数列求和方法小结

合集下载

数列求和的几种常见方法

数列求和的几种常见方法

数列求和的几种常见方法数列求和是数学中一种常见的问题,主要目的是计算给定数列的所有项的和。

在数学中,有许多不同的方法可以解决这个问题。

下面将介绍几种常见的数列求和方法。

1.数学归纳法:数学归纳法是一种常见的求和方法。

它基于数学归纳法的思想,即从其中一条件的正确性推出下一个条件的正确性。

当我们想计算一个数列的和时,可以尝试使用归纳法进行推导。

首先,我们假设数列的和为S(n),即前n个项的和。

然后,我们找到S(n+1)与S(n)的关系,例如通过观察求和式的规律。

最后,我们使用归纳法证明S(n+1)与S(n)的关系成立,并找到S(n)的表达式。

2.公式求和法:一些数列具有明确的求和公式,通过使用这些公式,可以直接计算数列的和。

例如,等差数列的求和公式为S(n) = n(a1 + an) / 2,其中n为项数,a1为首项,an为末项。

类似地,等比数列的求和公式为S(n) = a1(1 - r^n) / (1-r),其中a1为首项,r为公比。

利用这些公式,我们可以快速计算出数列的和。

3.差分法:差分法是另一种常见的数列求和方法。

它通过求取数列的差分数列来简化求和问题。

差分数列是指将数列中每个相邻的项相减得到的新数列。

通过计算差分数列的和,我们可以得到原始数列的和。

差分法的思路是将原本的复杂数列转化为更加简单的等差或等比数列。

4.数列分解法:数列分解法是一种将复杂的数列拆分为更简单的数列的方法。

通过拆分数列,我们能够找到更简单的求和规律,从而快速计算出数列的和。

数列分解法常用于特殊数列的求和,例如和差数列、间隔数列等。

5.递推法:递推法是通过逐步迭代计算数列的每一项来求和的方法。

我们首先计算出数列的前几个项,然后利用递推关系计算出下一个项,并将其加入到已有的和中。

通过不断迭代,我们可以逐步计算出所有项的和。

递推法常用于递推数列或递归数列的求和。

除了以上提到的求和方法,还有一些其他的方法,如等差数列的部分和、等比数列的部分和、级数求和、积分求和等。

数列求和常见的7种方法

数列求和常见的7种方法

数列求和的根本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法〔合并法求和〕 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个根本方法。

数列是高中代数的重要容,又是学习高等数学的根底. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的根本方法和技巧. 一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 〔利用常用公式〕=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n 〔利用常用公式〕 ∴1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②〔设制错位〕 ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 〔错位相减〕再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 函数〔1〕证明:;〔2〕求的值.解:〔1〕先利用指数的相关性质对函数化简,后证明左边=右边 〔2〕利用第〔1〕小题已经证明的结论可知, 两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假设将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 〔分组〕 当a =1时,2)13(n n n S n -+==2)13(nn + 〔分组求和〕当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n 〔分组求和〕 =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 〔7〕)11(1))((1CAn B An B C C An B An a n +-+-=++=〔8〕n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111〔裂项〕则 11321211+++⋅⋅⋅++++=n n S n 〔裂项求和〕=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n 〔裂项〕∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n 〔裂项求和〕=)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法〔合并法求和〕针对一些特殊的数列,将*些项合并在一起就具有*种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假设103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的构造及特征进展分析,找出数列的通项及其特征,然后再利用数列的通项提醒的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项及特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n 〔找通项及特征〕=])4)(3(1)4)(2(1[8+++++⋅n n n n 〔设制分组〕=)4131(8)4121(4+-+++-+⋅n n n n 〔裂项〕∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n 〔分组、裂项求和〕 =418)4131(4⋅++⋅ =313 提高练习:1.数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c n nn ,求证:数列{}n c 是等差数列; 2.设二次方程n a *2-n a +1*+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122*N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。

