北京市2015年中考数学真题试题(含扫描答案)

合集下载

2015年广西中考数学真题卷含答案解析

2015年广西中考数学真题卷含答案解析

2015年南宁市初中毕业升学考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.3的绝对值是( )A.3B.-3C.13D.-132.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( )3.南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营.首条BRT西起南宁火车站,东至南宁东站,全长约为11300米.其中数据11300用科学记数法表示为( )A.0.113×105B.1.13×104C.11.3×103D.113×1024.某校男子足球队的年龄分布如条形图所示,则这些队员年龄的众数是( )A.12B.13C.14D.155.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于( )A.30°B.45°C.60°D.90°6.不等式2x-3<1的解集在数轴上表示为( )7.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35°B.40°C.45°D.50° 8.下列运算正确的是( )A.4ab÷2a=2abB.(3x 2)3=9x 6C.a 3·a 4=a 7D.√6÷√3=2 9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于( ) A.60° B.72° C.90° D.108°10.如图,已知经过原点的抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=-1.下列结论中:①ab>0;②a+b+c>0;③当-2<x<0时,y<0.正确的个数是( )A.0个B.1个C.2个D.3个11.如图,AB 是☉O 的直径,AB=8,点M 在☉O 上,∠MAB=20°,N 是MB⏜的中点,P 是直径AB 上一动点.若MN=1,则△PMN 周长的最小值为( )A.4B.5C.6D.712.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x,-x}=2x+1x的解为( )A.1-√2B.2-√2C.1-√2或1+√2D.1+√2或-1第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ax+ay= .14.要使分式1x -1有意义,则字母x 的取值范围是 .15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸取一个小球,则取出的小球标号是奇数的概率是 .16.如图,在正方形ABCD 的外侧,作等边△ADE,则∠BED 的度数为 °.17.如图,点A 在双曲线y=2√3x(x>0)上,点B 在双曲线y=kx (x>0)上(点B 在点A 的右侧),且AB ∥x轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .18.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第1次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,……,按照这种移动规律进行下去,第n次移动到达点A n.如果点A n与原点的距离不小于20,那么n的最小值是.三、解答题(本大题共2小题,每小题满分6分,共12分)19.计算:20150+(-1)2-2tan45°+√4..20.先化简,再求值:(1+x)(1-x)+x(x+2)-1,其中x=12四、解答题(本大题共2小题,每小题满分8分,共16分)21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点B顺时针旋转90°后得到△A2BC2.请在图中画出△A2BC2,并求出线段BC在旋转过程中所扫过的面积.(结果保留π)22.今年5月份,某校九年级学生参加了南宁市中考体育考试.为了了解该校九年级(1)班学生的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班学生人数和m的值;(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流.请用“列表法”或“画树状图法”,求出恰好选到一男一女的概率.五、解答题(本大题满分8分)23.如图,在▱ABCD中,E,F分别是AB,DC边上的点,且AE=CF.(1)求证:△ADE≌△CBF;(2)若∠DEB=90°,求证:四边形DEBF是矩形.六、解答题(本大题满分10分)24.如图①,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上,修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道的宽为a米.图①(1)用含a的式子表示花圃的面积;,求此时甬道的宽;(2)如果甬道所占面积是整个长方形空地面积的38(3)已知某园林公司修建甬道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图②所示.如果学校决定由该公司承建此项目,并要求修建的甬道宽不少于2米且不超过10米,那么甬道宽为多少米时,修建的甬道和花圃的总造价最低?最低总造价为多少元?图②七、解答题(本大题满分10分)25.如图,AB是☉O的直径,C,G是☉O上两点,且AC⏜=CG⏜.过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连结BC,交OD于点F.(1)求证:CD是☉O的切线;(2)若OFFD =23,求∠E的度数;(3)连结AD,在(2)的条件下,若CD=√3,求AD的长.八、解答题(本大题满分10分)26.在平面直角坐标系中,已知A,B是抛物线y=ax2(a>0)上两个不同的动点,其中A在第二象限,B在第一象限.(1)如图①所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A,B 两点的横坐标的乘积;(2)如图②所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A,B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由;(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P,C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.图①图②答案全解全析:一、选择题1.A因为|3|=3,所以选项A正确.故选A.2.B由题意可知,主视图有两层,上面的一层有一个正方形,在左侧下面的一层有两个正方形.选项B符合.故选B.3.B11300=1.13×104.故选B.4.C14岁的人数最多,所以众数为14.故选C.5.A∵DE∥BC,∴∠CAE=∠C=30°.故选A.6.D∵2x-3<1,∴2x<4,∴x<2.在数轴上表示应为从2画起(空心),向左,选项D符合题意,故选D.7.A∵AB=AD,∴∠ADB=∠B=70°,∵AD=DC,∴∠C=∠DAC.∵∠ADB是△ADC的外∠ADB=35°.故选A.角,∴∠C=128.C4ab÷2a=2b,选项A错误;(3x2)3=27x6,选项B错误;√6÷√3=√2,选项D错误;a3·a4=a7,选项C正确.故选C.9.B由(n-2)·180°=540°,得n=5,所以每一个外角等于360°=72°.故选B.5<0,所以ab>0,所以①正确;当x=1时,y=a+b+c>0,所以②正10.D因为对称轴为直线x=-b2a确;由对称轴可知抛物线与x轴的交点坐标为(-2,0),(0,0),所以-2<x<0时,图象在x轴下方,即y<0,所以③正确.故选D.11.B△PMN的周长为PM、PN、MN的和,其中MN=1,所以只要PM、PN的和最小即可.如图,取N关于AB的对称点C,连结MC交AB于P,此时PM、PN的和最小,PM、PN的和就是MC的长⏜的中点,∴∠NOB=20°.∵直径度.连结OM、ON、OC.∵∠MAB=20°,∴∠MOB=40°.∵N为BMAB⊥CN,∴∠COB=20°.∴∠MOC=60°.∵OM=OC,∴△MOC为等边三角形.∵AB=8,∴MC=OM=4.∴△PMN的周长的最小值为1+4=5.故选B.12.D(1)当x>-x,即x>0时,max{x,-x}=x,2x+1=x,解这个方程可得x=1±√2.经检验,x=1±√2是原方程的解.∵x>0,∴x=1+√2.x(2)当x<-x,即x<0时,max{x,-x}=-x,2x+1=-x,解这个方程可得x=-1.经检验,x=-1是原方程的解.x综上所述,x=1+√2或x=-1.故选D.评析本题是新概念学习题,考查的是分类讨论思想与解一元二次方程.属中档题.二、填空题13.答案a(x+y)解析ax+ay=a(x+y).14.答案x≠1解析若分式1有意义,则分母x-1≠0,即x≠1.x-115.答案0.6解析一共有5个小球,标号是奇数的小球有3个,所以取出的小球标号是奇数的概率是3÷5=0.6.16.答案45解析由题意可知,∠BAE=150°,BA=AE,∴∠AEB=15°.∴∠BED=45°.17.