数列求和及求通项方法总结 (1)
数列求和与求通项公式方法总结

数列求和与求通项公式方法总结数列是数学中的一种重要概念,它是由一列按照一定规律排列的数字所组成的序列。
在数列中,求和与求通项公式是两个重要的问题,本文将对这两个问题的方法进行总结。
首先,我们来讨论数列的求和问题。
数列的求和是指对一个给定的数列中的所有元素进行求和的操作。
数列求和的方法主要有以下几种。
1.等差数列求和公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等差数列求和的公式为Sn=[(a1+an)n]/2,其中an为末项。
这个公式适用于等差数列的求和问题,可以更快地求得数列的和。
2.等差数列求和差法:对于一个等差数列,当项数为n时,可以通过求和的差法Sn=(a1+an)(n/2)来求得数列的和。
这个方法适用于项数较多且公差较小的等差数列。
3.等比数列求和公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
等比数列求和的公式为Sn=a1*(1-r^n)/(1-r),其中r不等于1、这个公式适用于等比数列的求和问题,可以轻松地求得数列的和。
4.等比数列求和减法:对于一个等比数列,当公比r满足,r,<1时,可以通过求和的减法Sn=a1/(1-r)来求得数列的和。
这个方法适用于公比绝对值小于1的等比数列。
其次,我们来讨论数列的求通项公式问题。
数列的通项公式是指能够根据数列的位置n来快速计算出数列中相应位置上的数值的公式。
数列求通项公式的方法主要有以下几种。
1.等差数列通项公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
2.等比数列通项公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
数列求和及求通项方法总结

数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。
数列求通项的方法总结

数列求通项的方法总结按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。
为大家总结数列求通项的方法,一起来看看吧!一、累差法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2)…f(n-1)∵f(n)可求积∴an=a1f(1)f(2)…f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an解:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n三,构造法1、递推关系式为an+1=pan+q(p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an 解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3 故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an解:在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy=-q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy=-1/3 可取x=1,y=-1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](nN*)例题1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2时,an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.解:当n=1时,an=sn=2当n≥2时,an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2时,an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an解:即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1=-3×2n-12、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(xx全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即ak=k+1则ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1。
数列求和各种方法总结归纳

数列求和各种方法总结归纳数列求和是数学中常见的问题之一,涉及到很多的方法和技巧。
下面我将对几种常见的数列求和方法进行总结归纳。
一、等差数列求和等差数列是指数列中相邻两项的差都相等的数列。
我们可以通过以下几种方法来求等差数列的和:1. 公式法:对于等差数列求和的最常用的方法是通过公式来求和。
等差数列的和可以表示为:S = (a1 + an) * n / 2,其中a1为首项,an为末项,n为项数。
2.差分法:我们可以通过差分法来求等差数列的和。
即将数列中相邻两项的差列示出来,并求和,这样就变成了一个等差数列求和的问题。
例如对于数列1,3,5,7,9,差分后得到的数列是2,2,2,2,再求和得到83.数学归纳法:我们可以通过数学归纳法来求等差数列的和。
首先假设等差数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。
例如对于数列1,3,5,7,9,我们可以假设Sn=1+3+5+7+9,然后通过归纳可以得到Sn+1=1+3+5+7+9+11=Sn+a(n+1),其中a(n+1)为数列的第n+1项,最终求得Sn=n^2二、等比数列求和等比数列是指数列中相邻两项的比相等的数列。
我们可以通过以下几种方法来求等比数列的和:1.公式法:对于等比数列求和的最常用的方法是通过公式来求和。
等比数列的和可以表示为:S=a*(1-r^n)/(1-r),其中a为首项,r为公比,n为项数。
需要注意的是,当r小于1时,求和公式仍然成立。
当r等于1时,等比数列的和为a*n。
2.求导法:我们可以通过对等比数列求导来求和。
对等比数列进行求导得到的结果是一个等差数列,然后再对等差数列进行求和就可以求得等比数列的和。
3.数学归纳法:和等差数列一样,我们也可以通过数学归纳法来求等比数列的和。
首先假设等比数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。
三、递推数列求和递推数列是指数列中每一项都是由前面一项或几项推出来的。
数列求和方法汇总

