高一数学函数综合练习单元练习题
高一数学函数单元测试题及答案

高一数学函数单元测试题及答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--单元测试题一.填空题(4*14,时间60分钟)1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为||)(x x x f y x ==→,其中{},)(|,,x f y y P B y A x ==∈∈则=⋂)(P C B U _________________。
2、已知1x 是方程3lg =+x x 的根,2x 是方程310=+x x 的根,则21x x +值为______________。
3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1)(xx f =则当2-<x 时=)(x f ________________。
4、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图所示),则方程()0f x =在[1,4]上的根是x =______________。
5、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,______________。
6、从甲城市到乙城市m 分钟的电话费由函数)47][43(06.1)(+⨯=m m f 给出,其中0>m ,][m 表示不大于m 的最大整数(如3]1,3[,3]9.3[,3]3[===),则从甲城市到乙城市8.5分钟的电话费为______________。
7、函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。
8、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。
9、若2)5(12-=-x f x ,则=)125(f __________ 。
高一数学函数单元测试题

高一数学函数单元测试题一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、mm nna a a ÷= B 、n m n m a a a ⋅=⋅ C 、()nm m n a a += D 、01n n a a -÷= 2、已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3、.若集合M={y|y=2—x }, P={y|y=1x -}, M ∩P= ( )A .{y|y>1}B .{y|y ≥1}C .{y|y>0 }D .{y|y ≥0} 4、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低31,则现在价格为8100元的计算机经 年后降为2400元. ( )A .14B .15C .16D .175、函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞6、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a <<8、有以下四个结论 ○1 l g(l g10)=0 ○2 l g(l ne)=0 ○3若10=l gx,则x=10 ○4 若e=l nx,则x=e 2, 其中正确的是 ( ) A.○1○3 B.○2○4 C.○1○2 D. ○3○4 9、已知函数f(x)=2x ,则f(1-x)的图象为 ( )ABCD10、已知f(x)是偶函数,它在[0,+∞)上是减函数,若)1()(lg f x f >,则x 的取值范围是( )A. )1,101(B.),1()101,0(+∞⋃C.)10,101( D.(0,1)∪(10,+∞) 11、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个 ( ) A.新加坡(270万) B.香港(560万) C.瑞士(700万) D.上海(1200万) 12、若函数()l o g (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A B C 、14 D 、12二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13、()0.7522310.25816--⎛⎫+- ⎪⎝⎭-lg25-2lg2=___________ ____;14、1log 32<a (a>0且a ≠1),a 的取值范围为 ;15、已知函数f(x)=log 2(x-2)的值域是[1,log 214],那么函数f(x)的定义域是 ; 16、设0≤x ≤2,则函数5234)(21+∙-=-x x x f 的最大值是________,最小值是______.三、解答题:(本题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤.) 17、(12分)已知f(x)=log a x1x 1-+ (a>0, 且a ≠1)(1) 求f(x)的定义域(2) 求使 f(x)<0的x 的取值范围.18. (12分)某电器公司生产A 型电脑,1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备与加强管理.使生产成本逐年降低.到1997年,尽管A 型电脑出厂价是1993年的80%,但却实现了50%纯利润的高效益. (1) 求1997年每台A 型电脑的生产成本;(2) 以1993年的生产成本为基数,求成1993年至1997年生产成本平均每年降低的百分数(精确度0.01以下数据可供参考:)449.26,236.25==19、(12分)若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=-⎪⎝⎭(1)求()1f 的值; (2)若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.20.(14分)已知函数f(x 2-3)=l g 6x x 22-(1) 求f(x)表达式及定义域 ;(2)判断函数f(x)的奇偶性.21.(选做题)函数f(x)=log a(x-3),当点P(x,y)是函数y=f(x)图象上的点时,Q(x-2,-y)是函数y=g(x)图象上的点.(1)写出函数y=g(x)的解析式.(2)若f(x)>g(x),求x的取值范围.。
(word完整版)高一数学函数经典习题及答案

函 数 练 习 题班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
综合题:高一数学函数经典习题及答案