答案 6√3解析 作AD ⊥x 轴交x 轴于点D,∵∠AOC=60°,∴AD=√3OD,∴可设A(x,√3x). ∵点A 在双曲线y=2√3x(x>0)上,∴x ·√3x=2√3. ∴x 2=2.∵x>0,∴x=√2.∴A(√2,√6).∴OA=2√2.∵四边形OABC 是菱形, ∴AB=OA=2√2.∵AB ∥x 轴,∴B(3√2,√6). ∵点B 在双曲线y=k x(x>0)上, ∴k=xy=3√2×√6=6√3.评析 本题考查了反比例函数与菱形的综合应用,需要借助反比例函数关系式求出菱形的边长,再利用菱形的性质求出反比例函数图象上的点的坐标.属中档题. 18.答案 13解析 根据题意,写出移动后各点所表示的数:A 1:-2 A 2:4 A 3:-5 A 4:7 A 5:-8 A 6:10 A 7:-11 A 8:13 A 9:-14 A 10:16 A 11:-17 A 12:19 A 13:-20如果点A n 与原点的距离不小于20,那么n 的最小值是13.三、解答题19.解析 原式=1+1-2×1+2(4分) =2.(6分)20.解析 原式=1-x 2+x 2+2x-1(2分) =2x.(4分)当x=12时,原式=2×12=1.(6分)四、解答题21.解析 (1)△A 1B 1C 1如图所示.(3分,正确作出一点给1分) (2)△A 2BC 2如图所示.(6分,正确作出一点给1分)在Rt △ABC 中,AB=2,AC=3, ∴BC=√22+32=√13.(7分) ∵∠CBC 2=90°,∴S 扇形BCC 2=90π(√13)2360=13π4.(8分)22.解析 (1)全班学生人数:15÷30%=50(人).(2分) m=50-2-5-15-10=18.(3分)(2)51≤x<56.(5分)(3)画树状图或列表如下:或男1男2 女 男1男2男1女男1 男2 男1男2女男2女男1女男2女(7分)由图或表可知,所有可能出现的结果共有6种,并且它们出现的可能性相等,“一男一女”的结果有4种,即:男1女,男2女,女男1,女男2. ∴P(一男一女)=23.(8分) 五、解答题23.证明 (1)∵四边形ABCD 是平行四边形, ∴AD=CB,∠A=∠C.(2分) ∵AE=CF,(3分)∴△ADE ≌△CBF.(4分)(2)证法一:∵△ADE ≌△CBF, ∴DE=BF.(5分)∵四边形ABCD 是平行四边形,∴AB=CD.∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)证法二:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.(5分)∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)六、解答题24.解析 (1)花圃的面积为(60-2a)(40-2a)平方米或(4a 2-200a+2 400)平方米.(2分)(2)(60-2a)(40-2a)=60×40×(1-38),(4分)即a 2-50a+225=0,解得a 1=5,a 2=45(不合题意,舍去).∴此时甬道的宽为5米.(5分)(3)∵2≤a ≤10,花圃面积随着甬道宽的增大而减小,∴800≤x 花圃≤2 016.由图象可知,当x ≥800时,设y 2=k 2x+b,因为直线y 2=k 2x+b 经过点(800,48 000)与(1 200,62 000),所以{800k 2+b =48 000,1 200k 2+b =62 000.解得{k 2=35,b =20 000.∴y 2=35x+20 000.(6分)当x ≥0时,设y 1=k 1x,因为直线y 1=k 1x 经过点(1 200,48 000),所以1 200k 1=48 000. 解得k 1=40.∴y 1=40x.(7分)设修建甬道、花圃的总造价为y 元,依题意,得解法一:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000=40(2 400-4a 2+200a-2 400)+35(4a 2-200a+2 400)+20 000(8分)=-20a 2+1 000a+104 000=-20(a-25)2+116 500.∵-20<0,∴当a<25时,y 随a 的增大而增大.(9分)而2≤a ≤10,∴当a=2时,y 最小=105 920.∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105 920元.(10分) 解法二:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000(8分)=-5x 花圃+116 000.∵-5<0,∴y 随x 花圃的增大而减小.(9分)而800≤x 花圃≤2 016,∴当x花圃=2016时,y最小=105920.∴当x花圃=2016时,4a2-200a+2400=2016.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)解法三:y=y甬道+y花圃=40x甬道+35(60×40-x甬道)+20000(8分)=5x甬道+104000.∵5>0,∴y随x甬道的增大而增大.(9分)而800≤x花圃≤2016,∴384≤x甬道≤1600.∴当x甬道=384时,y最小=105920.∴当x甬道=384时,60×40-(4a2-200a+2400)=384.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)评析本题考查的是一元二次方程与函数的实际应用,需要通过实际问题的情境和函数图象列出合理的表达式,属较难题.七、解答题25.解析(1)证法一:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.∴OC∥BD.(2分)∵CD⊥BD,∴OC⊥CD.∴CD是☉O的切线.(3分)证法二:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.(2分)∵CD⊥BD,∴∠DCB+∠CBG=90°.∴∠DCB+∠OCB=90°.∴OC⊥CD.∴CD是☉O的切线.(3分)(2)∵OC ∥BD,∴△OCF ∽△DBF,△EOC ∽△EBD.(4分,至少写出一对三角形相似给1分)∴OC BD =OF DF ,OC BD =OE BE. ∵OF DF =23,∴OE BE =23.(5分)设OC=OB=r,OE=x,则x x+r =23, 解得x=2r.∴OE=2r.(6分)在Rt △OEC 中,sin E=OC OE =r 2r =12,∴∠E=30°.(7分)(3)∵∠E=30°,CD ⊥BD,∴∠ABD=60°,∠ABC=∠CBD=30°.∴BC=2CD=2√3,BD=CD tan30°=3.解法一:∵OC BD =OF DF =23,∴OC=2,AB=4.(8分)连结AG.∵AB 是☉O 的直径,∴∠AGB=90°,∵∠ABD=60°,∴∠BAG=30°.∴BG=12AB=2,AG=2√3.(9分)∴DG=BD -BG=1.∴AD=√AG 2+DG 2=√(2√3)2+12=√13.(10分)解法二:连结AC.∵AB 是☉O 直径,∴∠ACB=90°.∴AB=BC cos ∠ABC =2√3cos30°=4.(8分)过点D 作DM ⊥AB 于点M.∴DM=BD ·sin 60°=3√32,BM=BD ·cos 60°=32. ∴AM=AB -BM=4-32=52.(9分)∴AD=2+AM 2√(3√32)2+(52)2=√13.(10分)八、解答题26.解析 (1)∵抛物线y=ax 2(a>0)关于y 轴对称,AB 与x 轴平行,∴A,B 关于y 轴对称.∵∠AOB=90°,AB=2,∴A(-1,1),B(1,1).(1分)∴1=a(-1)2,解得a=1.∴抛物线的解析式为y=x 2.(2分)∵A(-1,1),B(1,1),∴A,B 两点的横坐标的乘积为-1.(3分)(2)过A,B 分别作AG,BH 垂直x 轴于G,H.由(1)可设A(m,m 2),B(n,n 2),m<0,n>0.(4分)∵∠AOB=∠AGO=∠BHO=90°,∴∠AOG+∠BOH=∠AOG+∠OAG=90°.∴∠BOH=∠OAG.(5分)∴△AGO ∽△OHB.∴AG OG =OH BH.(6分) ∴m 2-m =n n 2,化简得mn=-1.∴A,B 两点的横坐标的乘积是常数-1.(7分)(3)解法一:过A,B 分别作AA 1,BB 1垂直y 轴于A 1,B 1.设A(m,m 2),B(n,n 2),D(0,b),m<0,n>0,b>0.∵AA 1∥BB 1,∴△AA 1D ∽△BB 1D.∴AA 1DA 1=BB 1B 1D ,即-m m 2-b =nb -n 2,化简得mn=-b. ∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=145.∴P (-125,145).(10分)解法二:设直线AB:y=kx+b(k ≠0),A(m,m 2),B(n,n 2),m<0,n>0,b>0.联立得{y =kx +b,y =x 2,得x 2-kx-b=0,依题意可知m,n 是方程x 2-kx-b=0的两根. ∴m 2-km-b=0,n 2-kn-b=0.∴nm 2-kmn-bn=0,mn 2-kmn-bm=0.两式相减,并化简得mn=-b.∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=14.∴P (-125,145).(10分)评析 本题考查的是函数图象与三角形的综合应用,需要借助抛物线表示出点的坐标,并借助相似三角形的性质、勾股定理列出方程.属较难题.。

