及 PLC 外部接线图设计 .................................. 32 7.5 PLC 控制系统的软件设计 .......................... 错误!未定义书签。
结 论 ..................................................... 35