高三数学 专项精析精炼 考点2 命题及其关系、充分条件与必要条件
高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
高考文科数学热点题型02 命题及其关系、充分条件与必要条件

1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件 C .充分不必要条件 D .既不充分也不必要条件解析:f (x )在R 上为奇函数⇒f (0)=0;f (0)=0/⇒ f (x )在R 上为奇函数,如f (x )=x 2,故选A.答案:A2.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3解析:由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分不必要条件是a >b +1,选A.答案:A3.“(m -1)(a -1)>0”是“log a m >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:B4.若集合A ={x |x 2-5x +4<0},B ={x ||x -a |<1},则“a ∈(2,3)”是“B ⊆A ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:由题意知A ={x |1<x <4},B ={x |-1+a <x <1+a },若B ⊆A ,则-1+a≥1,1+a≤4,解得2≤a ≤3,所以必要性不成立.反之,若2<a <3,则必有B ⊆A 成立,所以充分性成立,故选A.答案:A5.设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故选B.答案:B6.已知p :x ≥k ,q :x +13<1,若p 是q 的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:∵q :x +13<1,∴x +13-1<0,∴x +12-x<0. ∴(x -2)·(x +1)>0,∴x <-1或x >2.因为p 是q 的充分不必要条件,所以k >2,故选B. 答案:B7.已知a ,b 为非零向量,则“函数f (x )=(ax +b )2为偶函数”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C8.“若a ,b ∈R +,a 2+b 2<1”是“ab +1>a +b ”的( ) A .充要条件 B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:a ,b ∈R +,若a 2+b 2<1,则a 2+2ab +b 2<1+2ab <1+2ab +(ab )2,即(a +b )2<(1+ab )2,所以a +b <1+ab 成立;当a =b =2时,有1+ab >a +b 成立,但a 2+b 2<1不成立,所以“a 2+b 2<1”是“ab +1>a +b ”的充分不必要条件,故选C.答案:C9.在△ABC 中,设p :sinB a =sinC b =sinA c;q :△ABC 是正三角形,那么p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C10.以下四个命题中,真命题的个数是( )①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题.②存在正实数a,b,使得lg(a+b)=lg a+lg b.③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”.④在△ABC中,∠A<∠B是sin A<sin B的充分不必要条件.A.0 B.1C.2 D.3解析:对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a=2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知∠A<∠B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R 为△ABC外接圆的半径)⇔sin A<sin B,故∠A<∠B是sin A<sin B的充要条件,故④是假命题.选C.答案:C11.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A .1B .2C .3D .4 答案:B解析:原命题为真命题,从而其逆否命题也为真命题;逆命题“若a>-6,则a>-3”为假命题,故否命题也为假命题,故选B.12.命题“若x 2+y 2=0,则x =y =0”的否命题是( ) A .若x 2+y 2=0,则x ,y 中至少有一个不为0 B .若x 2+y 2≠0,则x ,y 中至少有一个不为0 C .若x 2+y 2≠0,则x ,y 都不为0 D .若x 2+y 2=0,则x ,y 都不为0 答案:B解析:否命题既否定条件又否定结论.13.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 答案:A解析:设p :若A ,则B ,则p 的否命题为若綈A ,则綈B ,从而命题q 为若B ,则A ,则命题p 是命题q 的逆命题,故选A.14.下列命题中为真命题的是( )A .命题“若x>y ,则x>|y|”的逆命题B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a>b ,则a 1<b 1”的逆否命题答案:A15.A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.