江苏省宿迁市2015年中考数学真题试题(含扫描答案)

江苏省宿迁市2015年中考数学真题试题(含扫描答案)

江苏省宿迁市2015年初中毕业暨升学考试数学一、选择题(本大题共8小题,每小题3分,共24分)1、21-的倒数是 A 、2- B 、2 C 、21- D 、21 2、若等腰三角形中有两边长分别为2和5,则这个三角形的周长为A 、9B 、12C 、7或9D 、9或123、计算23)(a -的结果是 A 、5a - B 、5a C 、6a - D 、6a4、如图所示,直线b a 、被直线c 所截,1∠与2∠是A 、同位角B 、内错角C 、同旁内角D 、邻补角5、函数2-=x y 中自变量x 的取值范围是A 、2>xB 、2<xC 、2≥xD 、2≤x6、已知一个多边形的内角和等于它的外角和,则这个多边形的边数为A 、3B 、4C 、5D 、67、在平面直角坐标系中,若直线b kx y +=经过第一、三、四象限,则直线k bx y +=不经过的象限是A 、第一象限B 、第二象限C 、第三象限D 、第四象限8、在平面直角坐标系中,点A 、B 的坐标分别为(-3,0)、(3,0),点P 在反比例函数xy 2=的图像上,若△PAB 为直角三角形,则满足条件的点P 的个数为A 、2个B 、4个C 、5个D 、6个二、填空题(本大题共8小题,每小题3分,共24分)9、某市今年参加中考的学生大约为45000人,将数45000用科学计数法可以表示为 。

10、关于x 的不等式组⎩⎨⎧>->+1312x a x 的解集为31<<x ,则a 的值为 。

11、因式分解:=-x x 43 。

12、方程0223=--x x 的解为 。

13、如图,四边形ABCD 是⊙O 的内接四边形,若︒=∠130C ,则=∠BOD 度。

14、如图,在ABC Rt ∆中,︒=∠90ACB ,点D 、E 、F 分别为AB 、AC 、BC 的中点,若CD=5,则EF 的长为 。

15、如图,在平面直角坐标系中,点P 的坐标为(0,4),直线343-=x y 与x 轴、y 轴分别交于A 、B ,点M 是直线AB 上的一个动点,则PM 长的最小值为 。