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学习题函数的综合运用

高一数学习题函数的综合运用在高一的数学学习中,函数是一个重要的概念和工具。
函数的综合运用则是展示学生对函数知识的掌握程度和应用能力的重要环节。
本文将通过几道具体的数学习题,展示高一学生如何运用函数进行综合问题求解。
1. 题目一:小明正在规划一个植物园,园中有两片草地A和B,其中草地A的面积是草地B的两倍。
小明想在这两片草地上分别种植玫瑰花和向日葵,使得两种花的总数量相等。
已知玫瑰花每平方米需要5株,向日葵每平方米需要3株。
请问小明应该在草地A和草地B分别种植多少面积的玫瑰花和向日葵,才能满足总数量相等的要求?解析:设草地A的面积为x平方米,则草地B的面积为2x平方米。
根据题意,可得到以下两个等式:5x = 3 * 2x接下来,我们解方程组:5x = 6x6x - 5x = 0x = 0根据解出的x值,我们可以得知草地A的面积为0平方米,草地B 的面积为0平方米。
因此,无法满足总数量相等的要求。
2. 题目二:某超市在一次特价促销中,将原价为100元的商品打折出售。
打折后的价格与原价之间的关系如下:当购买数量小于等于5件时,每件商品打8折;当购买数量超过5件时,每件商品打7折。
若小明购买了x件商品,问他所购商品的总金额f(x)与x的函数关系是什么?解析:当购买数量小于等于5件时,每件商品打8折,即折扣后价格为100 * 0.8 = 80元。
当购买数量超过5件时,每件商品打7折,即折扣后价格为100 * 0.7 = 70元。
根据以上分析,可以列出下面的函数关系式:f(x) ={80x, 当 x <= 5,70x, 当 x > 5}通过这个函数关系式,我们可以计算出小明购买任意数量的商品后的总金额。
3. 题目三:某公司的年度利润(单位:亿元)与销售额(单位:亿元)之间的关系如下:当销售额不超过10亿元时,利润为销售额的5%;当销售额超过10亿元但不超过50亿元时,利润为销售额的8%;当销售额超过50亿元时,利润为销售额的10%。
高一数学函数习题(练习题以及答案

一、求函数的定义域1、求下列函数的定义域:⑴221533x x y x ⑵211()1x y x ⑶021(21)4111yx x x 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ __;函数f x ()2的定义域为________;3、若函数(1)f x 的定义域为[]23,,则函数(21)f x 的定义域是;函数1(2)f x 的定义域为。
4、知函数f x ()的定义域为[1,1],且函数()()()F x f x m f x m 的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x ()x R ⑵223y x x [1,2]x⑶311x y x ⑷311x y x (5)x ⑸262xy x⑹225941x x y x +⑺31y x x ⑻2y x x ⑼245y x x ⑽2445y x x ⑾12y x x6、已知函数222()1x axb f x x 的值域为[1,3],求,a b 的值。
三、求函数的解析式1、已知函数2(1)4f x x x ,求函数()f x ,(21)f x 的解析式。
2、已知()f x 是二次函数,且2(1)(1)24f x f x x x ,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x ,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x 时,3()(1)f x x x ,则当(,0)x 时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x xR x 且,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x ,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x ⑵223y x x ⑶261y x x 7、函数()f x 在[0,)上是单调递减函数,则2(1)f x 的单调递增区间是8、函数236x y x 的递减区间是;函数236x y x 的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为()⑴3)5)(3(1x x x y ,52x y ;⑵111x x y ,)1)(1(2x x y ;⑶x x f )(,2)(xx g ;⑷x x f )(,33()g x x ;⑸21)52()(x x f ,52)(2x x f 。
高一函数练习题及答案

