二项式定理优质课ppt课件
合集下载
二项式定理ppt课件

1
答案:10
课堂小结
1.二项式定理的概念、特点,用二项式定理解决整除问题.
2.通项的应用.利用通项求二项展开式的某一项,特定项和特定项的系数.
3.简单了解二项式系数.
点击进入
课时作业
(2)解:0.998 =(1-0.002) =1+ ×(-0.002)+ ×(-0.002) +…+ ×(-0.002) .
2
2
由题意知 T3= ×(-0.002) =15×0.002 =0.000 06<0.001,
且第 3 项以后(包括第 3 项)的项的绝对值都远小于 0.001,
探究点一
角度1
通项公式及其应用
求二项展开式中的特定项
[例 1] ( -
10
) 的展开式中,所有的有理项为
.
解析:二项展开式的通项为
-
Tk+1= (- ) .
-
由题意知
令
∈Z,且 0≤k≤10,k∈N.
-
=r(r∈Z),则 10-2k=3r,k=5- r.
n
答案:(-1)n
.
4.已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=
.
解析:x 是(1+kx ) 的展开式的第 5 项,x 的系数为 k =15k .由已知得
4
4
15k <120,即 k <8.又 k 是正整数,故 k=1.
8
答案:1
2 6
8
4
4
课堂探究·素养培育
6
6
答案:10
课堂小结
1.二项式定理的概念、特点,用二项式定理解决整除问题.
2.通项的应用.利用通项求二项展开式的某一项,特定项和特定项的系数.
3.简单了解二项式系数.
点击进入
课时作业
(2)解:0.998 =(1-0.002) =1+ ×(-0.002)+ ×(-0.002) +…+ ×(-0.002) .
2
2
由题意知 T3= ×(-0.002) =15×0.002 =0.000 06<0.001,
且第 3 项以后(包括第 3 项)的项的绝对值都远小于 0.001,
探究点一
角度1
通项公式及其应用
求二项展开式中的特定项
[例 1] ( -
10
) 的展开式中,所有的有理项为
.
解析:二项展开式的通项为
-
Tk+1= (- ) .
-
由题意知
令
∈Z,且 0≤k≤10,k∈N.
-
=r(r∈Z),则 10-2k=3r,k=5- r.
n
答案:(-1)n
.
4.已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=
.
解析:x 是(1+kx ) 的展开式的第 5 项,x 的系数为 k =15k .由已知得
4
4
15k <120,即 k <8.又 k 是正整数,故 k=1.
8
答案:1
2 6
8
4
4
课堂探究·素养培育
6
6
《二项式定理》课件

详细讲解证明二项式定理的思路。
3
关键步骤
介绍证明过程中的理解
通过具体的例子加深对二项式定理的理解。
3 应用场景
介绍二项式定理在实际问题中的应用场景。
2 二项式系数计算
介绍如何计算二项式系数。
拓展应用
单项式展开
讨论二项式定理在单项式展开 中的应用。
多项式展开
讨论二项式定理在多项式展开 中的应用。
《二项式定理》PPT课件
概述
• 二项式定理是数学中的一个重要定理。 • 本节将介绍二项式定理的概念及其历史背景。
公式表达
正式表达式
二项式定理的数学公式形式。
常见的形式
常见形式的二项式定理示例。
组合意义的解释
解释二项式定理中组合的概念。
数学证明
1
数学归纳法的证明
使用数学归纳法证明二项式定理。
2
阐述思路
字母代数式应用
介绍二项式定理在字母代数式 中的应用。
总结
• 介绍二项式定理的重要作用。 • 分享学习的心得体验。 • 推广与应用二项式定理相关的知识。
第十章 第三节 二项式定理 课件(共47张PPT)

赋值法求系数和的应用技巧 (1)“赋值法”对形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子求其展 开式的各项系数之和,常用赋值法,只需令 x=1 即可;对形如(ax+by)n(a, b∈R)的式子求其展开式各项系数之和,只需令 x=y=1 即可. (2)若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)展开式中各项系数之和为 f(1), 偶次项系数之和为 a0+a2+a4+…=f(1)+2f(-1) ,奇次项系数之和为 a1+a3+a5+…=f(1)-2f(-1) .令 x=0,可得 a0=f(0).
令
x=1
代入2x-
1 x
6
=1;
故所有项的系数之和为 1;故选 AC.]
求形如(a+b)n(n∈N*)的展开式中与特定项相关的量 (常数项、参数值、特定项等)的步骤
(1)利用二项式定理写出二项展开式的通项公式 Tr+1=Crn an-rbr,常把字 母和系数分离开来(注意符号不要出错);
(2)根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整 数)先列出相应方程(组)或不等式(组),解出 r;
故选 B.]