在下列四个命题中,为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格 B .若A ,B ,C 都及格,则及格分不低于70分C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分 答案:C解析:根据原命题与它的逆否命题之间的关系,命题p :“若及格分低于70分,则A ,B ,C 都没有及格”的逆否命题是“若A ,B ,C 至少有一人及格,则及格分不低于70分”.故选C.16. “x 1>1”是“e x -1<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A解析:∵x 1>1,∴x ∈(0,1).∵e x -1<1,∴x<1. ∴“x 1>1”是“e x -1<1”的充分不必要条件.17.在△ABC 中,“sinB =1”是“△ABC 为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A18.若“x>1”是“不等式2x>a -x 成立”的必要而不充分条件,则实数a 的取值范围是( ) A .a>3 B .a<3 C .a>4 D .a<4答案:A解析:若2x>a -x ,即2x+x>a.设f(x)=2x+x ,则函数f(x)为增函数.由题意知“2x+x>a 成立,即f(x)>a 成立”能得到“x>1”,反之不成立.因为当x>1时,f(x)>3,∴a>3.19.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:p ⇒q ,而q p ,∴选A.20.若不等式31<x<21的必要不充分条件是|x -m|<1,则实数m 的取值范围是( ) A .[-34,21] B .[-21,34] C .(-∞,21) D .(34,+∞) 答案:B解析:由|x -m|<1,解得m -1<x<m +1.因为不等式31<x<21的必要不充分条件是|x -m|<1,所以≤m +1,1且等号不能同时取得,解得-21≤m ≤34,故选B.21.已知函数f(x)=x 2-2x +3,g(x)=kx -1,则“|k|≤1”是“f(x)≥g(x)在R 上恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A22.已知集合A ={x|a -2<x<a +2},B ={x|x ≤-2或x ≥4},则A ∩B =∅的充要条件是________.答案:0≤a ≤2解析:A ∩B =∅⇔a -2≥-2a +2≤4,⇔0≤a ≤2.23.如果对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的________条件.解析:可举例子,比如x =-0.5,y =-1.4,可得〈x 〉=0,〈y 〉=-1;比如x =1.1,y =1.5,〈x 〉=〈y 〉=2,|x -y |<1成立.因此“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.答案:必要不充分24.集合A =<0x -1,B ={x ||x -b |<a }.若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.答案:(-2,2)25.已知A 为xOy 平面内的一个区域. 命题甲:点(a ,b )∈{(x ,y )|3x +y -6≤0x≥0,}; 命题乙:点(a ,b )∈A .如果甲是乙的充分条件,那么区域A 的面积的最小值是________.解析:设3x +y -6≤0x≥0,所对应的区域如右图所示的阴影部分PMN 为集合B .由题意,甲是乙的充分条件,则B ⊆A ,所以区域A 面积的最小值为S △PMN =21×4×1=2.答案:226.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程m -1x2+2-m y2=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a , 即命题p :3a <m <4a ,a >0.由m -1x2+2-m y2=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0, 解得1<m <23,即命题q :1<m <23. 因为p 是q 的充分不必要条件,所以 23或,3解得31≤a ≤83,所以实数a 的取值范围是[31,83]. 答案:[31,83]。
2023年高考分类题库考点2 命题及其关系、充分条件与必要条件

考点 2 命题及其关系、充分条件与必要条件
2.(2023·天津高考)“a2=b2”是“a2+b2=2ab”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【解析】选 B.a2=b2,即(a+b)(a-b)=0, 解得 a=-b 或 a=b; a2+b2=2ab,即(a-b)2=0,解得 a=b; 故“a2=b2”不能推出“a2+b2=2ab”,充分性不成立. “a2+b2=2ab”能推出“a2=b2”,必要性成立. 故“a2=b2”是“a2+b2=2ab”的必要不充分条件. Nhomakorabea() ()
2
即 sin2α+sin2β=1 推不出 sin α+cos β=0; 当 sin α+cos β=0 时, sin2α+sin2β=(-cos β)2+sin2β=1, 即 sin α+cos β=0 能推出 sin2α+sin2β=1. 综上可知,“sin2α+sin2β=1”是“sin α+cos β=0”的必要条件但不是充分条件.
