数列求和知识点总结.doc

数列求和知识点总结.doc
数列求和知识点总结.doc

数列求和

1.求数列的前 n 项和的方法 (1) 公式法

①等差数列的前 n 项和公式 ②等比数列的前 n 项和公式

(2) 分组求和法

把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法

把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.

(4) 错位相减法

主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和, 即等比数列求和公式的推导过程的推广.

(5) 倒序相加法

把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广 2.常见的裂项公式

1

1 1 (1) n (n +1)= n -n +1

.

(2)

1 1

1 1

.

n - )( n + ) = 2

n - -

n + 1 2 1 2

(212 1

1 =

n + - n

(3)

1.

n + n +1

高频考点一 分组转化法求和

例 1、已知数列 { a n } 的前 n 项和 S n =

n 2+ n

, n ∈ N * . 2

(1) 求数列 { a n } 的通项公式;

(2) 设 b n = 2a n + ( - 1) n a n ,求数列 { b n } 的前 2n 项和.

【感悟提升】 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,

而求得原数列的和, 这就要通过对数列通项结构特点进行分析研究,

将数列的通项合理分解

转化.特别注意在含有字母的数列中对字母的讨论.

【变式探究】已知数列 { a n } 的通项公式是

a n =2·3n -

1+ ( - 1) n ·(ln2 - ln3) + ( -

1) n ln3 ,求其前

n 项和n .

n

S

高频考点二

错位相减法求和

例 2、(2015 ·湖北 ) 设等差数列 { a n } 的公差为 d ,前 n 项和为 S n ,等比数列 { b n } 的公比为

q ,已知 b 1= a 1 ,b 2= 2, q = d , S 10= 100.

(1) 求数列 { a n } , { b n } 的通项公式;

n

a n n

n

(2) 当 d>1 时,记 c = ,求数列 { c 的前 n 项和 T .

b n

【感悟提升】用错位相减法求和时,应注意:

(1) 要善于识别题目类型,特别是等比数列公比为负数的情形;

(2) 在写出“ S n ”与“ qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ S n - qS n ”的表达式;

(3) 在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于

1 和不等于 1

两种情况求解.

【变式探究】已知数列

n

满足首项为 1

n + 1

n

*

n

2 n

{ a } a = 2, a

= 2a ( n ∈ N ) .设 b = 3log a -

*

n

n

n n

2( n ∈ N ) ,数列 { c } 满足 c = a b .

(1) 求证:数列 { b n } 为等差数列;

(2) 求数列 { c n } 的前 n 项和 S n . 高频考点三

裂项相消法求和

例 3、设各项均为正数的数列 2

2

2

{ a n } 的前 n 项和为 S n ,且 S n 满足 S n -( n + n - 3) S n - 3( n

+n ) = 0, n ∈ N * .

(1) 求 a 1 的值;

(2) 求数列 { a n } 的通项公式;

(3) 证明:对一切正整数

n ,有 ? 1

1

+ +

? 1 < 1 .

1

1+ 1?

a

2? 2+1?

a

a

+ 1?

3

a

a

a

n n

【变式探究】已知函数 a (4,2)

n

1

*

f ( x ) = x 的图象过点 ,令 a = f ?n + 1?+ f ?n ?,n ∈ N . 记数

列{ a n } 的前 n 项和为 S n ,则 S 2017= ________.

【感悟提升】 (1) 用裂项相消法求和时, 要对通项进行变换, 如:

1 +

1

n + k

n + = k (

n k

1 -

n ) ,

n ?n + k ?

1 1 1

=k ( n - n + k ) 裂项后可以产生连续可以相互抵消的项.

(2) 抵消后并不一定

只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.

【举一反三】在数列 { a } 中, a = 1,当 n ≥2时,其前 n 项和 S

2

S 1

满足 S = a

2 .

n 1 n

n

n

n

(1) 求 S n 的表达式;

S n

(2) 设 b n = 2n +1,求 { b n } 的前 n 项和 T n .