数列求和的基本方法和技巧

数列求和的基本方法和技巧

2021/2/2141
[例3] 求和 :S n 1 3 x 5 x 2 7 x 3 ( 2 n 1 ) x n 1
………①
解:由题可知,{(2n1)xn1}的通项是等差数 列{2n-1}的通项与等比数列{ x n1 }的通项之积 设 x n S 1 x 3 x 2 5 x 3 7 x 4 ( 2 n 1 ) x n ……… ②
101010 10 10
10
.
2021/2/2140
第三步,两式进行错位相减得:
1 1S n 0 2 1 9 0 1 9 20 1 9 30 .. . 1 9 . .n0 .n 1 1 9 n 0 1
化简整理得:
Sn
9910n119n1
10
11
.
.
1
• 数列是高中代数的重要内容,又是学习高 等数学的基础. 在高考占有重要的地位. 数 列求和是数列的重要内容之一,除了等差
数列和等比数列有求和公式外,大部分数 列的求和都需要一定的技巧. 下面谈谈数列 求和的基本方法和技巧.
.
2
一.公式法:即 直 接 用 求 和 公 式 , 求 数 列 的 前 n 和 S n
【错位相减法】设 {an}的前n项和为Sn,an=n·2n,则Sn=
解析:∵Sn=1·21+2·22+3·23+…
+n·2n

∴2Sn=
1·22+2·23+3·24+…+(n-1)·2n+n·2n+1②
21-2n
① -②得-Sn=2+22+23+…+2n-n·2n+1=
-n·2n+1
1-2
=2n+1-2-n·2n+1
2、已知数列 1 ,3 a ,5 a2, ,(2 n 1 )an 1(a0 )

数列求和的常见方法

数列求和的常见方法

数列求和的常见方法数列求和是高中数学中重要的概念之一,常见的数列求和方法有多种,包括等差数列求和公式、等比数列求和公式、Telescoping Series(直线和数列)等。

在本文中,我将介绍这些常见的数列求和方法,并给出相应的例子以加深理解。

一、等差数列求和公式等差数列是指一个数列中每个数与它的前一个数的差都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等差数列的求和公式为:Sn = (a1 + an)n/2,其中Sn表示数列前n项和,a1表示首项,an表示末项,n表示项数。

例1:求等差数列1,4,7,...,97的和。

解:这是一个等差数列,首项a1 = 1,末项an = 97,项数n =(an - a1)/d + 1 = (97 - 1)/3 + 1 = 33、代入公式Sn = (a1 + an)n/2,得到S33 = (1 + 97)× 33/2 = 1617二、等比数列求和公式等比数列是指一个数列中每个数与它前一个数的比都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等比数列的求和公式为:Sn=a1×(1-q^n)/(1-q),其中Sn表示数列前n项和,a1表示首项,q表示公比。

例2:求等比数列2,4,8,...,1024的和。

解:这是一个等比数列,首项a1 = 2,末项an = 1024,q = an/a1= 1024/2 = 512、项数n = logq(an/a1) + 1 = log512((1024/2)/2) +1 = 10。

代入公式Sn = a1 ×(1 - q^n)/(1 - q),得到S10 =2 ×(1 - 512^10)/(1 - 512) = 2046三、Telescoping Series(直线和数列)Telescoping Series是一种特殊的数列,其中每个项都可以通过其前一项和下一项抵消,最终只剩下首项和末项。

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

数列求和方法总结

数列求和方法总结
适用于数列正序和倒序相乘的情况
02
方法描述
将数列正序和与倒序和对角线上的元 素相乘,再求和,即可求得数列的前 n 项和
03
例子
以等比数列为例,已知首项 a1,公比 q,项数 n,则前 n 项和为 Sn = \frac{a1(1-q^n)}{1-q}
03
间接求和方法
裂项相消法
总结
裂项相消法是通过将数列的每一项拆 分为两个部分,然后利用相邻两项相 消的方式,达到求和的目的。
倒序相加法
适用范围
适用于数列正序和倒序相加的情况
方法描述
将数列正序和与倒序和相加,再除以 2,即可求得数列的前 n 项和
例子
以等差数列为例,已知首项 a1,公差 d,项数 n,则前 n 项和为 Sn = \frac{n}{2}(a1 + an) + \frac{n}{2}(d)
错位相减法
01
适用范围
利用计算机程序简化求和
01
适用场景
当数列项数较大,且需要多次求和时
02
原理
编写计算机程序可以减少重复计算,提高效率。
03
方法
①将数列各项存储到一个数组或列表中;②编写一个循环,逐一将数
组或列表中的各项相加,并输出结果。
06
数列求和的推广
数列求和与计算机科学
算法设计与优化
数列求和算法是计算机科学中算法设计和优化的经典案例,如快速排序、归并排 序等算法都可以通过数列求和进行优化。
分组求和法
要点一
总结
分组求和法是将数列中的项按照某种 规律分成若干组,然后将每一组的和 相加得到最终的和。
要点二
适用范围
适用于数列中各项之间没有明显的递 推关系,但是可以将数列中的项按照 某种规律分成若干组的情况。

数列求和各种方法总结归纳

数列求和各种方法总结归纳

故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.

