视图与投影

合集下载

第二十九章 投影与视图

第二十九章 投影与视图

第二十九章投影与视图一、课标导航二、核心纲要l.投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.(2)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(如下左图所示).(3)平行投影:由平行光线形成的投影是平行投影(如下中图所示).(4)正投影:投影线垂直于投影面产生的投影叫做正投影(如下右图所示).2.平行投影与中心投影的区别和联系(如下表所示)3.三视图是指从兰个不间位置观察间一个空间几何体而画出的图形,包括主视图、俯视图、左视图(如下图所示)(1)主视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状.(2)俯视图:从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状.(3)左视图:从物体的左面向右面投射所得的视图称左视图-- 能反映物体的左面形状.注:画三视图时应注意三视图的位置要准确,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,主俯长对正、主左高平齐、俯左宽相等.即主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.本节重点讲解:三个投影,三个视图.三 .全能突破基础演练1.下列说法正确的是( ).A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.2.下图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( ).A.①②③④ B.④①③② C.④②③① D.④③②①3.把一个正五棱柱按下图摆放,当投射线由正前方射到后方时,它的正投影是( ).4.(1)如下左图所示,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角尺的对应边长为( ).C2.3.cmD10..cmB20cmA8.cm(2)如下右图所示,在一间黑屋子里用一盏白炽灯照一个球,球在地面上阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小变化情况是( ).A.越来越小 B.越来越大 C.大小不变 D.不能确定5.(1)左下图所示的几何体中主视图、左视图、俯视图都相同的是( ).(2)右下图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是( ).A.两个外切的圆 B.两个内切的圆 C.两个相交的圆 D.两个外离的圆6.由7个大小相同的正方体搭成的几何体如右图所示,则关于它的视图说法正确的是( ).A.正视图的面积最大 B.俯视图的面积最大C.左视图的面积最大 D.三个视图的面积一样大7.(1)左下图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( ).(2)右下图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是( ).A.3个 B .4个 C .5个 D .6个8.在安装太阳能热水器时,主要考虑太阳光线与热水器斜面间的角度(垂直时最佳).如下图所示,当太阳光线与水平面成35角照射时,热水器的斜面与水平面的夹角最好应为9.在平面直角坐标系内,一点光源位于A(O ,4)处,线段CD ⊥x 轴,D 为垂足,C(3,1),则CD 在x 轴上的影子长为__________,点C 的影子坐标为 .能 力 提 升10.太阳光线与地面成60的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,310cm 则皮球 的直径是( ) cm .35.A 38.B 15.C 20.D11.(1)如果用口表示1个立方体,用图表示两个立方体叠加,用■表示三个立方体叠加,左下图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ).(2)右下图是由27个相同的小立方块搭成的几何体,它的三个视图都是3×3的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为( ).11.A 12.B 13.C 14.D12. (1)-个几何体的三视图如下左图所示,其中主视图、左视图都是长为4、宽为x 的矩形,这个几何体 的表面积为l87c ,则x 的值为( ).2.A 21.B 4.C 8.D(2)右下图是某几何体的三视图及相关数据,则下面判断正确的是( ).c a A >. c b B >. 2224.c b a C =+ 222.c b a D =+13.下图是一个上下底密封纸盒的三视图,请根据图中数据,计算这个密封纸盒的表面积为 2cm (结果可保留根号).14.右图是一个几何体的三视图. (1)写出这个几何体的名称.(2)根据所示数据计算这个几何体的表面积.(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.15.用小立方体搭一个几何体,它的主视图和俯视图如下图所示,俯视图中小正方形中的字母表示在该位置小立方体的个数,请解答下列问题: (l)a ,b ,c 各表示几?(2)这个几何体最少由几个小立方体搭成?最多由几个小立方体搭成? (3)当2,1===f e d 时,画出这个几何体的左视图.16.下图所示电线杆上有一盏路灯0,电线杆与三个等高的标杆整齐排列在马路一侧的一条直线上,AB 、CD 、EF 是三个标杆,相邻的两个标杆之间的距离都是2m ,已知AB 、CD 在灯光下的影长分别为.6.0,6.1m DN m BM ==(1)请画出路灯0的位置和标杆EF 在路灯灯光下的影子. (2)求标杆EF 的影长,中 考 链 接17.(2012.湖北成宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池,类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,如下左图所示,则该几何体为( ).18.(2013.湖北荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如下左图所示,则它的俯视图为( ).19.(2012.湖南衡阳)一个圆锥的三视图如下图所示,则此圆锥的底面积为( ).230.cm A π 225.cm B π 250.cm C π 2100.cm D π巅 峰 突 破20.如下图所示,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC>AB ),影长的最大值为m ,最小值为n ,那么下列结论:;;;AB n AC m AC m ==>③②①④影子的长度先增大后减小.其中,正确的结论的序号是21.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律,如下图所示,在同一时间,身高为1.6m 的小明(AB)的影子BC 长是3m ,而小颖(EH)刚好在路灯灯泡的正下方H 点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G . (2)求路灯灯泡的垂直高度GH. (3)如果小明沿线段BH 向小颖(点H)走去,当小明走到BH 中点1B 处时,求其影子11C B 的长;当小明继续走剩下路程的31到2B 处时,求其影子22C B 的长;当小明继续走剩下路程的41到3B 处,……按此规律继续走下去,当小明走剩下路程的11+n 到n B 处时,其影子n n C B 的长为 m(直接用n的代数式表示).。