练习:

n

321

2 - 1

1.已知数列 { a n } 的通项公式是 a n = 2n ,其前 n 项和 S n = 64 ,则项数 n =()

A . 13

B . 10

C

. 9

D

.6

n

1

n +1

n

n

*

2 012

= (

) 2.已知数列 { a } 满足 a =1, a · a = 2 ( n ∈N ) ,则 S

A . 2 2 012

1 006

1 006

1 005

-2

-1 B .3·2 -3 C .3·2 -1 D .3·2

2

+ 2bx 过 (1,2) 点,若数列 { 1

的前 n 项和为 S n ,则 S 2 012 的值为 (

)

3.已知函数 f ( x ) = x

? ?}

f n

012 2 011) 010

, 2 011) 013 , 2 012) 012 , 2 013)

,

4.数列 { n } 满足

a n

a

1 n * 1

=1, n 是数列 { n } 的前

n 项和,则 21

= (

)

n +1

= (

∈N),且

a

2

a

S

a

S

B

. 6 C . 10 D . 11

5.已知函数 f ( n ) = n 2cos( π) ,且

a n

= ( ) + ( +1) ,则 a

1

+ 2+ 3

+ + 100= ( )

n

f n f n

a

a

a

A .- 100 B

. 0 C .100 D

. 10 200

6.在数列 { a n } 中,已知 a 1=1,a n + 1- a n =sin ?n +1?π ,记 S n 为数列 { a n } 的前 n 项和,则 S 2 014

2 =(

)

A .1 006 B

.1 007 C

.1 008

D

.1 009

7.在数列 { a } 中,a 1= 1,a + 1= ( - 1)

n

( a + 1) ,记 S 为 { a } 的前 n 项和,则 S 2 013= __________ 。

n

n

n

n

n

8.等比数列 n

2

2

2

{ a n } 的前 n 项和 S n =2 - 1,则 a 1 + a 2+ + a n = __________ 。

9.对于每一个正整数

n +1

在点 (1,1) 处的切线与 x 轴的交点的横坐标为 x n ,

n ,设曲线 y = x

令 a n = lg x n ,则 a 1+ a 2+ + a 99= __________ 。

10.已知等比数列 { a n } 中,首项 a 1= 3,公比 q >1,且 3( a n + 2+ a n ) - 10a n +1= 0( n ∈ N * ) 。

(1) 求数列 { a n } 的通项公式。

1

(2) 设 b n +3a n 是首项为 1,公差为

2 的等差数列,求数列 { b n } 的通项公式和前 n 项和 S n 。

11.设数列 { a n} 的前n项和为S n,已知 2S n= 3n+ 3。

(1)求 { a n} 的通项公式;

(2)若数列 { b n} 满足a n b n=log 3a n,求 { b n} 的前n项和T n。

12.已知数列{ a n} 是公差为 2 的等差数列,它的前n 项和为S n,且a1+1, a3+1, a7+1 成等比数列。

(1)求 { a n} 的通项公式。

1

(2) 求数列Sn 的前n项和T n。

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

数列求和及求通项方法归纳

数列求和及求通项 一、数列求和的常用方法 1、公式法:利用等差、等比数列的求和公式进行求和 2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1 3 1 2--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项 ①形如)(1k n n a n += ,可裂项成)1 1(1k n n k a n +-=,列出前n 项求和消去一些项 ②形如k n n a n ++= 1,可裂项成)(1 n k n k a n -+= ,列出前n 项求和消去一些项 例:已知数列1)2() 1)(1(1 1=≥+-=a n n n a n ,,求前n 项和n S

4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。 例:已知数列122-+=n a n n ,求前n 项和n S 5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广) 一、数列求通项公式的常见方法有: 1、关系法 2、累加法 3、累乘法 4、待定系数法 5、逐差法 6、对数变换法 7、倒数变换法 8、换元法

9、数学归纳法 累加法和累乘法最基本求通项公式的方法 求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。 二、方法剖析 1、关系法:适用于)(n f s n =型 求解过程:???≥-===-)2() 1(1 11n s s n s a a n n n 例:已知数列{}n a 的前n 项和为12 ++=n n S n ,求数列{}n a 的通项公式 2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列 求解过程:若)(1n f a a n n +=+ 则)1(12f a a =- )2(23f a a =- )1(1-=--n f a a n n 所有等式两边分别相加得:∑-== -1 1 1)(n k n k f a a 则∑-=+=1 1 1)(n k n k f a a 例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{} 的通项公式,求n a a 11= ...... 累加

数列求和知识点总结(学案)

数列求和 1.求数列的前n项和的方法 (1)公式法 ①等差数列的前n项和公式②等比数列的前n 项和公式 (2)分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (5)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广

2.常见的裂项公式 (1)1n (n +1)=1n -1n +1 . (2)1(2n -1)(2n +1)=12? ?? ???12n -1-12n +1. (3)1n +n +1=n +1-n . 高频考点一 分组转化法求和 例1、已知数列{a n }的前n 项和S n = n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{ b n }的前2n 项和. 【感悟提升】某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列{a n }的通项公式是a n =2·3n

-1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n . 高频考点二 错位相减法求和 例2、(2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式; (2) 当d >1时,记c n =a n b n ,求数列{c n }的前n 项和T n . 【感悟提升】用错位相减法求和时,应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式; (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.