数列求和法(已修改)

数列求和法(已修改)

练习5:(1)求和 1 4 (2)求和

1
1 47

1 7 10

1 ( 3 n 2 )( 3 n 1)
1
+
1
+
1
+ …+
1
1· 3
2· 4
3· 5
n· (n+2)
数列求和法小结
公式法求和 分组求和法
倒序相加法 错位相减法
裂项相消法
再 见
当 x 1 时 , Sn n n 2n 4n
1
当 x 1 时 , Sn
2n
x (1 x )
2 2n
1 x
2
x
2
(1 1
1 x 1
2n
) 2n

(x
1)( x
2n 2
2n2
1)
x
2
x ( x 1)
2n
4 n ( x 1) 2n S n ( x 1)( x 2 n 2 1) 2 n ( x 1) 2n 2 x ( x 1)
三、错位相减法
错位相减法:主要用于一个等差数列与一个等比数列
对应项相乘得的新数列求和,此法即为等比数列求
和公式的推导方法.
例3.(1)求和Sn =1+2x+3x2+……+nxn-1 (x≠0,1) (2)求数列{2n-1}的前n项和.
2n
…… +nxn-1 ① 解:(1)∵ Sn =1 + 2x +3x2 + ∴xSn = x + 2x2 + … + (n-1)xn-1+nxn ② ∴ ① -②,得: (1-x) Sn =1 + x + x2+ … + xn-1 - nxn = 1-x 1-(1+n)xn+nxn+1 ∴ Sn= (1-x)2 1-xn n项 - nxn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和方法小结
等差数列、等比数列的求和是高考常考的内容之一,一般数列求和的基本思想是将其通项变形,化归为等差数列或等比数列的求和问题,或利用代数式的对称性,采用消元等方法来求和.
下面我们结合具体实例来研究求和的方法. 一、直接求和法(或公式法)
将数列转化为等差或等比数列,直接使用等差或等比数列的前n 项和公式求得. 常用公式:等差数列的求和公式:d n n na a a n S n n 2
)
1(2)(11-+=+=
, 等比数列的求和公式⎪⎩⎪⎨⎧≠--==)
1(1)1()
1(11q q
q a q na S n
n (切记:公比含字母时一定要讨论),


222221
(1)(21)
1236
n
k n n n k n =++=+++
+=
∑ ,
2
3
333
3
1
(1)1232n
k n n k
n =+⎡⎤
=+++
+=⎢⎥⎣⎦

例1 .
二、倒序相加法
此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和.
例2已知函数()x
f x =
(1)证明:()()11f x f x +-=;
(2)求128910101010f f f f ⎛⎫
⎛⎫⎛⎫⎛⎫
+
+++
⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭
⎝⎭
的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,
1928551101010101010f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+==+
= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭
⎝⎭
⎝⎭⎝⎭
128910101010S f f f f ⎛⎫
⎛⎫
⎛⎫⎛⎫=+
+++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭令 982110101010S f f f f ⎛⎫
⎛⎫⎛⎫⎛⎫=+
+++
⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭
⎝⎭

两式相加得:
192991010S f f ⎛

⎛⎫⎛⎫=⨯+= ⎪ ⎪
⎪⎝⎭⎝⎭⎝⎭
所以92S =.
小结:对某些具有对称性的数列,可使用此法.
三、裂项相消法
如果一个数列的每一项都能化为两项之差,而前一项的减数恰与后一项的被减数相同,一减一加,中间项全部相消为零,那么原数列的前n 项之和等于第一项的被减数与最末项的减数之差.多用于分母为等差数列的相邻k 项之积,且分子为常数的分式型数列的求和.一些
常见的裂项方法: (1)
()1111n n k k n n k ⎛⎫
=- ⎪++⎝⎭
,特别地当1k =时,()11111n n n n =-++
(21
k
=
,特别地当1k ==例3 数列{}n a 的通项公式为1
(1)
n a n n =
+,求它的前n 项和n S
解:1231n n n S a a a a a -=+++++
()()
11111
122334
11n n n n =
++++
+⨯⨯⨯-+
=111111
11112233411n n n n ⎛⎫⎛⎫⎛⎫
⎛⎫⎛⎫-+-+-+
+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
1111
n
n n =-
=
++
小结:裂项相消法求和的关键是数列的通项能够分解成两项的差,且这两项是同一数列
的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同.
四、错位相减法
源于等比数列前n 项和公式的推导,对于形如{}n n a b 的数列,其中{}n a 为等差数列,{}n b 为
等比数列,均可用此法.
例4 .已知数列)0()12(,,5,3,11
2
≠--a a
n a a n ,求前n 项和。