数列求和方法汇总数列求和是数列中各项数值的总和。
在数学中,数列求和是基本的概念之一,有许多不同的方法可以用于解决数列求和问题。
我将在以下几个方面对数列求和的方法进行归纳总结:等差数列求和、等比数列求和、调和数列求和、斐波那契数列求和以及其他常见数列求和方法。
一、等差数列求和:等差数列是指数列中每一项与前一项的差值都相等的数列。
等差数列的求和有以下几种方法:1. 公式法:等差数列的求和可以使用求和公式Sn=n(a1+an)/2,其中Sn表示数列的和,n表示数列中项数,a1表示数列的首项,an表示数列的末项。
这个公式可以直接应用于已知首项、末项和项数的情况。
2.累加法:如果项数较少,可以直接将各项相加求和,这种方法适用于求和数列项数较少的情况。
3.差分法:等差数列的求和也可以通过差分法来解决。
差分法的基本思想是利用数列的递推关系进行求和。
通过计算相邻两项的差值,然后将这些差值相加,得到数列的和。
二、等比数列求和:等比数列是指数列中每一项与前一项的比值都相等的数列。
等比数列的求和有以下几种方法:1.公式法:等比数列的求和可以使用求和公式Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,n表示数列中项数,a1表示数列的首项,q表示公比。
这个公式可以直接应用于已知首项、公比和项数的情况。
2.累加法:与等差数列类似,如果项数较少,可以直接将各项相加求和,这种方法适用于求和数列项数较少的情况。
3.分组法:对于一些特殊的等比数列,可以将数列拆分为多个子数列,然后分别求和。
通过分组求和可以简化求和过程,得到最终结果。
三、调和数列求和:调和数列是指数列中每一项的倒数构成的数列。
调和数列的求和有以下几种方法:1.公式法:调和数列的求和可以使用求和公式Sn=1/1+1/2+1/3+...+1/n,其中Sn表示数列的和,n表示数列中的项数。
调和数列的求和公式没有一般形式的解,但可以通过近似方法来求和,如泰勒级数展开等。
求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。
数列的通项公式是指能够表示数列中任意一项的公式。
数列的求和是指将数列中所有项相加的过程。
在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。
下面将介绍一些常见的方法。
一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。
通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。
1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。
设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。
通过该递推关系,可以求解等差数列的通项公式和求和。
1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。
设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。
通过该递推关系,可以求解等比数列的通项公式和求和。
1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。
设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。
二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。
例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。
2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。
通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。
2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。
该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。
三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。
对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。
数列求通项公式及求和的方法

数列求通项公式及求和的方法数列是指按照一定规律排列的一组数。
解决数列问题,首先需要找到数列的通项公式,然后可以利用通项公式求出数列的各项,再利用求和公式求出数列的和。
找到数列的通项公式的方法有多种,常见的方法包括等差数列的通项公式和等比数列的通项公式。
一、等差数列的通项公式及求和方法等差数列是指数列中的每一项与它前一项的差值相等的数列。
我们可以通过数列中的两项之间的关系来求出等差数列的通项公式。
设等差数列的第一项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为:aₙ=a₁+(n-1)d。
求等差数列的和,我们可以利用求和公式。
设等差数列的第一项为a₁,公差为d,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=n/2*(a₁+aₙ)。
二、等比数列的通项公式及求和方法等比数列是指数列中的每一项与它前一项的比值相等的数列。
我们可以通过数列中的两项之间的关系来求出等比数列的通项公式。
设等比数列的第一项为a₁,公比为q,第n项为aₙ,则等比数列的通项公式为:aₙ=a₁*q^(n-1)。
求等比数列的和,我们可以利用求和公式。
设等比数列的第一项为a₁,公比为q,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=a₁(q^n-1)/(q-1)。
除了等差数列和等比数列之外,还有其他种类的数列,如等差数列与等比数列交替出现的数列、斐波那契数列等。
这些数列有着特定的规律,可以通过观察数列中的数字之间的关系来确定其通项公式和求和公式。
在实际应用中,数列的求通项公式和求和公式可以帮助我们计算数列的任意项和总和,进而解决与数列相关的问题。
在数学、物理、经济等领域中,数列经常被运用到,掌握数列的通项公式和求和公式对于解决实际问题非常重要。
总结起来,数列问题的解决方法主要包括找到数列的通项公式和求和公式。
通过运用这些公式,我们可以计算数列的任意项和总和,进而解决与数列相关的问题。
而在确定通项公式和求和公式时,我们可以通过观察数列中的数字之间的关系来推导,常见的数列类型包括等差数列、等比数列等。
求数列通项的方法总结