3.(x+1x -2)6(x>0)的展开式中含 x3 项的系数为________.
解析:
法一:因为(x+1x -2)6=(
x
-
1 x
)12,所以其展开式的通项公
式为 Tr+1=C1r2 (
x
)12-r(-
1 x
)r=Cr12
(-1)r(
x )12-2r=Cr12 (-1)rx6-r,由 6
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)Ckn an-kbk 是二项展开式的第 k 项.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a+b)n 的展开式中,每一项的二项式系数与 a,b 无关.( ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.( ) 答案: (1)× (2)× (3)√ (4)√
( 人教A版)二项式定理课件 (共25张PPT)

4.x2-21x9 的展开式中,第 4 项的二项式系数是________,第 4 项的系数是________. 解析:Tk+1=Ck9·(x2)9-k·-21xk=-12k·Ck9·x18-3k,当 k=3 时,T4=-123·C39·x9=-221x9, 所以第 4 项的二项式系数为 C39=84,项的系数为-221. 答案:84 -221
课时作业
二项式定理及其相关概念
[自主梳理]
二项式定理
公式(a+b)n= C0nan+C1nan-1b+…+Cknan-kbk+…+Cnnbn , 称为二项式定理
二项式系数 通项
二项式定理的特例
_C_kn_(_k_=__0_,1_,_2_,__…__,__n_)_ Tk+1=Cknan-kbk(k=0,1,…,n) (1+x)n=C0n+C1nx+…+Cknxk+…+Cnnxn
探究一 二项式定理的正用与逆用
[典例 1]
(1)写出2
x+
1 4 x
的展开式;
(2)化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
[解析]
(1)解法一
直接利用二项式定理展开并化简:2
x+ 1x4=C04(2
x)4
1 x
0+C14
(2 x)3 1x1+C24·(2 x)2 1x2+C34(2 x)1 1x3+C44(2 x)0 1x4=16x2+32x+24+8x+x12.
2.在(2 x- 1 )6 的展开式中,求: x
(1)第 3 项的二项式系数及系数; (2)含 x2 的项及项数. 解析:(1)第 3 项的二项式系数为 C26=15,又 T3=C26(2 x)4(- 1x)2=24·C26x, 所以第 3 项的系数为 24C26=240. (2)Tk+1=Ck6(2 x)6-k(- 1x)k=(-1)k26-k·Ck6x3-k,令 3-k=2,得 k=1, 所以含 x2 的项为第 2 项,且 T2=-192x2.
6.3.1二项式定理课件共15张PPT

和 (a b)3 a 3 3a 2b 3ab 2 b3的概括和推广,
它是以多项式的乘法公式为基础,以组合知识为工具,
用不完全归纳法得到的,其证明可用数学归纳法.
(2)对二项式定理的理解和掌握,要从项数、系数、指
数、通项等方面的特征去熟悉他的展开式.通项公式
Tr 1 C a
r
率9%,按复利计算,10年后收回本金和利息。
试问,哪一种投资更有利?这种投资比另一种投资10年后大约
可多得利息多少元?
分析:本金10万元,年利率11%,按单利计算,10年后的本利和是
10×(1+11%×10)=21(万元);
本金10万元,年利率9%,按复利计算,10年后的本利和是10×(1+
9%)10;
x
60 12 1
64 x 192x 240x 160
2 3
x x
x
3
2
0 n
1 n 1
a
b
C
a
C
n
例题讲评
例2: 求 (2 x
解:
1 6
) 的展开式中
x
的展开式的通项:
根据题意,得
因此, 2 的系数是
x
x 的系数。
艾萨克·牛顿 Isaac
Newton (1643—1727) 英国
科学家.他被誉为人类历史上
最伟大的科学家之一.他不仅
是一位物理学家、天文学家,
还是一位伟大的数学家.
牛顿二项式定理
新课引入
某人投资10万元,有两种获利的可能供选择。一种是年
利率11%,按单利计算,10年后收回本金和利息。另一种是年利
1.3.1二项式定理PPT优秀课件

二项式定理: 一般地,对于n N*有
(ab )nC n 0 a n C n 1 a n 1 b C n ka n kb k C n n b n
可用数学归纳法证明
基础训练:展开(p+q)7 解: (pq)7C7 0p7C1 7p6qC7 2p5q2C3 7p4q3 C7 4p3q4C5 7q2q5C7 6pq6C7 7q7
a 3 3 a 2 b 3 a2 bb 3
(a b)4 ? (ab)100? (a b)n ?