考点02 命题及其关系、充分条件和必要条件(解析版)

考点02 命题及其关系、充分条件和必要条件【考纲要求】理解必要条件、充分条件与充要条件的意义. 【命题规律】考查充分条件与必要条件的题型一般以选择题或填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,难度一般不大. 【典型高考试题变式】(一)充分条件与必要条件的判定例1.(2021全国甲卷理7)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【解析】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,∴甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,∴甲是乙的必要条件,故选B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.【变式1】【2018年北京卷文】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】B 【解析】 分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.【名师点睛】充分条件、必要条件的判断方法:①定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.②等价法:利用p ⇒q 与⌝q ⇒⌝p ,q ⇒p 与⌝p ⇒⌝q ,p ⇔q与⌝q ⇔⌝p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.③集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 【变式2】【变式1中的条件与结论换位】设a,b,c,d 是非零实数,则“a,b,c,d 成等比数列”是“ad=bc ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A【解析】由a,b,c,d 成等比数列可得ad=bc ,当时,a,b,c,d 不是等比数列,所以“a,b,c,d成等比数列”是“ad=bc ”的充分而不必要条件,故选A.例2.(2021年高考天津卷2)已知a ∈R ,则“6>a ”是“362>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【分析】由充分条件、必要条件的定义判断即可得解.【解析】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,必要性不成立;∴“6a >”是“236a >”的充分不必要条件,故选A . 【名师点睛】充分条件与必要条件的两个特征:①对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.②传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”). 【变式1】【改变例题的条件】设,则“24x >”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【解析】由242x x >⇔>或2x <-,所以“24x >”是“||2x >”的充分必要条件,故选C. (二)充分条件与必要条件的运用例3.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件,故α∥β的充要条件是α内有两条相交直线与β平行,故选B .【变式1】【改变例题中的问法】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,故选B . 例4.【2011全国卷】下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】A【解析】由1a b >+,得a b >;反之不成立,故选A.【名师点津】命题p 是q 的必要不充分条件⇔p q ⇒且q p ⇒;命题p 的必要不充分条件是q ⇔q p ⇒且p q ⇒. 这两种说法有区别,不能混淆.【变式1】【改变例题中的问法】下面四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】B【解析】由a b >,可得1a b >-;反之不成立,故选B.【变式2】【改变例题中的条件、问法】下面四个条件中,使33a b >成立的充要的条件是( ) A .1a b >+ B .a b <C .22a b >D .a b > 【答案】C【解析】由a b >,可得33a b >;反之也成立,故选C. (三)新定义问题例5.【2011湖北卷】若实数a ,b 满足0,0,0a b ab ≥≥=且,则称a 与b 互补,记()22,a b a b a b ϕ=+-,那么(),0a b ϕ=是a 与b 互补的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【名师点津】紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.【变式1】【2010年普通高等学校招生全国统一考试湖北卷10】记实数1x ,2x ,……n x 中的最大数为max {}12,,......n x x x ,最小数为min {}12,,......n x x x 。
高考数学复习考点知识讲解课件02 命题及其关系、充分条件与必要条

(2)[2020·北京卷]已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ” 是“sin α=sin β”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案:C
解析:若存在k∈Z使得α=kπ+(-1)kβ,则当k=2n(n∈Z),α=2nπ+β,有sin α =sin (2nπ+β)=sin β;当k=2n+1(n∈Z),α=(2n+1)π-β,有sin α=sin [(2n+ 1)π-β]=sin β.若sin α=sin β,则α=2kπ+β或α=2kπ+π-β(k∈Z),即α=kπ+(- 1)kβ(k∈Z).
由q是p的必要而不充分条件,知A B.
所以a≤12且a+1≥1,因此0≤a≤12.
微专题
等价转化思想就是对原问题换一个方式、换一个角度、换一个观点
___必_要____条件
q成立的对象的集合为B
p是q的__充_分__不__必_要__条件 p⇒q且q p
A是B的__真__子_集___
p是q的_必__要_不__充__分__条件 p q且q⇒p
B是A的__真__子__集__
p是q的___充__要_____条件 p 是 q 的 _既_不__充__分_也__不__必__要_ 条件
3 . [ 选 修 2 - 1·P10 练 习 T3 改 编 ]“(x - 1)(x + 2) = 0” 是 “x = 1” 的 ()
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
答案:B
解析:若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x-1)(x+2) =0,则x的值也可能为-2.