投影与视图2

投影与视图2

知识点一、投影:(一)投影:一般地,用光线照射物体,在某个平面上得到的影子叫做物体的投影。

其中,照射光叫做线,投影所在的平面叫做面。

(二)平行投影:由光线形成的投影是平行投影,如物体在太阳光的照射下的影子。

(三)中心投影:由(点光源)发出的光线形成的投影叫做中心投影,如灯泡发出的光照射下的影子。

(四)正投影:投影线于投影面产生的投影,叫做正投影;性质:当线段平行于投影面时,它的正投影长短,当线段倾斜于投影面时,它的正投影线段,当线段垂直于投影面时,它的正投影。

知识点二、视图(一)视图:当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图。

视图也可以看作物体在某一个角度的光线下的投影。

(二)三视图:(1)主视图:在正面内得到的观察物体的视图叫做主视图。

(2)俯视图:在水平面内得到的观察物体的视图,叫做俯视图。

(3)左视图:在侧面得到的观察物体的视图,叫做左视图。

(三)三视图的位置确定:主视图要在左上边,它下方是俯视图,左视图放在右边。

如下图主视图与俯视图长对,主视图与左视图高,左视图与俯视图宽。

(四)三视图的画法:(1)确定主视图的位置,画出主视图;(2)在主视图正下方画出俯视图,注意与主视图“长对正”;(3)在主视图正右方画出左视图,注意与主视图“高平齐”与俯视图“宽相等”。

(五)由三视图想象立体图形:要先分别想象立体图形的前面、上面和左侧面,然后再综合起来考虑整个图形。

(六)求立体图形表面积:一般先将立体图形,再按平面图形计算。

考点一、投影例1.在平行投影中,两人的高度和他们的影子。

考点:平行投影思路点拨:根据平行投影及三角形相似。

答案:例2.小军晚上到广场去玩,他发现有两人的影子一个向东,一个主视图左视图俯视图经典例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。

若有其它补充可填在右栏空白处。

更多精彩请参看网校资源ID:#jdlt0#251283向西,于是他肯定地说:“广场上的大灯泡一定位于两人”。

知识归纳:视图与投影

知识归纳:视图与投影

知识归纳:视图与投影一、正确理解五个概念1.投影:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.2.平行投影:太阳光可以看成平行光线,像这样的光线所形成的投影称为平行投影.3.中心投影:灯光的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影.4.正投影:在平行投影中,光线是竖直照射在水平面上的。