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案一. 选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.9-的相反数是A.19-B.19C.9-D.92.首届中国(北京)国际服务贸易交易会(京交会)于往年年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A.96.01110⨯B.960.1110⨯C.106.01110⨯D.110.601110⨯3.正十边形的每个外角等于A.18︒B.36︒C.45︒D.60︒4.右图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分AOC∠,若76BOD∠=︒,则BOM∠等于A.38︒B.104︒C.142︒D.144︒7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200 户数 2 3 6 7 2A.180,160 B.160,180 C.160,160 D.180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t ( 单位:秒),他与教练的距离为y ( 单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二. 填空题( 本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40cm DE =,20cm EF =,测得边DF 离地面的高度1.5m AC =,8m CD =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 . 纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部( 不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n ( n 为正整数)时,m = ( 用含n 的代数式表示.)三. 解答题( 本题共30分,每小题5分) 13.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a ba b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.( 1)求一次函数的解析式;( 2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四. 解答题( 本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,9045302BAC CED DCE DE ∠=︒∠=︒∠=︒=,,,,22BE =.求CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . ( 1)求证:BE 与O ⊙相切;( 2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:( 1)补全条形统计图并在图中标明相应数据;( 2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米? ( 3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:( 1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数北京市轨道交通已开通线路相关数据统计表(截至2010年底) 开通时间 开通线路 运营里程(千米) 1971 1号线 31 1984 2号线 23 2003 13号线 41 八通线 19 2007 5号线 28 20088号线 5 10号线 25 机场线 28 20094号线 28 2010房山线 22 大兴线22 亦庄线 23 昌平线 21 15号线20是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;( 2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横. 纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位( 00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。