数列求和方法分类及经典例题

数列求和方法总结 一、公式法 ()()111122 n n a a n n n .na d +-==+等差型 S ()111111n n na q a q q q =??=-?≠?-? ,2.等比型 S , →3.分式型/阶乘型 裂项相消法 () 1111111n n n n n a a a d a a ++??=- ???? ,其中为等差; ( 12n a d = ,其中为等差; ()()() ()113=+1+1+1n n n!n !n!.n !n!n !-?=- , ()()()( )1111153759 11121121231233n n . .,n N n *???++++∈+++++++KK KK K KK 例1:求下列各数列的前项和S ,,, 二、等差等比混合型 (){}=n n n a b kn b q ??+?→ 1.等差等比 错位相减法 n n S 例2:求下列各数列的前项和 ()()112n n .a n =+? ()()12312n n .a n ??=-? ??? ()()()3312n n .a n =-+?-

{}111122n n k n b a q a q ±+++→ 2.等差等比 分组求和 n n S 例3:求下列各数列的前项和 ()1111123248 .,,,KK ()2211121333333 n n .,,,,+++KK → 3.奇偶项不同 分组求和 n n S 例4:求下列各数列的前项和 ()()()1115913143n n .n -=-+-++--K 相邻异号 例:S ()11211n n n .a ,a a ,S -=+= 和为常数 例:求()122314=+2n n n .a ,a ,a a ,S -== 差为常数 例:求()12+11142=63n n n n n .a a ,a a ,a S ??== ??? 比为常数 例:,求及 三、倒叙相加/相乘型 n n S 例5:求下列各数列的前项和 ()11110142n x n .f (x ),S f ()f ()f ()f ()n n -= =++++ 已知求;()211121220121201220112 x .f (x ),f ()f ()f ()f ()f ()f ()x =+++++++KK KK 已知求;()1312.n n n n n ++ 在和之间插入个正数,使这个数成等比数列,求插入个数之积; ()1412.n n n n n ++ 在和之间插入个正数,使这个数成等差数列,求插入个数之和; 22112n n n n n n n +++??== ??? T ,S

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

数列求和汇总例题与答案)

数列求和汇总答案 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 例1、已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得n n x x x x S +???+++=32(利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 练习:求22222222123456...99100-+-+-+--+的和。 解:2222222212345699100-+-+-+--+ 由等差数列的求和公式得 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. 例2求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+???+++++=--(错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----?+=-- ∴2 1)1()1()12()12(x x x n x n S n n n -+++--=+ 练习:求数列??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1}的通项之积 设n n n S 2 226242232+???+++=…………………………………①

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

数列求和知识点总结.doc

数列求和 1.求数列的前 n 项和的方法 (1) 公式法 ①等差数列的前 n 项和公式 ②等比数列的前 n 项和公式 (2) 分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和, 即等比数列求和公式的推导过程的推广. (5) 倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广 2.常见的裂项公式 1 1 1 (1) n (n +1)= n -n +1 . (2) 1 1 1 1 . n - )( n + ) = 2 n - - n + 1 2 1 2 (212 1 1 = n + - n (3) 1. n + n +1 高频考点一 分组转化法求和 例 1、已知数列 { a n } 的前 n 项和 S n = n 2+ n , n ∈ N * . 2 (1) 求数列 { a n } 的通项公式; (2) 设 b n = 2a n + ( - 1) n a n ,求数列 { b n } 的前 2n 项和.