(n N )
(a+b)2 = ( a + b ) ( a + b )=C02 a2+C12 ab +C22 b2
选b
=a2+2ab+b2
(a+b)3=( a+b )( a+b )( a+b )
变式训练:若 求 ( 1 2 x ) 5 的 展 开 式 呢 ?
解: ( 1 2 x ) 5 C 5 0 ( 2 x ) 0 C 1 5 ( - 2 x ) 1 C 2 5 ( 2 x ) 2
C 3 5 ( 23 x C 5 ) 4 ( 24 x C ) 5 5 ( 25 x
=C0n an+ C1nan-1b+ C2nan-2b2+ C3nan-3b3+…+Cknan-kbk+…+ Cnn bn
二项式定理: 一般地,对于n N*有
(ab )nC n 0 a n C n 1 a n 1 b C n ka n kb k C n n b n
这个公式表示的定理叫做二项式定理,公式
组合数公式:C n mA A n m m mn(nm 1 ()m (n 1 )2 ()m (2 n )m 11 )
引入:
(a b)2 a22abb2
《二项式定理》(共17张)-完整版PPT课件全文

展开式的第3项是240x
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考: ①展开式中的第3项的系数为多少? ②展开式中的第3项的二项式系数为多少? ③你能直接求展开式的第3项吗?
④你能直接求展开式中 x 2的系数吗?
解:④ Tk1 C6k (2
x)6k ( 1 )k x
(1)k 26k C6k x3k
N*)
①项数: 展开式共有n+1项.
②次数: 各项的次数均为n
字母a的次数按降幂排列,由n递减到0 , 字母b的次数按升幂排列,由0递增到n .
③二项式系数: Cnk (k 0,1,2,, n)
④二项展开式的通项: Tk1 Cnk ankbk
典例剖析
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
N
*
)
(1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk ankbk
思想方法:
(1) 从特殊到一般的数学思维方式.
(2) 类比、等价转换的思想.
巩固型作业: 课本36页习题1.3A组第2,4题
思维拓展型作业
二项式系数Cn0 , Cn1,, Cnk ,, Cnn有何性质?
1) x
C62 (2
x )4 (
1 x
)2
C63
(2
x )3 (
1 x
)3
C64
(2
x )2 (
1 )4 x
C65 (2
x )(
1 x
)5
C66
(
1 )6 x
64x3
192x2
240x
第三节 二项式定理 课件(共36张PPT)

其展开式的第k+1项为Tk+1=Ck4(x2+x)4-kyk,
因为要求x3y2的系数,所以k=2, 所以T3=C24(x2+x)4-2y2=6(x2+x)2y2. 因为(x2+x)2的展开式中x3的系数为2, 所以x3y2的系数是6×2=12.
法二 (x2+x+y)4表示4个因式x2+x+y的乘积,在 这4个因式中,有2个因式选y,其余的2个因式中有一个 选x,剩下的一个选x2,即可得到含x3y2的项,故x3y2的系 数是C24·C12·C11=12.
对于几个多项式和的展开中的特定项(系数)问题, 只需依据二项展开式的通项,从每一项中分别得到特定 的项,再求和即可.
角度 几个多项式积的展开式中特定项(系数)问题 [例4] (1)(2x-3) 1+1x 6 的展开式中剔除常数项后的 各项系数和为( ) A.-73 B.-61 C.-55 D.-63 (2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0, 则正实数a=________. 解析:(1)(2x-3)1+1x6的展开式中所有项的系数和为 (2-3)(1+1)6=-64,(2x-3)1+1x6=
为( )
A.-1
B.1
C.32
解析:由题意可得CC6162aa54bb=2=-13158,,
D.64
解得ab==1-,3,或ab==-3. 1,则(ax+b)6=(x-3)6, 令x=1得展开式中所有项的系数和为(-2)6=64,故选D. 答案:D
2.(2020·包头模拟)已知(2x-1)5=a5x5+a4x4+a3x3+
[例2] (1)若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+ a5x5,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
《观书有感》
朱熹,南宋著名理学家.
半亩方塘一鉴开, 天光云影共徘徊. 问渠那得清如许, 为有源头活水来.
2
探究1 推导 (a b)2的展开式.
(a b)2 (a b)(a b)
aaabbabb a2 2ab b2
问: 合并同类项前的展开式中,共有几项? 能利用分步乘法计数原理解释一下吗? 每项的次数为几次?