像这种平行投影又叫做正投影.5.三视图的规定我们从不同的方向观察同一物体时,可能看到不同的图形.其中,把从正面看到的图形叫做主视图,从左面看到的图形叫做左视图,从上面看到的图形叫做俯视图.二、搞清四个关系1.阳光与影子的关系(1)问题在阳光下的影长与方向随时间的变化而变化,在北半球,早上太阳刚刚从东方升起的时候,物体的影子指向正西方,影子较长;随后影子逐渐指向北方,越来越短;到正午时,物体在阳光下的影子指向正南方,影子最短;下午影子逐渐指向东方,越来越长,到太阳即将从西方落下的时候,影子指向正东方,影子较长.注意:①物体影子的变化实际上是随太阳位置的变化而变化的;②利用不同时刻影子的指向的不同可辨别方向,这是野外活动确定方向的一种重要方法.(2)在同一时刻,不同物体的高度与影子长度的比是相同的.注意:阳光下的影子的这个性质为我们提供了一种测量较高物体高度的一种重要方法,例如,我们要测量一个旗杆的高度,只需在某一时刻测出旗杆的影长,即可利用上述的比例关系算出旗杆的高度.2.灯光与影子的关系(1)在某个灯光下固定物体的影长与方向是一定的,对路灯而言,移动的物体离路灯越近,影子越短,离路灯越远,影子越长.(2)在灯光下,不同位置的物体,影子的长短和方向都是不同的,但是任何一个物体上一点与其影子上对应的连线一定经过光源所在的点.注意:由于两条直线确定一个点,所以我们只要知道了同一灯光下两个不同物体及它们的影子的特点确定这个影子是在灯光下的还是在阳光下的.3.平行投影与视图的关系物体的视图实际上就是该物体在某一平行光线照射下在平面上的投影,不同的视图只是光线照射的方向不同.4.画三视图的规律画三视图时,首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的和,俯视图反映物体的和,左视图反映物体的和.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廊线通常画成实线,看不见部分的轮廊线通常画成虚线.三、正确地进行区分和观察1.会区分同一物体在阳光下的影子与在灯光下的影子由上述的阳光与影子的关系及灯光与影子的关系可知,物体在灯光与阳光下的影子有较大的区别,所以我们可以根据物体影子的特点确定这个影子是在灯光下的还是阳光下的.2.观测区域的选择问题人在观察某个区域时,经常营业员要观察的部分落在盲区内而看不到,这时人们需要做的就是根据需要改变观测的地点(即改变视点的位置),以求达到最好的观测效果.注意:在实际的观测中,我们要根据不同的需要来选择合理的观测点(视点).四、典例剖析例1.用小立方块搭一个几何体,使得它的主视图和俯视图如图,这样的几何体只有一种吗它最少需要多少个小立方块最多需要多少个小立方块主视图俯视图分析:根据主视图第一列有3个小立方块,可以判断,俯视图中,第一列的最大数字是3,第二列有2个小立方块,第二列的最大数字是2;第三列有1个小立方块,第二列的最大数字是1,如右图所示:①空余格内每格至少为1,因此,最少需要3+2+1+1+1+1+1=10个小立方块;②空余格内第一列两格至多为3,解:这样的几何体不唯一,它最少需要10个小立方块,最多需要16个小立方块.点评:本题主要考查从不同角度观察物体形状的能力、构建实物模型的能力,符合《课程标准》中指出的,能辨认从不同方位看物体的形状与相对位置.。

《投影和视图》课件

《投影和视图》课件

人性化设计
未来的投影和视图技术将更加注重人性化设计,以满足不同用户的需求和习惯,提高产品的易用性和舒适性。
感谢观看
THANKS
混合现实(MR)
全息投影技术能够将三维图像在空中呈现,无需任何介质,为演出、展览等领域带来全新的视觉体验。
全息投影
跨界应用
投影和视图技术的应用领域将越来越广泛,不仅局限于娱乐、教育等领域,还将拓展到医疗、工业、建筑等领域。
融合创新
未来投影和视图技术将更加注重与其他技术的融合创新,如人工智能、物联网等,创造出更加智能化、个性化的产品和服务。
总结词
视图是指从某一特定角度观察三维物体,并将物体投影到二维平面上形成的图像。视图主要用于工程制图、建筑设计等领域,用于表达物体的形状、尺寸和结构等信息。
要点一
要点二
详细描述
视图是工程制图和建筑设计等领域中常用的表现形式,它是从某一特定角度观察三维物体,并将物体投影到二维平面上形成的图像。通过视图,可以清晰地表达物体的形状、尺寸和结构等信息,方便人们进行设计和分析。在工程制图中,常用的视图包括正视图、侧视图、俯视图等;在建筑设计中,常用的视图还包括透视图、轴测图等。
定义
透视投影能够表现出物体的立体感、空间感和远近感,给人更加真实的感觉。
特点
在绘画、摄影等领域广泛应用,用于表现物体的立体感和空间感。
应用
三视图的形成和原理
平行投影
当物体相对于投影面平行移动时,物体的投影形状不会改变。这种投影方式用于绘制三视图。
三视图之间的关系
主视图、俯视图和左视图之间存在一定的对应关系。俯视图和主视图的高度一致,左视图和主视图的高度一致。俯视图和左视图的宽度视图的发展趋势和未来展望
随着显示技术的不断进步,投影仪的分辨率越来越高,能够呈现出更加清晰、逼真的画面。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结投影与视图主要涉及到平行投影、透视投影、三维图形的多视图投影,各种视图对应的关系等。