【感悟提升】 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差, 从 而求得原数列的和, 这就要通过对数列通项结构特点进行分析研究, 将数列的通项合理分解 转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列 { a n } 的通项公式是 a n =2·3n - 1+ ( - 1) n ·(ln2 - ln3) + ( - 1) n ln3 ,求其前 n 项和n . n S 高频考点二 错位相减法求和 例 2、(2015 ·湖北 ) 设等差数列 { a n } 的公差为 d ,前 n 项和为 S n ,等比数列 { b n } 的公比为 q ,已知 b 1= a 1 ,b 2= 2, q = d , S 10= 100. (1) 求数列 { a n } , { b n } 的通项公式; n a n n n (2) 当 d>1 时,记 c = ,求数列 { c 的前 n 项和 T . b n 【感悟提升】用错位相减法求和时,应注意: (1) 要善于识别题目类型,特别是等比数列公比为负数的情形; (2) 在写出“ S n ”与“ qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ S n - qS n ”的表达式; (3) 在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于 1 和不等于 1 两种情况求解. 【变式探究】已知数列 n 满足首项为 1 n + 1 n * n 2 n { a } a = 2, a = 2a ( n ∈ N ) .设 b = 3log a - * n n n n 2( n ∈ N ) ,数列 { c } 满足 c = a b . (1) 求证:数列 { b n } 为等差数列; (2) 求数列 { c n } 的前 n 项和 S n . 高频考点三 裂项相消法求和 例 3、设各项均为正数的数列 2 2 2 { a n } 的前 n 项和为 S n ,且 S n 满足 S n -( n + n - 3) S n - 3( n +n ) = 0, n ∈ N * . (1) 求 a 1 的值; (2) 求数列 { a n } 的通项公式;

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

数列求和与求通项方法汇总与经典例题

15 数列求通项问题 数列求通项方法一:累加法,解决形如型数列通项问题)(1n f a a n n =-+. 例.设数列}{a n 的前n 项和为S n ,}{a n }满足a 1=1,a n +1﹣a n =n d ,n ∈N *.若n d =3n ,求数列}{a n 的通项公式; 解:(1)若a n +1﹣a n =d n =3n ,则a 2﹣a 1=3, a 3﹣a 2=32,a 4﹣a 3=33,……a n ﹣a n ﹣1=3n ﹣1, 累加得:a n ﹣a 1==,又由a 1=1,∴a n =. 数列求和方法二:构造法,解决形如型或接近于等差或d pa n n +=+1a .等比数列型 例.已知数列{a n }满足a 1=1且a n +1=2a n +1,求a n ; 解:∵a n +1=2a n +1,∴a n +1+1=2a n +2=2(a n +1),又a 1+1=2≠0,所以, ∴数列{a n +1}是等比数列,公比q =2,首项为2.则, ∴; 例 数列{a n }中,a 1=1,a n +1=2a n +n ﹣1.求数列{a n }的通项公式. 解:根据题意,a n +1=2a n +n ﹣1,则a n +1+n +1=2a n +n ﹣1+n +1=2a n +2n =2(a n +n ) 所以,所以数列{a n +n }为等比数列. 数列{a n +n }为以2为公比的等比数列,又a 1=1,所以a 1+1=2. 所以,所以. 例.设S n 是数列{a n }的前n 项和,且a 1=﹣1,a n +1=S n ?S n +1,求{a n }的通项公式. 解:因为a n +1=S n +1﹣S n ,所以S n +1﹣S n =S n ?S n +1. 两边同除以S n ?S n +1得﹣=﹣1.因为a 1=﹣1,所以=﹣1. 因此数列{ }是首项为﹣1,公差为﹣1的等差数列. 得=﹣1+(n ﹣1)(﹣1)=﹣n ,S n =﹣.

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

(完整版)高中数学必修五数列求和方法总结附经典例题和答案详解

数列专项之求和-4 (一)等差等比数列前n 项求和 1、等差数列求和公式: d n n na a a n S n n 2 )1(2)(11-+=+=2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n (二)非等差等比数列前n 项求和⑴错位相减法 ②数列为等差数列,数列为等比数列,则数列的求和就要采用此法.{}n a { }n b {}n n a b ?②将数列的每一项分别乘以的公比,然后在错位相减,进而可得到数列{}n n a b ?{ }n b 的前项和. {}n n a b ?n 此法是在推导等比数列的前项和公式时所用的方法. n 例23. 求和:132)12(7531--+???++++=n n x n x x x S ) 0(≠x 例24.求数列前n 项的和.??????,2 2,,26,24,2232n n ⑵裂项相消法 一般地,当数列的通项 时,往往可将12()() n c a an b an b =++12(,,,a b b c 为常数)变成两项的差,采用裂项相消法求和. n a 可用待定系数法进行裂项: 设,通分整理后与原式相比较,根据对应项系数相等得 12n a an b an b λ λ=-++,从而可得21 c b b λ=-122112 11=(()()()c c an b an b b b an b an b -++-++常见的拆项公式有:① ② 111(1)1n n n n =-++;1111((21)(21)22121 n n n n =--+-+