高一函数练习题及答案高一函数练习题及答案高一阶段是学习数学的重要时期,其中函数是一个重要的内容。
函数作为数学的一个基础概念,对于学生来说是一个相对抽象的概念。
因此,通过练习题的方式来巩固和提高对函数的理解和运用能力是非常必要的。
本文将为大家提供一些高一函数练习题及答案,希望能够帮助大家更好地掌握函数的知识。
一、选择题1. 设函数f(x) = 2x + 3,那么f(4)的值是多少?A. 7B. 11C. 9D. 8答案:B. 11解析:将x = 4代入函数f(x) = 2x + 3中,得到f(4) = 2 × 4 + 3 = 8 + 3 = 11。
2. 已知函数g(x) = x^2 + 3x - 2,求g(-1)的值是多少?A. -6B. -2C. 2D. 6答案:C. 2解析:将x = -1代入函数g(x) = x^2 + 3x - 2中,得到g(-1) = (-1)^2 + 3 × (-1) - 2 = 1 - 3 - 2 = -4。
3. 函数h(x) = 3x^2 - 2x + 1,求h(2)的值是多少?A. 9B. 11C. 15D. 19答案:A. 9解析:将x = 2代入函数h(x) = 3x^2 - 2x + 1中,得到h(2) = 3 × 2^2 - 2 × 2 + 1 = 3 × 4 - 4 + 1 = 12 - 4 + 1 = 9。
二、填空题1. 设函数f(x) = 2x + 3,求f(-1)的值是多少?答案:1解析:将x = -1代入函数f(x) = 2x + 3中,得到f(-1) = 2 × (-1) + 3 = -2 + 3 = 1。
2. 已知函数g(x) = x^2 + 3x - 2,求g(0)的值是多少?答案:-2解析:将x = 0代入函数g(x) = x^2 + 3x - 2中,得到g(0) = 0^2 + 3 × 0 - 2 = 0 - 2 = -2。
高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学系列练习 (函数综合题)
一、选择题:
1、下列四组函数中表示同一函数的是 ( A )
A f (x)=| x | 与g(x)=2x
B y=x 0 与y=1
C y=x+1与y=1
12--x x D y=x -1与y=122+-x x 2、函数y=)12(log 2
1-x 的定义域为
( C )
A .(
21,+∞) B .[1,+∞) C .( 2
1,1] D .(-∞,1) 3、已知f (x 1)=11+x ,则f (x)的解析式为 ( C ) …
A f(x) =x +11
B f (x)=x x +1
C f (x)=x
x +1 D f (x)=1+x 4、函数y=x 2-6x+10在区间上(2,4)上 ( D )
A 单调递增
B 单调递减
C 先递增后递减
D 先递减后递增
5、若24x =-2x ,则实数x 的取值范围是 ( D )
A x>0
B x<0
C x ≥0
D x ≤0
6、函数y=1
2-+x x 的定义域为 ( D ) A x ≠1 B x ≥-2 C -2<x<1或x>1 D -2≤x<1或x>1
7、若y=(1-a)x 在R 上是减函数,则a 的取值范围是 ( B )
,
A (1,+∞)
B (0,1)
C (-∞,1)
D (-1,1)
8、函数f (x)=x
x 2)21(2
+ ( B ) A 是奇函数 B 是偶函数 C 非奇非偶 D 既奇既偶
9、指数式b 3=a (b>0,且b ≠1)所对应的对数式是 ( D )
A log 3a=b
B log 3b=a
C log a b=3
D log b a=3
10、下列等式一定成立的是
( D )
A .2331a a ⋅=a
B .2121a a
⋅-=0 C .(a 3)2=a 9 D .613121a a a =÷ 11、函数y=log 2
1|x|的图象特点为 ( B ) ·
A 关于x 轴对称
B 关于y 轴对称
C 关于原点对称
D 关于直线y=x 对称
12、已知ab>0,下面四个等式中,正确命题的个数为 ( B )
①lg (ab )=lga+lgb ②lg b a =lga -lgb ③b
a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .3
二、填空题:
13、已知f(x)=⎩⎨⎧>+-≤+)
1(3)1(1x x x x ,则f(f(25))=_______3______; 14、若f(x)的定义域为[-1,4],则函数f(x+2)的定义域为_____[-3,2]_______;
"
15.若11)1(2-=-x x f ,则)(x f = x
x 212+ . 16.若函数2)(+=
x x x f ,则)31(1-f = 1 . 17.函数4)1lg()(2-+-=x x x f ,则函数定义域为 [2,+∞) .
18.设函数1)1(log )(+-=x x f a ,则它的反函数图像过定点 (1,2) .
19.函数32-+=x x y 的值域为 [3,+∞) .
20.函数)82(log 2
31--=x x y 的单调递减区间为 (4,+∞) .
三、解答题:
21、求证:y=kx+b(k>0)是R 上的增函数.
…
证明:在R 上任取x 1<x 2,x 1-x 2<0,则
f(x 1)-f(x 2)=(kx 1+b)-(kx 2+b)=k(x 1-x 2)<0
即f(x 1)<f(x 2),所以y=kx+b(k>0)是R 上的增函数.
21、已知二次函数y=f(x)满足条件f(0)=1,f(x+1)-f(x)=2x,求f(x)的表达式.
解:设二次函数f(x)=ax 2+bx+c(a ≠0),
由f (0)=1得,a02+b0+c=1,即c=1;
由f(x+1)-f(x)=2x 得,a(x+1)2+b(x+1)+c -(ax 2+bx+c)=2x,整理得:2ax+a+b=2x
~
即⎩⎨⎧=+=0
22b a a 得a=1,b=-1,c=1
所以:f(x)=x 2-x+1.
22、试判断函数x
x x f 2)(+=在[2,+∞)上的单调性.
解:设+∞<<≤212x x ,则有
=-)()(21x f x f )2(22211x x x x +-+=)22()(2
121x x x x -+- =)22(
)(211221x x x x x x ⋅-+-=)21)((2121x x x x ⋅-- =)2)(
(212121x x x x x x ⋅--. ? +∞<<≤212x x ,021<-x x 且0221>-x x ,021>x x ,
所以0)()(21<-x f x f ,即)()(21x f x f <.
所以函数)(x f y =在区间[2,+∞)上单调递增.
23、定义在(-1,1)上的函数f(x)是增函数,且满足f(a -1)<f(3a),求a 的取值范围.
解:由题意得,⎪⎩⎪⎨⎧<-<<-<-<-a a a a 31131111即⎪⎪⎪⎩
⎪⎪⎪⎨⎧-><<-<<21313120a a a 所以0<a<31
24、给出函数2()log (0,1)2
a x f x a a x +=>≠-. (1) :
(2) 求函数的定义域;
(3) 判断函数的奇偶性;
(4) 求)(1x f -的解析式.
解:(1)由题意,02
2>-+x x 解得:22>-<x x 或, 所以,函数定义域为}22|{>-<x x x 或.
(2)由(1)可知定义域关于原点对称,则
22log )(--+-=-x x x f a =22log +-x x a =1)2
2(log --+x x a =22log -+-x x a =)(x f -.
所以函数)(x f y =为奇函数.
(3)设22log -+=x x y a ,有y a x x =-+2
2,解得122-+=y y a a x , 所以122)(1
-+=-x x a a x f ,{|1,}x x x x ∈≠∈R .。