如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。

2015年陕西中考数学真题卷含答案解析

2015年陕西中考数学真题卷含答案解析

2015年陕西省初中毕业学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算:(-23)0=( )A.1B.-32C.0 D.232.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.a2·a3=a6B.(-2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4.如图,AB∥CD,直线EF分别交直线AB、CD于点E、F,若∠1=46°30',则∠2的度数为( )A.43°30'B.53°30'C.133°30'D.153°30'5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.-2C.4D.-46.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连结DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组{12x +1≥-3,x -2(x -3)>0的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线l 1:y=-2x-2平移后,得到直线l 2:y=-2x+4,则下列平移作法正确的是( )A.将l 1向右平移3个单位长度B.将l 1向右平移6个单位长度C.将l 1向上平移2个单位长度D.将l 1向上平移4个单位长度9.在▱ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点.若四边形AECF 为正方形,则AE 的长为( ) A.7B.4或10C.5或9D.6或810.下列关于二次函数y=ax 2-2ax+1(a>1)的图象与x 轴交点的判断,正确的是( ) A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题3分,计12分)11.将实数√5,π,0,-6由小到大用“<”连起来,可表示为 . 12.请从以下两个小题中任选一个····作答,若多选,则按第一题计分.A.正八边形一个内角的度数为 .B.如图,有一滑梯AB,其水平宽度AC 为 5.3米,铅直高度BC 为 2.8米,则∠A 的度数约为 .(用科学计算器计算,结果精确到0.1°)13.如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数y=4x的图象交于A 、B 两点,则四边形MAOB 的面积为 .14.如图,AB 是☉O 的弦,AB=6,点C 是☉O 上的一个动点,且∠ACB=45°.若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是 .三、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:√3×(-√6)+|-2√2|+(12)-3.16.(本题满分5分)解分式方程:x -2x+3-3x -3=1.17.(本题满分5分)如图,已知△ABC,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)18.(本题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x).现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(本题满分7分)如图,在△ABC中,AB=AC.作AD⊥AB交BC的延长线于点D,作AE∥BD、CE⊥AC,且AE、CE相交于点E.求证:AD=CE.20.(本题满分7分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)21.(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人折收费;乙旅行社表示,若人数不超过20人,每人都按九.折收费,超过20人,则超出都按八五··部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x人.··(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(本题满分7分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)23.(本题满分8分)如图,AB是☉O的直径,AC是☉O的弦,过点B作☉O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若☉O的半径为5,AC=8,求BE的长.24.(本题满分10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A、B两点,与y轴交于C点.(1)求点A、B、C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M',与x轴交于A'、B'两点,与y轴交于C'点.在以A、B、C、不是菱形的平行M、A'、B'、C'、M'这八个点中的四个点为顶点的平行四边形中,求其中一个··四边形的面积.25.(本题满分12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD 的边AD 上,是否存在一点P,使得cos ∠BPC 的值最小?若存在,求出此时cos ∠BPC 的值;若不存在,请说明理由.答案全解全析:一、选择题1.A(-23)0=1.故选A.2.B 从上往下看得到的图形是由正六边形和没有圆心的圆组成的,故选B.3.B 对于A,a 2·a 3=a 2+3=a 5;对于B,(-2ab)2=(-2)2a2b2=4a2b2;对于C,(a2)3=a2×3=a6;对于D,3a3b2÷a2b2=3a.故选B.4.C∵AB∥CD,∴∠EFD=∠1=46°30',∴∠2=180°-∠EFD=180°-46°30'=133°30',故选C.5.B将点A(m,4)代入y=mx,得4=m2,则m=±2,又∵y的值随x值的增大而减小,∴m<0,∴m=-2,故选B.6.D依题意,可知题图中的△ABC,△AED,△BDC,△BDE,△ADB为等腰三角形,则共有5个等腰三角形.故选D.7.C解不等式组{12x+1≥-3,x-2(x-3)>0得-8≤x<6,则其最大整数解为5.故选C.8.A设将直线l1向右平移a个单位长度后得到直线l2,则有-2(x-a)-2=-2x+4,解得a=3,故将直线l1向右平移3个单位长度后得到直线l2,故选A.9.D如图,设AE=x,则BE=14-x,在Rt△AEB中,x2+(14-x)2=102,整理得x2-14x+48=0,解得x1=6,x2=8.故选D.评析本题考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.D依题意得,Δ=4a2-4a=4a(a-1),∵a>1,∴Δ>0,故二次函数图象与x轴有两个交点,选项A、B错误.设二次函数图象与x轴的交点的横坐标分别为x1,x2,显然x 1,x 2是方程ax 2-2ax+1=0的两根,则x 1+x 2=2>0,x 1x 2=1a>0,故x 1>0,x 2>0,则二次函数y=ax 2-2ax+1的图象与x 轴的两个交点均位于y 轴右侧,故选项C 错误,选项D 正确.故选D.二、填空题11.答案 -6<0<√5<π解析 ∵√4<√5<√9,∴2<√5<3,又∵π>3, ∴-6<0<√5<π.评析 此题主要考查了实数大小的比较方法.要熟练掌握:负实数<0<正实数,两个负实数比较大小,绝对值大的反而小. 12.答案 A.135° B.27.8° 解析 A.正八边形一个内角的度数为(8-2)×180°8=135°. B.tan A=BC AC =2.85.3≈0.528 3,∴∠A ≈27.8°. 13.答案 10解析 如图,设MA 与x 轴交于点C,MB 与y 轴交于点D.由题意可知点A 的坐标为(-3,-43),点B 的坐标为(2,2),则点C 的坐标为(-3,0),点D 的坐标为(0,2).∴S 四边形MAOB =S 矩形MCOD +S △ACO +S △BDO =3×2+12×3×43+12×2×2 =6+2+2=10. 14.答案 3√2解析 依题意,知MN=12AC,且当AC 为☉O 的直径时,MN 的长度最大.连结OB,∵∠ACB=45°,∴∠AOB=90°,设☉O的半径为r,则√2r=6,解得r=3√2,故MN的最大值为3√2.评析本题考查了三角形的中位线、等腰直角三角形的性质及圆周角定理,解题的关键是了解MN取最大值时AC的位置.难度不大.三、解答题15.解析原式=-√18+2√2+8(3分)=-3√2+2√2+8(4分)=8-√2.(5分)16.解析(x-2)(x-3)-3(x+3)=(x+3)(x-3),x2-5x+6-3x-9=x2-9,(2分)-8x=-6,x=3.(4分)是原方程的根.(5分)经检验,x=3417.解析如图,直线AD即为所求.(5分) 18.解析(1)补全的两幅统计图如图所示.(2分)(2)良好.(3分) (3)650×26%=169(人).∴该年级女生中1分钟“仰卧起坐”个数达到优秀的人数为169人.(5分) 19.证明 ∵AE ∥BD, ∴∠EAC=∠ACB. ∵AB=AC, ∴∠B=∠ACB. ∴∠EAC=∠B.(4分) 又∵∠BAD=∠ACE=90°, ∴△ABD ≌△CAE.(6分) ∴AD=CE.(7分)20.解析 由题意得∠CAD=∠MND=90°,∠CDA=∠MDN, ∴△CAD ∽△MND. ∴CA MN =ADND .(2分) ∴1.6MN =1×0.8(5+1)×0.8. ∴MN=9.6.(3分)又∵∠EBF=∠MNF=90°,∠EFB=∠MFN. ∴△EBF ∽△MNF. ∴EB MN =BFNF .(5分) ∴EB9.6=2×0.8(2+9)×0.8. ∴EB ≈1.75.∴小军的身高约为1.75米.(7分)21.解析 (1)甲旅行社:y=640×0.85x=544x.(1分) 乙旅行社:当x ≤20时,y=640×0.9x=576x;当x>20时,y=640×0.9×20+640×0.75(x -20)=480x+1 920.(4分) (2)甲旅行社:当x=32时,y=544×32=17 408.乙旅行社:∵32>20,∴当x=32时,y=480×32+1 920=17 280. ∵17 408>17 280,∴胡老师应选择乙旅行社.(7分) 22.解析 (1)所求概率P=36=12.(2分) (2)游戏公平.(3分) 理由如下:小丽 小亮1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.(7分)23.解析 (1)证明:∵☉O 与DE 相切于点B,AB 为☉O 的直径, ∴∠ABE=90°.(1分) ∴∠BAE+∠E=90°. 又∵∠DAE=90°, ∴∠BAD+∠BAE=90°. ∴∠BAD=∠E.(3分) (2)连结BC.∵AB 为☉O 的直径, ∴∠ACB=90°.∵AC=8,AB=2×5=10, ∴BC=√AB 2-AC 2=6.(5分)又∵∠BCA=∠ABE=90°,∠BAD=∠E, ∴△ABC ∽△EAB. ∴AC EB =BCAB . ∴8EB =610. ∴BE=403.(8分)24.解析 (1)令y=0,得x 2+5x+4=0, ∴x 1=-4,x 2=-1. 令x=0,得y=4.∴A(-4,0),B(-1,0),C(0,4).(A(-1,0),B(-4,0),C(0,4)也正确)(3分)(2)不妨令A 在B 的左侧.∵A,B,C 关于坐标原点O 对称的点为(4,0),(1,0),(0,-4), ∴所求抛物线的函数表达式可设为y=ax 2+bx-4.(5分) 将(4,0),(1,0)代入上式,得a=-1,b=5. ∴y=-x 2+5x-4即为所求.(7分)(y =-(x-52)2+94或y =-(x-1)(x-4)也正确)(3)如图,取四点A 、M 、A'、M'.连结AM,MA',A'M',M'A,MM'.由中心对称性可知, MM'过点O,OA=OA',OM=OM', ∴四边形AMA'M'为平行四边形. 又知AA'与MM'不垂直,∴▱AMA'M'不是菱形.(8分) 过点M 作MD ⊥x 轴于点D. ∵y=x 2+5x+4=(x +52)2-94,∴M (-52,-94).又∵A(-4,0),A'(4,0), ∴AA'=8,MD=94.∴S ▱AMA'M'=2S △AMA'=2×12×8×94=18.(10分)求得符合题意的▱BMB'M'的面积为92或▱CMC'M'的面积为20亦正确25.解析 (1)24√3.(3分)(2)如图①,作点C 关于直线AD 的对称点C',连结C'N 、C'D 、C'B,C'B 交AD 于点N',连结CN',则BN+NC=BN+NC'≥BC'=BN'+CN'.∴△BNC 周长的最小值为△BN'C 的周长=BN'+CN'+BC=BC'+BC.(4分) ∵AD ∥BC,CD ⊥BC,∠ABC=60°, ∴过点A 作AE ⊥BC 于点E,则CE=AD=8. ∴BE=4,AE=BE ·tan 60°=4√3. ∴CC'=2CD=2AE=8√3. 又∵BC=12,∴BC'=√BC 2+CC'2=4√21.(6分) ∴△BNC 周长的最小值为4√21+12.(7分)图①(3)如图②,存在点P,使得cos ∠BPC 的值最小.(8分)作BC 的中垂线PQ 交BC 于点Q,交AD 于点P,连结BP 、CP,作△BPC 的外接圆☉O,圆心O 在PN 上.图②∵AD ∥BC,∴☉O 与AD 正好相切于点P, ∵PQ=DC=4√3>5, ∴PQ>BQ.∴∠BPC<90°,圆心O 在弦BC 的上方.在AD 上任取一点P',连结P'B 、P'C,P'B 交☉O 于点M,连结MC. ∴∠BPC=∠BMC ≥∠BP'C.∴∠BPC 最大,cos ∠BPC 的值最小.(10分) 连结OB,则∠BON=2∠BPN=∠BPC. ∵OB=OP=4√3-OQ,在Rt △BOQ 中,OQ 2+62=(4√3-OQ)2.∴OQ=√32.∴OB=7√32. ∴cos ∠BPC=cos ∠BOQ=OQ OB =17. ∴此时cos ∠BPC 的值是17.(12分)。