反思感悟
判断命题真假的方法
《第2节 命题及其关系、充分条件与必要条件》高考考点汇总

《第2节命题及其关系、充分条件与必要条件》高考考点汇总一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.考点一 四种命题及其真假判断[典例] (2019·菏泽模拟)有以下命题: ①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题是( ) A .①② B .②③ C .④D .①②③[解析] ①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案] D [题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D 命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若非q ,则非p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +12,k ∈Z,Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2,k ∈Z,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 因为P=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +12,k ∈Z=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k +12,k ∈Z,Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2,k ∈Z, 所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题, 则原命题的否命题为假命题,所以真命题的个数为2.考点二 充分、必要条件的判断[典例] (1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[解析] (1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪⎪⎪x -12≥12,即“x 3<1”“⎪⎪⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.(3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以非p :x +y =-2,非q :x =-1且y =-1,因为非q ⇒非p 但非p非q ,所以非q 是非p 的充分不必要条件,即p 是q 的充分不必要条件.[答案] (1)B (2)A (3)A[提醒] 判断条件之间的关系要注意条件之间关系的方向,要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别,要正确理解“p 的一个充分不必要条件是q ”的含义.[题组训练]1.[集合法]已知x ∈R ,则“x <1”是“x 2<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若x 2<1,则-1<x <1,∵(-∞,1)⊇(-1,1),∴“x <1”是“x 2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m ,n 为两个非零向量,则“m ·n <0”是“m 与n 的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m ,n 的夹角为θ,若m ,n 的夹角为钝角,则π2<θ<π,则cos θ<0,则m ·n <0成立;当θ=π时,m ·n =-|m |·|n |<0成立,但m ,n 的夹角不为钝角.故“m ·n <0”是“m 与n 的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy ≠1”是“x ≠1或y ≠1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 设p :xy ≠1,q :x ≠1或y ≠1, 则非p :xy =1,非q :x =1且y =1. 可知非q ⇒非p ,非p非q ,即非q 是非p 的充分不必要条件.故p 是q 的充分不必要条件,即“xy ≠1”是“x ≠1或y ≠1”的充分不必要条件.考点三 根据充分、必要条件求参数的范围[典例] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.[解析] 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] [0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S , 所以{ 1-m =-2,1+m =10,解得{ m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.(变条件)若本例将条件“若x ∈P 是x ∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且S P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).[课时跟踪检测]1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:选B 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( ) A .“若x =4,则x 2+3x -4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C 根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,假,真B.假,假,真C.真,真,假 D.假,假,假解析:选B 当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③ B.②C.②③ D.①②③解析:选A 本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b . 因为a ,b 均为单位向量,所以a 2=b 2=1, 所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 7.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x≠y ”是“cos x ≠cos y ”的必要不充分条件.8.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C 若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.9.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z.∵0<A <π,0<B <π,∴A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要10.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:311.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3.又p (2)是真命题,所以4+4-m >0,解得m <8. 故实数m 的取值范围为[3,8). 答案:[3,8)12.(2019·齐鲁名校调研)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号). 解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.。
考点02 命题及其关系、充分条件和必要条件典型高考数学试题解读与变式(详解版)

②等价法:利用 p⇒q 与 q⇒ p,q⇒p 与 p⇒ q,p⇔q 与 q⇔ p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法. ③集合法:若 A⊆B,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A=B,则 A 是 B 的充要条件.
【变式 1】【改变例题中的条件】设 x R ,则“| x −1| 1”是“ 2 − x 0 ”的( )
maxx1, x2,......xn,最小数为 minx1, x2,......xn 。已知 ABC 的三边长位 a,b,c( a b c ),定义它的倾
斜度为
l
=
max
a b
,
b c
,
c a
.min
a b
,
b c
,
c a
,
则“ l =1”是“ ABC 为等边三角形”的(
)
A.充分不必要条件 C.充分必要条件 【答案】 A
A.充分而不必要条件 C.充要条件 【答案】A
B.必要而不充分条件 D.既不充分也不必要条件
【解析】由| x −1| 1得 0 x 2 ,由 2 − x 0 得 x 2 ,所以“| x −1| 1”是“ 2 − x 0 ”的充分而不必
要条件,故选 A.