6
探究4:请分析 (a b)n的展开过程
(a b)n (a b)(ab)(ab)
n
项的形式: a n a n1b L a nk bk L bn
系数:
Cn0 Cn1
C
k n
Cnn
请利用组合的知识解释下 为什么a nk bk的系
数是
C
k n
呢?
7
二项式定理: 一般地,对于nN*,有:
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
直接利用二项式定理
(2) 求二项展开式的第几项及其系数、二项式系数。
(3) 求二项展开式中含x的几次方的项的问题。
利用通项
14
1、巩固型作业: 课本36页 习题1.3 A组 1、3、4(1)(2)5
2、思维拓展型作业:(查阅相关资料)
(1)查阅有关杨辉一生的主要成就。
(2)探究二项式系数
Cn0,Cn1,Cn2 , ,Cnn 有何性质.
练习:(2 x)5
C50 25 C51 24 x C52 23 x2 C53 22 x3 C54 2x4 C55 x5 32 80x 80x2 40x3 10x4 x5
问:展开式中第四项为?第四项的系数为?
第四项的二项式系数为?
那么对于 (2 x)5 的展开式呢?
析:(2 x)5 2 (x)5 11
C32
C33
有几项? 每项的次数
分析a2b (a b)(a b)(a b)
为几次? 展开式项的
(a b)(a b)(a b)
C31
排列方式如 何?(按照a
(a b)(a b)(a b)
的降次幂还 是升次幂排
列的?)
展开式:
(a
b)3
C30a 3
C31a 2b
C
2 3
ab2
C533 b 3
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
把各项的系数 Cnk , (k 0,1,2,3 n)叫做二项式系数
即(1)二项式系数: Cnk , (k 0,1,2,3 n)
式中 Cnk a nkbk 叫做二项展开式的通项, 为展开式的第k+1项,用 Tk 1 表示
3
探究1 推导 (a b)2的展开式.
(a b)2 (a b)(a b)
aaabbabb
a2 2ab b2
项的形式: a 2
ab
问:合并同类项后的展 开式中,共有几项?
b2 每项的次数为几次?
项的系数: C20
C21
C2 展开式项的排列方式如 2 何?(按照a的降次幂
分析ab (a b)(a b) (a b)(a b)
探究3 仿照上述过程,推导 (a b)4的展开式.
(a b)2 C20a2 C21ab C22b2 (a b)3 C30a3 C31a2b C32ab2 C33b3 (a b)4 C40a4 C41a3b C42a2b2 C43ab3 C44b4
(a b)n ?
杨辉,南宋时期杰
出的数学家和数学
教育家
15
典例导航
例1 在(2x 1 )5的展开式中
x
(1)请写出展开式的通项。 (2)求展开式的第4项。 (3)请指出展开式的第4项的系数,二项式系数。
(4)求展开式中含 x3 的项。
注意:区别二项式系数与项的系数字系数的积 12
巩固练习
在(1 2x)7的展开式中
求第4项,并指出它的二项式系数和系数是 什么?
13
课堂小结
1.二项式定理:
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
(1)二项式系数: Cnk , (k 0,1,2,3 n)
(2)二项展开式的通项: Tk 1 Cnk a nkbk
2.典型例题
方法
(1) 求形如 (a 的b)展n 开式问题。
这个公式叫做二项式定理,很显然二项式定理是研 究形如 (a b的)n展开式问题。
二项展开式的结构特征:
①项数: 共有n+1项
②次数: 各项的次数都等于n,
③展开式中项的排列方式如何?
字母a按降幂排列,次数由n递减到0 ,
字母b按升幂排列,次数由0递增到n .
8
二项式定理: 一般地,对于nN*,有:
即(2)二项展开式的通项:
Tk 1 Cnk a nk bk
9
二项式定理,又称牛顿二项式定理, 由艾萨克·牛顿于1664-1665年间提 出. 二项式定理在组合理论、开高次方、 高阶等差数列求和,以及差分法中 都有广泛的应用.
10
定理应用, 初步体验
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
还是升次幂排列的?)
C21
展开式:
(a b)2 C20a2 C21ab C22b2 4
探究2 推导 (a b)3的展开式.
(a b)3 (a b)(a b)(a b) 请用分步乘法计数原理
解释一下?问:合并同
项的形式:a 3
a2b
ab2
b 3 类项后的展 开式中,共
项的系数:C30 C31
《观书有感》
朱熹,南宋著名理学家.
半亩方塘一鉴开, 天光云影共徘徊. 问渠那得清如许, 为有源头活水来.
2
探究1 推导 (a b)2的展开式.