求数列通项的方法总结
数列通项是指数列中任意一项与该数列的序号之间的关系。
求解数列
通项的方法主要有以下几种:
1. 直接法:根据数列中的一些已知条件和特点,直接推导出通项公式。
例如,对于等差数列an=a1+(n-1)d,其中a1是第一项,d是公差,n
是序号。
如果已知数列的首项和公差,可以直接根据该式求解通项。
2. 递推法:对于一些递推数列,可以通过前一项与后一项之间的关
系来推导出通项公式。
例如,斐波那契数列an=an-1+an-2,其中a1=a2=1,可以通过递推法求解出通项公式。
3. 求和法:对于一些数列,可以通过对数列进行求和,从而得到通
项公式。
例如,等差数列和公式Sn=(a1+an)×n/2,其中Sn是数列前n
项的和,a1是首项,an是最后一项。
通过反过程进行推导,可以求得通项。
4. 差分法:对于一些数列,可以通过数列中相邻项的差值与序号之
间的关系来推导出通项公式。
例如,对于二次数列an=n^2,可以通过差
分法求解出通项公式an=n^2-n+1
5. 代数法:对于一些复杂的数列,可以通过代数运算和方程求解的
方法来得到通项公式。
例如,对于给定的数列an=2^(n-1),可以通过代
数法将an的表达式进行推导。
总之,求解数列通项的方法因数列的性质和特点而异。
不同的数列可
能需要不同的方法来求解,常用的方法包括直接法、递推法、求和法、差
分法和代数法等。
在实际问题中,根据数列的已知条件和特点选择适当的
方法可以更快地求解出数列的通项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和及求通项
一、数列求和的常用方法
1、公式法:利用等差、等比数列的求和公式进行求和
2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1
3
1
2--=
n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项
①形如)(1k n n a n +=
,可裂项成)1
1(1k
n n k a n +-=,列出前n 项求和消去一些项
②形如k
n n a n ++=1,可裂项成)(1
n k n k
a n -+=
,列出前n 项求和消去一些项 例:已知数列1)2()
1)(1(1
1=≥+-=
a n n n a n ,,求前n 项和n S
4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a n
n ,求前n 项和n S
5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)
一、数列求通项公式的常见方法有:
1、关系法
2、累加法
3、累乘法
4、待定系数法
5、逐差法
6、对数变换法
7、倒数变换法 8、换元法 9、数学归纳法
累加法和累乘法最基本求通项公式的方法
求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析
1、关系法:适用于)(n f s n =型
求解过程:⎩⎨
⎧≥-===-)
2()
1(111n s s n s a a n n n
例:已知数列{}n a 的前n 项和为12
++=n n S n ,求数列{}n a 的通项公式
2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列
求解过程:若)(1n f a a n n +=+
则)1(12f a a =- )2(23f a a =-
所有等式两边分别相加得:∑-==-1
1
1)(n k n k f a a 则∑-=+=1
1
1)(n k n
k f a a
例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}
的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列
求解过程:若n n a n f a )(1=+,则
)(1
n f a a n
n =+ ......
累加
则
)1()......2()1(1
2312
-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:
∏-==1
11)(n k n k f a a 则∏-==1
1
1)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n n
n ,其中{}
的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+
①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)