【变式 2】【改变例题中的条件】设 x R ,则“ m2 − 4 − x 0 (m R) ”是“| x −1| 1”的必要而不充分
【答案】B
【解析】由等比数列的定义数列,若乙:{an} 是等比数列,公比为 q ,即
an+1 an
=q
a2 n+1
a2 n+1
=
q2
则甲命
a2 n+1
题成立;反之,若甲:数列
第二节 命题及其关系、充分条件与必要条件

p是q的充 分条件
p⇒q
A⊆B
p是q的必要条件
q⇒p
A⊇B
p是q的充要条件
p⇒q且q⇒p A=B
p是q的充分不必要条件 p⇒q且q p A B
p是q的必要不充分条件 p q且q⇒p A B
p是q的既不充分条件 也不必要条件
p q且q p A B且A B
二、“基本技能”运用好 1.通过对四种命题及其相互关系的复习,提高学生的抽象概
答案:A
[一“点”就过] 判断命题真假的 2 种方法
直接 判断
判断一个命题为真命题,要给出严格的推理 证明;说明一个命题是假命题,只需举出一 个反例即可
根据“原命题与逆否命题同真同假,逆命题 间接 与否命题同真同假”这一性质,当一个命题 判断 直接判断不易进行时,可转化为判断其逆否
命题的真假
[提醒] (1)对于不是“若p,则q”形式的命题,需先改 写;(2)当命题有大前提时,写其他三种命题时需保留大前 提.(3)命题的否命题是条件和结论都否定,而命题的否定是条 件不变只否定结论.
答案:充分不必要 充要
三、“基本思想”很重要 1.利用等价转化思想判断命题真假及充分与必要条件. 2.利用集合思想、数形结合思想解决充分、必要条件的应用
问题.
1.命题“若α=π4,则tan α=1”的逆否命题是
()
A.若α≠π4,则tan α≠1
B.若α=π4,则tan α≠1
C.若tan α≠1,则α≠π4
答案:C
3.(2020·广东中山一中第一次统测)下列命题中为真命题的是
A.命题“若x>y,则x>|y|”的逆命题
()
B.命题“若x>1,则x2>1”的否命题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点2 命题及其关系、充分条件与必要条件
一、选择题
1.(2011·安徽高考文科·T2)集合{1,2,3,4,5,6},U =}5,4,1{S =,{2,3,4},T =则()
U S T I ð等于( )
(A)}6,5,4,1{ (B) {1,5} (C) {4} (D) {1,2,3,4,5}
【思路点拨】先求出U T ð,之后再和S 取交集.
【精讲精析】选B.U T ð={1,5,6},所以U S T I ð={1,5}.
2.(2011·安徽高考理科·T7)命题“所有能被2整除的整数都是偶数”的否定..
是( ) (A )所有不能被2整除的整数都是偶数
(B )所有能被2整除的整数都不是偶数
(C )存在一个不能被2整除的整数是偶数
(D )存在一个能被2整除的整数不是偶数
【思路点拨】此命题为全称命题,全称命题的否定为相应的特称命题.
【精讲精析】选D. 全称命题的否定为相应的特称命题,即将所有变为存在,并且将结论进行否定.
3.(2011·福建卷理科·T2)若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( )
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分又不必要条件
【思路点拨】解决本题的关键是判断“a =2”与“(a -1)(a -2)=0”两者之间满足怎样的推出关系.
【精讲精析】选A .由(1)(2)0a a --=得1a =或2a =,所以2(1)(2)0a a a =⇒--=, 而(1)(2)a a --=0 ⇒2a =,故2a =是(1)(2)0a a --=的充分而不必要条件.
4.(2011·福建卷文科·T3)若a ∈R,则“a =1”是“|a |=1”的( )
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分又不必要条件
【思路点拨】根据“1a =”与 “||1=a ”之间的推出关系来判定. 【精讲精析】选A .由||1a =得1a =±,||1a ∴
=1a =,而1||1a a =⇒=,即
1a =是||1a =的充分而不必要条件.
5.(2011·山东高考理科·T5)对于函数y=f (x ),x ∈R ,“y=|f(x)|的图象关于y 轴对称”是“y=f (x )是奇函数”的( )
(A )充分而不必要条件 (B )必要而不充分条件
(C )充要条件 (D )既不充分也不必要条件
【思路点拨】考查充分必要条件
【精讲精析】选B.“y=f (x )是奇函数”,图象关于原点对称,所以“y=|f(x)|的图象关于y 轴对称” ,
“y=|f(x)|的图象关于y 轴对称”, y=f (x )的图象关于y 轴对称或者关于原点对称,所以y=f (x )不一定为奇函数.