③ ④1a b =-11;m m m n n n C C C -+=-⑤ ⑥!(1)!!.n n n n ?=+-)2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n …… 例25. 求数列的前n 项和. ???++???++,11 ,,321 ,211 n n 例26. 在数列{a n }中,,又,求数列{b n }的前11211++???++++= n n n n a n 1 2+?=n n n a a b n 项的和. ⑶分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几 个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公 式②由通项公式确定如何分组. 例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28. 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ⑷倒序相加法 如果一个数列,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与 {}n a 倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征: 121... n n a a a a -+=+=例29.求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++例30. 求的值 89sin 88sin 3sin 2sin 1sin 22222++???+++⑸记住常见数列的前项和: n ①(1)123...;2 n n n +++++=②2135...(21); n n ++++-=③22221123...(1)(21).6n n n n ++++= ++④23333)]1(2 1 [321+=++++n n n

数列求和的知识点

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且

在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题? 提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13? ????1 3n -2-13n +1, ∴11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ???? ????13n -2-13n +1=13? ????1-13n +1= n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2 n ,

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

高中数列专题常见求和方法总结

专题:数列及其数列求和 ?重点、考点精读与点拨 一、基本知识 1.定义: (1) .数列:按一定次序排序的一列数 (2) 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列叫做等差数列 (3) 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一 个常数,则这个数列叫做等比数列 2. 通项公式与前n 项和公式 }{n a 为等差数列: d n a a n )1(1-+= 2 )(2)1(11n n a a n d n n na S +=-+ = }{n b 为等比数列: )1(1 1≠=-q q b b n n q q a a q q a S n n n --=--=11)1(11(q )1≠ 3. 常用性质 }{n a 为等差数列,则有 (1) 从第二项起,每项是前一项与后一项的等差中项,2 1 1-++=n n n a a a (n>1) (2) ),()(*N n m d m n a a m n ∈-+= (3) 若m+n = p+q , 则:q p n m a a a a +=+,特殊的:若m+n=2r ,则有:r n m a a a 2=+ (4) 若,,m a n a n m ==则有:0=+n m a (5) 若)(,,n m S m S n S n m n m +-===+则有: (6) }{n a 为等差数列q p q pn a n ,(+=?为常数)?),(2 R q p qn pn S n ∈+=

(7) m m m m m S S S S S 232,,--┅┅仍成等差数列 (8)}{},{n n b a 为等差数列,则}{n n qb pa +为等差数列(p ,q 为常数) (9)若项数为偶数2n ,nd =-奇偶S S , 1+n n a a S S = 偶 奇 若项数奇数2n -1,n a S S =偶奇-, 1 -n n S S =偶 奇 (10)?? ?=≥-=-11 1)2 (S a n S S a n n n }{n a 为等比数列,则有 (1) 只有同号的两数才存在等比中项 (2) ),(*N n m q a a m n m n ∈=- (3) 若m+n = p+q , 则:q p n m a a a a ?=?,特殊的:若m+n=2r ,则有:2 r n m a a a =? (4) }{},{n n b a 为等比数列,则}{n n b a ?,}{ n n b a ,{n ca }为等比数列(0≠ c ) (5) 等比数列中连续n 项之积构成的新数列仍是等比数列,当1≠q 时,连续项之和仍为 等比数列 (6) )1,0() 0,0(≠≠-=≠≠=q q k kq S q c cq a n n n n 二、在数列中常见问题: 1、等差数列的通项公式是关于n 的一次函数,)(1d a dn a n -+=(定义域为正整数集),一次项的系数为公差;等差数列的前n 项和公式是关于n 的二次函数, n d a n d s n )2 (212-+= 二次项系数为公差的一半,常数项为0. 证明某数列是等差(比)数列,通常利用等差(比)数列的定义加以证明,即证:常数)常数,( ==-++n n n n a a a a 1 1 2、等差数列当首项a 1>0且公差d<0时(递减数列),前n 项和存在最大值。利用???<≥+001 n n a a 确 定n 值,即可求得s n 的最大值(也可以用二次函数的性质或图象解)。 等差数列当首项a 1<0且公差d>0时(递增数列),前n 项和存在最小值。

相关文档
最新文档