求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=
p b k ,所以有:)1
(11-+=-+
+p b
a p p
b a n n ,这样就构造出了一个以11-+
p b a 为首项,公比为p 的等比数列⎭
⎬⎫
⎩⎨⎧-+1p b a n 。
从而求得{}n a 的通项公式为1
)1(11---+
=-p b p p b a a n n 例:已知数列{}n a 满足递推式)2(121≥+=-n a a n n ,其中{}
的通项公式求n a a ,21= ②形如)1,0,;,,(1≠≠++=+p b p c b p c bn pa a n n 为常数型
③形如)1,0,;,,,(2
1≠≠+++=+p b p d c b p d cn bn pa a n n 为常数型
④形如)1,;0,,;,,,(1≠≠+⋅+=+q p q p m d q p m d q m pa a n
n n 为常数型
⑤形如)1,;0,;,(12≠≠+=++q p q p q p qa pa a n n n 为常数型 5、逐差法:
形如)1,0,,,(1≠≠+=+p b p b p b pa a n n 为常数,可以把n 换成1-n 有b pa a n n +=-1,两
式相减得)(11-+-=-n n n n a a p a a ,这样就构造出了一个以12a a -为首项,公比为p 的等比数列{}n n a a -+1,再运用累加法求出{}n a 的通项公式
例:已知数列{}n a 满足递推式)2(121≥+=-n a a n n ,其中{}
的通项公式求n a a ,21= 6、对数变换法:适用于)1(1≠=+q pa a q
n n 型
求解过程:①当1=p 时,)1(1≠=+q a a q
n n ,等式两边取对数有:)ln()ln(1q
n n a a =+,根据对数的运算法则有:)ln()ln(1n n a q a =+,这样就构造了一个以)ln(1a 为首项,公比为q 的等比数列{})ln(n a 。
从而求得{}n a 的通项公式为1
1
-=n q n a a
例:已知数列{}n a 满足递推式2
1n n a a =+,21=a ,求数列{}n a 的通项公式
②当1≠p 时,)1(1≠=+q pa a q
n n ,等式两边取对数有:)ln()ln(1q
n n pa a =+,根据对数的运算法则有:)ln(ln )ln(1n n a q p a +=+,再运用待定系数法求出通项。
例:已知数列{}n a 满足递推式3
12n n a a =+,21=a ,求数列{}n a 的通项公式
7、倒数变换法:适用于分式关系的递推公式,分子只有一项 例:已知数列{}n a 满足递推式4
21+=
+n n
n a a a ,21=a ,求数列{}n a 的通项公式 8、换元法:适用于含根式的递推公式 例:已知数列{}n a 满足递推式n n n a a a ++=
+12
1
1,21=a ,求数列{}n a 的通项公式 9、数学归纳法:通过首项和递推关系求出数列的前n 项,猜出数列的通项公式,并用数学归纳法加以证明
例:已知数列{}n a 满足递推式9
8
)32()12()1(812
1=++++=+a n n n a a n n ,,求数列{}n a 的通项公式
综合练习:
1、已知数列{}n a 满足递推式)2(121≥+=-n a a n n ,其中154=a
(1)求1a ,2a ,3a ; (2)求数列{}n a 的通项公式; (3)求数列{}n a 的前n 项和n S ;
变式:①若)2(21≥+=-n n a a n n ? ②若)2(22
1≥+=-n n a a n n ?
③若)2(23221≥+⋅+=-n a a n n n ?思考:若)2(23
1≥+=-n n a a n n ?
2、设在数列{}n a 中,21=a ,n
n n a a a 22
21+=+,求数列{}n a 的通项公式;
3、数列{}n a 的前n 项和为n S ,1a =1,)(21*
+∈=N n S a n n
(1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T ;
4、已知
n S 是数列
{}
n a 的前
n 项和,2
3
1=
a ,22=a ,),2(012311*-+∈≥=++-N n n S S S n n n 。
(1)求证{}1-n a 时等比数列; (2)求数列{}n a 的前n 项和n S ;
5、已知11=a ,)2(1
11
≥+=
--n na a a n n n ,求{}n a 的通项公式及前n 项和n S
6、已知数列{}n a 满足31=a ,()21211≥-=--n a a a n n n (1)求2a ,3a ,4a ; (2)求数列{}n a 的通项公式;。