6.(2011·山东高考文科·T5)已知a ,b ,c ∈R,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( )
(A)若a +b +c ≠3,则222a b c ++<3
(B)若a +b +c =3,则222a b c ++<3
(C)若a +b +c ≠3,则222a b c ++≥3
(D)若222a b c ++≥3,则a +b +c =3
【思路点拨】本题考查命题间的关系,命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝”.
【精讲精析】选A.命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝”,故选A.
7.(2011·湖南高考理科·T2)设集合M={1,2},N={a }2
,则“a=1”是“M N ⊆”的( )
(A )充分不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】本题考查条件之间的关系.解题依据是小范围是大范围的充分条件,大范围是小范围的必要条件.
【精讲精析】选A.当a=1时,N={1},可推出“M N ⊆”.当“M N ⊆”时,有22a 1a 2==或.得到21±=±=a a 或不能推出a=1.所以前者是后者的充分不必要条件.
8.(2011·湖南高考文科T3)“x>1”是“|x|>1”的( )
(A )充分不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既不充分又不必要条件
【思路点拨】本题考查解绝对值不等式和条件的关系.
【精讲精析】选A.判断条件的关系,首先对条件进行等价化简,再利用小范围是大范围的充
分条件,大范围是小范围的必要条件. |x |1x 1x 1⇔->>或<,而且x>1是它的小范围.
9.(2011·江西高考理科·T8) 已知123,,ααα是三个相互平行的平面,平面12,αα之间的
距离为1d ,平面
12,αα23,a α之间的距离为2d ,直线l 与123,,ααα分别相交于123,,P P P .那么“1223P P P P =”是“12d d =”
的( )
(A )充分不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】先根据面面平行的性质定理得出,线线平行,再根据平行线分线段成比例这一性质,易得两者之间的关系.
【精讲精析】选C.如图所示,由于
231323121122312232//,P P N P M //P N,P P d ,P P P P d d .P P d ==αα=⇔同时被第三个平面所截,故有再由平行线分
线段成比例易得,因此
10.(2011·陕西高考理科·T1)设a r ,b r 是向量,命题“若a b =-r r ,则||||a b =r r ”
的逆命题是 ( )
(A )若a b ≠-r r ,则||||a b ≠r r (B )若a b =-r r ,则||||a b ≠r r
(C )若||||a b ≠r r ,则a b ≠-r r (D )若||||a b =r r ,则a b =-r r
【思路点拨】首先确定原命题的条件和结论,然后交换条件和结论的位置即可得到逆命题.
【精讲精析】选D .原命题的条件是a b =-r r ,作为逆命题的结论;原命题的结论是||||a b =r r ,
作为逆命题的条件,即得逆命题“若||||a b =r r ,则a b =-r r ”,故选D .
11.(2011.天津高考理科.T2)设,∈x y R ,则“2≥x 且2≥y ”是“22
4+≥x y ”的( )
(A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】明确22x y 4+≥的几何意义是解题的关键.
【精讲精析】选A.224+≥x y 表示以原点为圆心,以2为半径的圆以及圆外的区域,故A 正确.
12.(2011·天津高考文科·T4)设集合A {x R x 20}=?>,B {x R x 0}=?,C {x R x(x 2)0}=?>, 则“x A B ÎU ”是“x C ∈”的( )
(A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】求出集合C 及集合A 与B 的并集再判断.
【精讲精析】选C.集合C 的解集是{}|02x x x <>或,{}|02A B x x x =<>Q U 或, A B C ∴=U
二、填空题
13.(2011·陕西高考理科·T12)设*n N ∈,一元二次方程240x x n -+=有整数根的充要条件是n = .
【思路点拨】直接利用求根公式进行计算,然后用完全平方数、整除等进行判断计算.
【精讲精析】42
x ±=2=,因为x 是整数,即2
4n …,又因为*n N ∈,取1,2,3,4n =,验证可知3,4n =符合题意,所以n=3,4时可以推出一元二次方程2
40x x n -+=有整数根.
【答案】3或4。