思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列1
2
,,,,-n a a a a 对应项
积,可用错位相减法求和。

解:()1)12(53112--++++=n n a n a a S ()2)12(5332n
n a
n a a a aS -++++=
()()n n n
a n a a a a S a )12(22221)1(:21132--+++++=---
当n
n n n a a a S a a )12()1()1(21)1(,12
1----+=-≠-时 2
1
)1()12()12(1a a n a n a S n n n --++-+=
+ 当2,1n S a n ==时
小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{}n b 的公比;②将两个等式相减;③利用等比数列的前n 项和公式求和. 五、分组求和法
若数列的通项是若干项的代数和,可将其分成几部分来求. 例5 求数列11
111
246
248162
n n ++,,,,,的前n 项和n S .
分析:此数列的通项公式是1122n n a n +=+,而数列{2}n 是一个等差数列,数列112n +⎧⎫
⎨⎬⎩⎭
是一个等比数列,故采用分组求和法求解. 解:23411
111
111
(2462)(1)222
222
n n n S n n n ++⎛⎫=+++
+++++
+
=++- ⎪⎝⎭. 小结:在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成
等差数列或等比数列,那么我们就用此方法求和. (四)巩固练习:
1.求下列数列的前n 项和n S : (1)5,55,555,5555,…,
5(101)9
n
-,…; (2)
1111
,,,,
,
132435
(2)
n n ⨯⨯⨯+;
(3)
n a =
(4)2
3
,2,3,
,,
n a a a na ;
(5)13,24,35,,(2),
n n ⨯⨯⨯+;
(6)222
2sin 1sin 2sin 3sin 89++++.
解:(1)55555555
5n n S =+++
+个
5
(999999999)9
n =+++
+个
235
[(101)(101)(101)(101)]9n =-+-+-++- 235505
[10101010](101)9819
n n n n =++++-=--. (2)∵
1111()(2)22n n n n =-++,
∴11111111[(1)()()()]232435
2n S n n =
-+-+-++-+1
111
(1)2212
n n =+--++. (3
)∵n a
=
=
=

1n S n =
+
+
+
1)(1n =++
++1=.
(4)23
23n n S a a a na =+++
+,
当1a =时,123n S =+++ (1)
2
n n n ++=
, 当1a ≠时,23
23n S a a a =+++…n na + ,
23423n aS a a a =+++…1n na ++,
两式相减得 2
3
(1)n a S a a a -=+++ (1)
1(1)1n n n n a a a na
na a
++-+-=--,
∴212
(1)(1)n n n na n a a
S a ++-++=-.
(5)∵2
(2)2n n n n +=+,
∴ 原式222(123=+++ (2)
)2(123n ++⨯+++…)n +(1)(27)
6
n n n ++=

(6)设222
2sin 1sin 2sin 3sin 89S =+++
+, 又∵222
2sin 89sin 88sin 87sin 1S =+++
+,
∴ 289S =,892
S =

2.已知数列{}n a 的通项65()2
()
n n
n n a n -⎧=⎨
⎩为奇数为偶数,求其前n 项和n S .
解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列; 当n 为奇数时,奇数项有
12n +项,偶数项有1
2
n -项, ∴1
121(165)
4(14)(1)(32)4(21)221423
n n n n n n n S --++--+--=+=+
-, 当n 为偶数时,奇数项和偶数项分别有2
n
项,
∴2
(165)4(14)(32)4(21)
221423n n n n n n n S +----=+=+
-, 所以,1(1)(32)4(21)
()
23
(32)4(21)()
23n n n
n n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩
为奇数为偶数.
四、小结:
1.掌握各种求和基本方法;
2.利用等比数列求和公式时注意分11≠=q q 或讨论。

相关文档
最新文档