2024年北京市中考数学试题(含答案解析)

2024年北京市中考数学试题(含答案解析)
D、是轴对称图形,但不是中心对称图形,故不符合题意;
2.【答案】B
【详解】解:∵ ,
∴ ,
∵ , ,
∴ ,
3.【答案】C
【详解】解:A、由数轴可知 ,故本选项不符合题意;
B、由数轴可知 ,由绝对值的意义知 ,故本选项不符合题意;
C、由数轴可知 ,而 ,则 ,故 ,故本选项符合题意;
D、由数轴可知 ,而 ,因此 ,故本选项不符合题意.
(1)当 时,求抛物线的顶点坐标;
(2)已知 和 是抛物线上的两点.若对于 , ,都有 ,求 的取值范围.
27.已知 ,点 , 分别在射线 , 上,将线段 绕点 顺时针旋转 得到线段 ,过点 作 的垂线交射线 于点 .
(1)如图1,当点 在射线 上时,求证: 是 的中点;
(2)如图2,当点 在 内部时,作 ,交射线 于点 ,用等式表示线段 与 的数量关系,并证明。
7.下面是“作一个角使其等于 ”的尺规作图方法.
(1)如图,以点 为圆心,任意长为半径画弧,分别交 , 于点 , ;
(2)作射线 ,以点 为圆心, 长为半径画弧,交 于点 ;以点 为圆心, 长为半径画弧,两弧交于点 ;
(3)过点 作射线 ,则 .
上述方法通过判定 得到 ,其中判定 的依据是()
A.三边分别相等的两个三角形全等
评委1
评委2
评委3
评委4
评委5



若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是____________,表中 ( 为整数)的值为____________.
24.如图, 是 的直径,点 , 在 上, 平分 .
(1)求证: ;
(2)延长 交 于点 ,连接 交 于点 ,过点 作 的切线交 的延长线于点 .若 , ,求 半径的长.

长春市2015年中考数学试卷(含答案)

长春市2015年中考数学试卷(含答案)

长春市2015年中考数学试卷(含答案)长春市2015年中考数学试题一、选择题(本大题共8小题,每小题3分,共24分) 1.的绝对值是()(A)3 (B)(C)(D)2.在长春市“暖房子工程”实施过程中,某工程队做了面积为632000的外墙保暖,632000这个数用科学记数法表示为()(A)(B)(C)(D) 3.计算的结果是()(A)(B)(C)(D)4.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()(A)主视图相同(B)俯视图相同(C)左视图相同(D)主视图、俯视图、左视图都相同 5.方程的根的情况是()(A)有两个相等的实数根(B)只有一个实数根(C)没有实数根(D)有两个不相等的实数根第4题第5题第6题第7题6.如图,在中,过点作若则的大小为()(A)(B)(C)( D) 7.如图,四边形内接于,若四边形是平行四边形,则的大小为()(A)(B)(C)(D) 8.如图,在平面直角坐标系中,点在直线上.连结将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为()(A)(B)(C)(D)二、填空题(本大题共6小题,每小题3分,共18分) 9.比较大小:.(填“>”,“<”或“=”) 10.不等式的解集为. 11.如图,为的切线,为切点,是与的交点,若则的长为 (结果保留 ) .第11题第12题第13题第14题 12.如图,在平面直角坐标系中,点在函数的图象上,过点分别作轴、轴的垂线,垂足分别为,取线段的中点,连结并延长交轴于点,则的面积为. 13.如图,点在正方形的边上,若的面积为则线段的长为. 14.如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形连结则对角线的最小值为.三、解答题(本大题共10小题,共78分) 15.先化简,再求值:其中.16.在一个不透明的袋子里装有3张卡片,卡片上面分别标有字母,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并摇匀,再从盒子中随机抽出一张卡片记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.17.为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.如图,是外角的平分线,交于点交于点,交于点交于点,求证:四边形是菱形.19.如图,海上两岛分别位于岛的正东和正北方向,一艘船从岛出发,以18海里/时的速度向正北方向航行2小时到达岛,此时测得岛在岛的南偏东,求两岛之间的距离.(结果精确到0.1海里)【参考数据:】20.在“世界家庭日”前夕,某校团委随机抽取了名本校学生,对“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查,问卷中的家庭活动方式包括: A.在家里聚餐; B.去影院看电影; C.到公园游玩; D.进行其他活动.每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式,该校团委收回全部调查问卷后,将收集到的数据整理并绘制成如下的统计图.根据统计图提供的信息,解答下列问题:(1)求的值;(2)四种方式中最受学生喜欢的方式为(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为;(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.21.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率,从工作开始到加工完这批零件两台机器恰好同时工作6小时,甲、乙两台机器各自加工的零件的个数(个)与加工时间(时)之间的函数图象分别为折线与折线,如图所示.(1)求甲机器改变工作效率前每小时加工零件的个数;(2)求乙机器改变工作效率后与之间的函数关系式;(3)求这批零件的总个数.22.在矩形中,已知,在边上取点,使,连结,过点作,与边或其延长线交于点 . 猜想:如图①,当点在边上时,线段与的大小关系为 . 探究:如图②,当点在边的延长线上时,与边交于点.判断线段与的大小关系,并加以证明.应用:如图②,若利用探究得到的结论,求线段的长.图① 图②23.如图,在等边中,于点,点在边上运动,过点作与边交于点,连结,以为邻边作□ ,设□ 与重叠部分图形的面积为,线段的长为(1)求线段的长(用含的代数式表示);(2)当四边形为菱形时,求的值;(3)求与之间的函数关系式;(4)设点关于直线的对称点为点,当线段的垂直平分线与直线相交时,设其交点为,当点与点位于直线同侧(不包括点在直线上)时,直接写出的取值范围. 24.如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,且点的坐标为点在这条抛物线上,且不与两点重合,过点作轴的垂线与射线交于点,以为边作使点在点的下方,且设线段的长度为,点的横坐标为.(1)求这条抛物线所对应的函数表达式;(2)求与之间的函数关系式;(3)当的边被轴平分时,求的值;(4)以为边作等腰直角三角形,当时,直接写出点落在的边上时的值.。