在本文中,我们将对这些概念进行详细的讨论,并深入探讨它们在工程学和设计领域中的应用。

一、平行投影平行投影是投影中最基本的一种类型。

它是通过平行光线将三维对象投影到二维平面上的过程。

在平行投影中,光线是平行的,因此投影到平面上的图形保持了原始对象的大小和形状。

在工程图纸中,平行投影通常用于绘制多视图投影和透视投影。

在建筑设计中,平行投影也经常用于绘制建筑平面图和立面图等。

平行投影对于工程设计师和建筑师来说是非常重要的,因为它能够准确地表达三维对象的形状和尺寸,在设计和制造过程中起到至关重要的作用。

二、透视投影透视投影是一种通过透视原理将三维对象投影到二维平面上的过程。

在透视投影中,光线不再是平行的,而是会汇聚到一个点上,因此投影到平面上的图形会呈现出远近关系和透视效果。

透视投影常常用于绘制逼真的图像,如绘画、摄影和电影等。

在工程设计中,透视投影往往用于展示设计概念和效果图,以便更好地向客户展示设计方案和效果。

在建筑设计中,透视投影也经常用于绘制逼真的建筑效果图和室内设计图。

透视投影对于产品设计师、室内设计师和广告设计师来说是非常重要的,因为它能够更好地展示设计概念和效果,让客户更好地理解和接受设计方案。

三、多视图投影多视图投影是一种通过多个视图来描述三维对象的投影方法。

在多视图投影中,三维对象通常被投影到正面视图、顶视图和侧视图等不同的平面上,从而得到多个视图来描述对象的形状和尺寸。

多视图投影是工程图纸中常用的一种投影方法,它能够全面准确地表达对象的各个方面,从而为设计和制造提供必要的信息。

在多视图投影中,正面视图、底视图和侧视图等不同的视图之间有一定的关系,设计师需要根据这些关系来确定各个视图的尺寸和位置。

多视图投影对于工程师和设计师来说是非常重要的,因为它能够为设计和制造提供必要的信息,帮助他们更好地理解并表达对象的形状和尺寸。

2-1 投影与视图-投影法简述

2-1 投影与视图-投影法简述
正投影图 也称视图
直观性差 度量性好 作图简便

§2-1 投影法简述
二、正投影的基本性质
1、实形性
2、积聚性
3、类似性
§2-1 投影法简述
本节结束
四、工程上常用的几种投影图
按照用途和形体的结构特点,工程上常用以下 几种投影图: 1.透视图 2.轴测图 3.多面正投影图 4.标高投影
§2-1 投影法简述
四、工程上常用的几种投影图
按中心投影法原 理绘制的透视图
按平行投影法原 理绘制的轴测图
§2-1 投影法简述
四、工程上常用的几种投影图
按正投影法原理 绘制的多面正投 影图。
§2-1 投影法简述
四、工程上常用的几种投影图
按正投影法原理绘 制的标高投影
§2-1 投影法简述
§2-1 投影法简述
一、投影法 二、正投影的基本性质
一、投影法
投影面 投射线
投射中心 投影 物体
图 投影的构成要素
投影法:投射线通过物体,向选定的面投射,并在该面上得到图形的方法。 所得到的图形称作投影(图)
术语:投射线、投射中心、投影面、投影
构成投影的三要素:1)投射线 2)物体 3)投影面 §2-1 投影法简述
投影法的分类
工程上常用的投影法有两类:
中心投影法(投射线汇交于一点)
平行投影法(投射线平行)
§2-1 投影法简述
投影法的分类
平行投影法又分为两类:
斜投
§2-1 投影法简述
几种投影法的比较
中心投影法 投影法 平行投影法 正投影 斜投影
直观性好 度量性差 作图复杂 直观性稍差 度量性好 作图较繁