(a b)2 (a b)(a b)
aaabbabb a2 2ab b2
问: 合并同类项前的展开式中,共有几项? 能利用分步乘法计数原理解释一下吗? 每项的次数为几次?
6
探究4:请分析 (a b)n的展开过程
(a b)n (a b)(ab)(ab)
n
项的形式: a n a n1b L a nk bk L bn
系数:
Cn0 Cn1
C
k n
Cnn
请利用组合的知识解释下 为什么a nk bk的系
数是
C
k n
呢?
7
二项式定理: 一般地,对于nN*,有:
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
直接利用二项式定理
(2) 求二项展开式的第几项及其系数、二项式系数。
(3) 求二项展开式中含x的几次方的项的问题。
利用通项
14
1、巩固型作业: 课本36页 习题1.3 A组 1、3、4(1)(2)5
2、思维拓展型作业:(查阅相关资料)
(1)查阅有关杨辉一生的主要成就。
(2)探究二项式系数
Cn0,Cn1,Cn2 , ,Cnn 有何性质.
练习:(2 x)5
C50 25 C51 24 x C52 23 x2 C53 22 x3 C54 2x4 C55 x5 32 80x 80x2 40x3 10x4 x5
问:展开式中第四项为?第四项的系数为?
第四项的二项式系数为?
那么对于 (2 x)5 的展开式呢?
析:(2 x)5 2 (x)5 11
C32
C33
有几项? 每项的次数
分析a2b (a b)(a b)(a b)
为几次? 展开式项的
(a b)(a b)(a b)
C31
排列方式如 何?(按照a
(a b)(a b)(a b)
的降次幂还 是升次幂排
列的?)
展开式:
(a
b)3
C30a 3
C31a 2b
C
2 3
ab2
C533 b 3
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
把各项的系数 Cnk , (k 0,1,2,3 n)叫做二项式系数
即(1)二项式系数: Cnk , (k 0,1,2,3 n)
式中 Cnk a nkbk 叫做二项展开式的通项, 为展开式的第k+1项,用 Tk 1 表示
3
探究1 推导 (a b)2的展开式.
(a b)2 (a b)(a b)
aaabbabb
a2 2ab b2
项的形式: a 2
ab
问:合并同类项后的展 开式中,共有几项?
b2 每项的次数为几次?
项的系数: C20
C21
C2 展开式项的排列方式如 2 何?(按照a的降次幂
分析ab (a b)(a b) (a b)(a b)
探究3 仿照上述过程,推导 (a b)4的展开式.
(a b)2 C20a2 C21ab C22b2 (a b)3 C30a3 C31a2b C32ab2 C33b3 (a b)4 C40a4 C41a3b C42a2b2 C43ab3 C44b4
(a b)n ?
杨辉,南宋时期杰
出的数学家和数学
教育家
15
典例导航
例1 在(2x 1 )5的展开式中
x
(1)请写出展开式的通项。 (2)求展开式的第4项。 (3)请指出展开式的第4项的系数,二项式系数。
(4)求展开式中含 x3 的项。
注意:区别二项式系数与项的系数字系数的积 12
巩固练习
在(1 2x)7的展开式中
求第4项,并指出它的二项式系数和系数是 什么?
13
课堂小结
1.二项式定理:
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
(1)二项式系数: Cnk , (k 0,1,2,3 n)
(2)二项展开式的通项: Tk 1 Cnk a nkbk
2.典型例题
方法
(1) 求形如 (a 的b)展n 开式问题。
这个公式叫做二项式定理,很显然二项式定理是研 究形如 (a b的)n展开式问题。
二项展开式的结构特征:
①项数: 共有n+1项
②次数: 各项的次数都等于n,
③展开式中项的排列方式如何?
字母a按降幂排列,次数由n递减到0 ,
字母b按升幂排列,次数由0递增到n .
8
二项式定理: 一般地,对于nN*,有:
即(2)二项展开式的通项:
Tk 1 Cnk a nk bk
9
二项式定理,又称牛顿二项式定理, 由艾萨克·牛顿于1664-1665年间提 出. 二项式定理在组合理论、开高次方、 高阶等差数列求和,以及差分法中 都有广泛的应用.
10
定理应用, 初步体验
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn
还是升次幂排列的?)
C21
展开式:
(a b)2 C20a2 C21ab C22b2 4
探究2 推导 (a b)3的展开式.
(a b)3 (a b)(a b)(a b) 请用分步乘法计数原理
解释一下?问:合并同
项的形式:a 3
a2b
ab2
b 3 类项后的展 开式中,共
项的系数:C30 C31