2015年荆门市中考数学试卷及答案2

2015年荆门市中考数学试卷及答案2

荆门市2015年初中毕业生学业水平考试数 学 试 题说明:1.全卷分两部分,第一部分为选择题,第二部分为非选择题,考试时间120分钟,满分120分.2.本卷试题,考生必须在答题卡上按规范作答;凡在试卷、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁、不能折叠.3.选择题1—12题,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;非选择题13—24题,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡对应的区域内.第一部分 选择题一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,有且只有一个答案是正确的)1.64的立方根为A .4B .4±C .8D .8±2.下列计算正确的是A .235a a a +=B .236a a a ⋅=C .235()a a =D .523a a a ÷=3.下列四个几何体中,俯视图为四边形的是4.某市2014年的国民生产总值为2073亿元,这个数用科学记数法表示为A .102.07310⨯元B .112.07310⨯元C .122.07310⨯元D .132.07310⨯元5.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为A .8或10B .8C .10D .6或126.如图,m ∥n ,直线l 分别交m 、n 于点A 、点B ,AC ⊥AB ,AC 交直线n 于点C ,若∠1=35°,则DC B A∠2等于A .35°B .45°C .55°D .65°7.若关于x 的一元二次方程2450x x a -+-=有实数根,则a 的取值范围是A .1a ≥B .1a >C .1a ≤D .1a <8.当1<a <2时,代数式2(2)10a a -+-=的值是A .1-B .1C .23a -D .32a -9.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是A .甲的速度随时间的增加而增大B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人相遇D .在起跑后第50秒时,乙在甲的前面 10.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记为第一次传球).则经过三次传球后,球仍回到甲手中的概率是A .12B .14C .38D .58 11.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan DBC ∠的值为A .13B 21C .23-D .1412.如图,点A ,B ,C 在一条直线上,△ABD ,△BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD ,BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:①△ABE ≌△DBC ;②∠DMA =60°;③△BPQ 为等边三角形;④MB 平分∠AMC .其中结论正确的有A .1个B .2个C .3个D .4个C B A 21n m第6题图 第9题图 D O t (秒)s (米)80060040030020022018050C B A 第11题图 E D C A第12题图 MPQ E DC BA第二部分 非选择题二、填空题(本题共5小题,每小题3分,共15分)13.不等式组352,1212x x x x -⎧⎪⎨-+⎪⎩<≤的解集是 ▲ . 14.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材购买了 ▲ 千克.15.已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 ▲ .16.在矩形ABCD 中,AB =5,A D =12,将矩形ABCD 沿直线l 向右翻滚两次至如图所示位置,则点B 所经过的路线长是▲ (结果不取近似值).17.如图,点1A ,2A 依次在93(0)y x x =>的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为▲ .三、解答题(本大题共7题,共69分)18.(本题满分8分)先化简,再求值: 22222a b a b a a b a ba ab b --⋅-+--+,其中13a =13b =-.19.(本题满分9分)已知,如图在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE =CF ,DF ∥BE ,AC 平分∠BAD .求证:四边形ABCD 为菱形.第16题图 D 'C 'B 'A 'D C B A l 第17题图 B 2B 1A 2A 1O xy第19题图 F E D C BA20.(本题满分10分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制如图所示的统计图表. 组别 身高(cm )Ax <150 B150≤x <155 C155≤x <160 D160≤x <165 Ex ≥165[根据图表中提供的信息,回答下列问题: (1)在样本中,男生身高的中位数落在_______组(填组别序号),女生身高在B 组的人数有 _______人;(2)在样本中,身高在150≤x <155之间的人数共有_______人,身高人数最多的在____组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x <165之间的学生约有多少人?21.(本题满分10分)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).女生身高情况扇形图男生身高情况直方图5%15%30%20%/cm 频数(人数)E D C B A 14128420第21题图60°45°D C22.(本题满分10分)已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线;(2)求证:2CE EH EA =⋅;(3)若⊙O 的半径为5,3sin 5A =,求BH 的长.23.(本题满分10分)甲经销商库存有1200套A 品牌服装,每套进价400元,每套售价500元,一年内可卖完.现市场上流行B 品牌服装,每套进价300元,每套售价600元,但一年内只允许经销商一次性订购B 品牌服装,一年内B 品牌服装销售无积压.因甲经销商无流动资金,只有低价转让A 品牌服装,用转让来的资金购进B 品牌服装,并销售.经与乙经销商协商,甲、乙双方达成转让协议,转让价格y (元/套)与转让数量x (套)之间的函数关系式为1360(1001200)10y x x =-+≤≤.若甲经销商转让x 套A 品牌服装,一年内所获总利润为w (元).(1)求转让后剩余的A 品牌服装的销售款1Q (元)与x (套)之间的函数关系式;(2)求B 品牌服装的销售款2Q (元)与x (套)之间的函数关系式;(3)求w (元)与x (套)之间的函数关系式,并求w 的最大值.第22题图B24.(本题满分12分) 如图,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长及经过O ,D ,C 三点的抛物线的解析式;(2)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,DP =DQ ;(3)若点N 在(1)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.第24题图 E D C B AO x y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考衣食住用行衣:中考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