投影与视图九年级知识点

投影与视图九年级知识点

投影与视图九年级知识点一、引言投影与视图是几何学中的基础概念之一,它们帮助我们更好地理解和描述三维空间中的物体。

在九年级几何学课程中,学生将学习如何通过投影和视图来描绘物体的形状和结构。

本文将探讨投影与视图的概念、分析它们的应用以及解决相关问题的方法。

二、投影的概念1. 投影是指一个物体在光线或平面上的阴影或映像。

在几何学中,投影通常用于描述一个物体在平面上的阴影或三维空间中的投射。

2. 平行投影是指从一个平面上的点到另一个平面上的点的映射。

在平行投影中,物体的形状和大小保持不变,只有位置发生变化。

3. 垂直投影是指从一个平面上的点到另一个平面上的点的映射,同时保持垂直于平面的方向。

垂直投影常用于描述物体的正面、侧面和顶面视图。

三、视图的概念1. 视图是物体在不同平面上的投影。

常用的视图有正面视图、侧面视图和顶面视图。

2. 正面视图是指物体在一个垂直于平面的平面上的投影。

它展示了物体的正面形状、尺寸和特征。

3. 侧面视图是指物体在一个与正面视图垂直的平面上的投影。

它展示了物体的侧面形状、尺寸和特征。

4. 顶面视图是指物体在一个平行于底面的平面上的投影。

它展示了物体的顶面形状、尺寸和特征。

四、投影与视图的应用1. 工程和建筑:投影与视图在设计和建造过程中起着重要作用。

工程师和建筑师通过绘制投影和视图来展示他们的设计概念,提供给施工人员一个清晰的指导。

2. 制造业:在制造业中,投影和视图被用来描述产品的形状和结构,以及制造过程中的工艺要求。

这有助于确保产品的质量和符合设计要求。

3. 艺术和设计:投影与视图对于艺术家和设计师来说也是非常重要的。

通过观察投影和视图,他们可以更好地理解和描绘物体的形状、光影效果和透视。

五、解决问题的方法1. 通过观察物体和理解其几何特征,可以确定物体的投影和视图所在的平面。

2. 使用标尺和直角尺来测量物体的尺寸和角度,以确保正确绘制投影和视图。

3. 利用几何理论和原理,根据已知条件和关系绘制正确的投影和视图。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结在我们的日常生活和学习中,投影与视图是一个重要的数学概念,它不仅在数学领域有着广泛的应用,在工程、建筑、设计等实际领域也发挥着关键作用。

接下来,让我们一起深入了解投影与视图的相关知识点。

一、投影投影是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。

1、中心投影由同一点(点光源)发出的光线形成的投影叫做中心投影。

比如,夜晚路灯下的人影就是中心投影的例子。

其特点是:等长的物体平行于地面放置时,在灯光下,离点光源越近的物体的影子越短,离点光源越远的物体的影子越长。

2、平行投影由平行光线(太阳光线)形成的投影称为平行投影。

平行投影又分为正投影和斜投影。

正投影是指投射线垂直于投影面的平行投影。

在平行投影中,同一时刻,不同物体的物高和影长成比例。

二、视图视图是将物体按正投影向投影面投射所得到的图形。

1、三视图三视图包括主视图、俯视图和左视图。

主视图:从物体的前面向后面投射所得的视图。

俯视图:从物体的上面向下面投射所得的视图。

左视图:从物体的左面向右面投射所得的视图。

三视图的位置关系:主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右方。

三视图的大小关系:长对正、高平齐、宽相等。

即主视图与俯视图的长相等,主视图与左视图的高相等,俯视图与左视图的宽相等。

2、常见几何体的三视图(1)正方体:三视图都是正方形。

(2)长方体:主视图、左视图是长方形,俯视图是长方形。

(3)圆柱:主视图、左视图是长方形,俯视图是圆。

(4)圆锥:主视图、左视图是三角形,俯视图是圆及圆心。

(5)球:三视图都是圆。

三、根据视图还原几何体根据三视图还原几何体时,要先分别根据主视图、俯视图和左视图想象几何体的前面、上面和左面的形状,然后综合起来考虑整体形状。

四、投影与视图的应用1、在建筑设计中,设计师需要通过绘制三视图来准确表达建筑物的形状和尺寸,以便施工人员能够按照设计进行施工。

2、在机械制造中,工程师需要根据零件的三视图来制造零件,确保零件的精度和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

视图与投影
一、投影
1.投影
在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.
2.平行投影、中心投影、正投影
(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.
【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.
(2)平行投影:投射线相互平行的投影称为平行投影.
【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.
(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.
二、视图
1.视图
由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图
(1)主视图:从正面看得到的视图叫做主视图.
(2)左视图:从左面看得到的视图叫做左视图.
(3)俯视图:从上面看得到的视图叫做俯视图.
【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.
3.三视图的画法
(1)画三视图要注意三要素:
主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.
简记为“主俯长对正,主左高平齐,左俯宽相等”.
(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.
三、几何体的展开与折叠
1.常见几何体的展开图
2.正方体的展开图
正方体有11种展开图,分为四类:
第一类,中间四连方,两侧各有一个,共6种,如下图:
第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;
第四类,两排各有三个,也只有1种,如图11.
考向一三视图
在判断几何体的三视图时,注意以下两个方面:
(1)分清主视图、左视图与俯视图的区别;
(2)看得见的线画实线,看不见的线画虚线.
典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是
A.圆锥B.长方体C.球D.圆柱
【答案】D
【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,
∴此几何体为圆柱.故选D.
【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.
1.【江西省吉安市吉州区2019–2020学年九年级上学期期末数学试题】如图所示的几何体的俯视图是
A.B.
C.D.
考向二几何体的还原与计算
解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.
典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是
A.B.C.D.
【答案】D
【解析】如图,左视图如下:,故选D.
2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为
A.9 B.5
C.4 D.3
3.如图是一零件的三视图,则该零件的表面积为
A.15πcm2B.24πcm2
C.51πcm2D.66πcm2
考向三投影
1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.
3.物体的投影分为中心投影和平行投影.
典例3【山东省青岛市平度市2019–2020学年九年级上学期期末数学试题】如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是
A.①②③④B.④③②①
C.④③①②D.②③④①
【答案】C
【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.
【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.
4.【陕西省渭南市富平县2019–2020学年九年级上学期期末数学试题】小明在太阳光下观察矩形
木板的影子,不可能是
A.平行四边形B.矩形C.线段D.梯形
考向四立体图形的展开与折叠
正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.
典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是
A.标号为2的顶点B.标号为3的顶点
C.标号为4的顶点D.标号为5的顶点
【答案】D
【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.
5.如图所示正方体的平面展开图是
A.B.
C.D.
1.【江西省鹰潭市贵溪市第二中学2019–2020学年九年级上学期期末数学试题】如图所示几何体的主视图是
A.B.C.D.
2.【山西省实验中学2019–2020学年七年级上学期期末数学试题】如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是
A.B.
C.D.
3.【辽宁省丹东市2019–2020学年九年级上学期期末数学试题】如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是
A.③—④—①—②B.②—①—④—③
C.④—①—②—③D.④—①—③—②
4.【陕西省西安市碑林区铁一中学2019–2020学年九年级上学期期末数学试题】如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为
A.6.2米B.10米C.11.2米D.12.4米
5.如图,(1)是几何体(2)的___________视图.
6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.
7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.
8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体
(被遮挡的不计).
9.画出如图所示物体的主视图、左视图、俯视图.
10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.
1.(2019•江西)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为
A.B.
C.D.
2.(2019•贵港)某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是
A.B.
C.D.
3.(2019•赤峰)如图是一个几何体的三视图,则这个几何体是
A.三棱锥B.圆锥
C.三棱柱D.圆柱
4.(2019•吉林)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为
A.B.
C.D.
5.(2019•黄冈)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是
A.B.
C.D.
6.(2019•河南)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图
②.关于平移前后几何体的三视图,下列说法正确的是
A.主视图相同B.左视图相同
C.俯视图相同D.三种视图都不相同
7.(2019•河北)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=
A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x 8.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是
A.B.C.D.
9.(2019•新疆)下列四个几何体中,主视图为圆的是
A.B.C.D.
10.(2019•安徽)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是
A.B.C.D.
11.(2019•潍坊)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是
A.俯视图不变,左视图不变B.主视图改变,左视图改变
C.俯视图不变,主视图不变D.主视图改变,俯视图改变
12.(2019•长沙)某个几何体的三视图如图所示,该几何体是
A.B.C.D.
13.(2019•深圳)下列哪个图形是正方体的展开图
A.B.C.D.
14.(2019•济宁)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是
A.B.
C.D.
15.(2019•北京)在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)。

相关文档
最新文档