2015年北京市高级中等学校招生考试数学试卷一、选择题下面各题均有四个选项,其中只有一个..是符合题意的。

1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。

将1 40 000用科学记数法表示应为A.14×104 B.1.4×105 C.1.4×106 D.0.14×1062.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A.a B.b C.c D.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A. B. C. D.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为5.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为A.26° B.36°C.46° D.56°6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为A.0.5km B.0.6kmC.0.9km D.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A.21,21 B.21,21.5C.21,22 D.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。

表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是A.景仁宫(4,2)B.养心殿(-2,3)C.保和殿(1,0)D.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。

为记录寻宝者的进行路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为A.A→O→B B.B→A→C C.B→O→C D.C→B→O二、填空题11.分解因式:5x2-10x2=5x=_________.12.右图是由射线AB,BC,CD,DE,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。

它的代数成就主要包括开放术、正负术和方程术。

其中,方程术是《九章算术》最高的数学成就。

《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两。

问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。

问每头牛、每只羊各值金多少两”设每头牛值金x ,每只羊各值金y 两,可列方程组为_____________.14.关于x 的一元二次方程a x 2+bx +=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a =______,b =______.15.北京市2009-2014年轨道交通日均客运量统计如图所示。

根据统计图中提供信息,预估2015年北京市轨道交通日均客运量约________万人次,你的预估理由是________________________.16.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是_________________________.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17. 计算:201()(7)324sin 602π---+-+︒。

18. 已知22360a a +-=. 求代数式3(21)(21)(21)a a a a +-+-的值。

尺规作图:作一条线段的垂直平分线. 已知:线段AB .如图,(1)分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于C 、D 两点; (2)作直线CD19. 解不等式组4(1)710853x x x x +≤+⎧⎪-⎨-<⎪⎩,并写出它的所有非负整数解.....。

20. 如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E 。

求证:CBE BAD ∠=∠。

21. 为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用。

到2013年底,全市已有公租自行车25000辆,租赁点600个,预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍。

预计到2015年底,全市将有租赁点多少个?22. 在Y ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,DF BE =,连接AF ,BF 。

(1)求证:四边形BFDE 是矩形;(2)若3CF =,4BF =,5DF =,求证:AF 平分DAB ∠。

23. 在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与双曲线8y x=的一个交点为(2,)P m ,与x 轴、y 轴分别交于点A ,B 。

(1)求m 的值;(2)若2PA AB =,求k 的值。

ABC DEABCDF24. 如图,AB 是O e 的直径,过点B 作O e 的切线BM ,弦//CD BM ,交AB 于点F ,且DA DC =,链接AC ,AD ,延长AD 交BM 地点E 。

(1)求证:ACD ∆是等边三角形。

(2)链接OE ,若2DE =,求OE 的长。

25. 阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次,其中玉渊潭公园的樱花,北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次,17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高。

2014年清明小长假,天气晴好,北京晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增加了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次。

2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9万人次。

根据以上材料回答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为___________万人次。

(2)选择统计表或.统计图,将2013-2015年玉渊潭公园、颐和园和北京动物园的游客接待量表示出来。

26. 有这样一个问题:探究函数2112y x x=+的图象与性质。

小东根据学习函数的经验,对函数2112y x x=+的图象与性质进行了探究。

下面是小东的探究过程,请补充完成: (1)函数2112y x x=+的自变量x 的取值范围是___________; (2)下表是y 与x 的几组对应值。

ABCDF Ox … 3-2-1-12- 13-13 12 1 23 … y…2563212- 158- 5318-551817832 52m…求m 的值;(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,格局描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是3(1,)2,结合函数的图象,写出该函数的其他性质(一条即可):________________。

27. 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线21:C y x bx c =++经过点A ,B 。

(1)求点A ,B 的坐标;(2)求抛物线1C 的表达式及顶点坐标;(3)若抛物线22:(0)C y ax a =≠与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围。

y 6 54 3 2 11 2 4 3 x O -4 -3 -2 -1 -1-2 -3 -4y 6 543 2 11 2 4 3 x O -4 -3 -2 -1 -1 -2 -3-4 备用图28. 在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C 、D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,过点Q 作QH BD ⊥于H ,连接AH ,PH 。

(1)若点P 在线段CD 上,如图1。

①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线段CD 的延长线上,且152AHQ ∠=︒,正方形ABCD 的边长为1,请写出求DP 长的思路。

(可以不写出计算结果.........)29. 在平面直角坐标系xOy 中,C e 的半径为r ,P 是与圆心C 不重合的点,点P 关于O e 的反称点的定义如下:若在射线..CP 上存在一点P ',满足2CP CP r '+=,则称P '为点P 关于C e 的反称点,下图为点P 及其关于C e 的反称点P '的示意图。

相关文档
最新文档