关于_GM_1_1_模型的适用范围_一文的一个注记
GM模型(1,1)及新陈代谢模型的应用

实验四 GM 模型(1,1)及新陈代谢模型的应用实验目的:熟练应用GM 模型(1,1)及新陈代谢模型进行人口预测。
实验内容:GM(1,1)模型的原理及其应用一、原理GM (1,1)主要特点是能够用较短的基础数据序列,通过系统过去和现在采集的数据,将无规律的数据通过累加找出规律,然后对系统未来的发展趋势做出预测。
在当前土地资料不完整的情况下,运用GM (1,1)模型,进行预测研究无疑十分适宜。
其基本思路是将无规律的原始数据,通过一定方法的处理,变成比较有规律的时间序列数据,再建立模型进行预测。
二、建立GM (1,1)模型的步骤如下:⑴按关系式()()()()∑==ki i x k x101求原始数列()0x 的1--AGO 序列()1x 。
即:1、建立原始序列,并记作:X (0)={X (0)(1),X (0)(2),……X (0)(n)} 2、对原始序列作一次累加生成,得到X (1)={X (1)(1),X (1)(2),……X (1)(n)} 其中:X (1)(t)=X (0)(1)+ X (0)(2)+ ……+ X (0)(t)⑵求数据矩阵()()()()()()()()()()()()()()()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-+-+-=1121::1322112121111111n x n x x x x x B 建立数据列()()()()()()()Tn n x x x Y 000,...,3,2=⑶用最小二算法求参数列∧a()n T TY B BB b a a 1-∧=⎪⎪⎭⎫ ⎝⎛=其时间函数为:()()()()ab e a b x k x ak +⎪⎭⎫ ⎝⎛-=+-∧1101⑷求导还原为:()()()()ak e a b x a k x-∧⎪⎭⎫ ⎝⎛--=+1100⑸计算()()t x 0与()()t x 0ˆ之差及相对误差: 记作:()()()()()()()()()()()%100,ˆ000⨯=-=t x t e t q t x t x t e o o最后还需检验模型的精度,如不满足精度要求还需对模型进行修正,才能进行预测。
GM(1,1)模型

灰色系统模型GM(1,1)进行水文灾变预测问题的讨论王正发(国家电力公司西北勘测设计研究院,西安,710001)关键词灰色系统模型灾变预测误差摘要在简述灰色系统预测基本原理的基础上,用灰色系统模型GM(1,1)进行水文灾变预测,并用实例进行检验,结果表明预测精度是令人怀疑的,近期不宜用灰色系统模型进行水文灾变预测。
1 水文系统的灰色特征灰色系统理论认为:部分信息已知,部分信息未知的系统叫―灰色系统‖。
水文系统就其本身而言具有灰色系统的一些基本特征,即水文系统中长期观测到的水文资料只是水文系统中极少的一部分,如有限年代的雨量、流量记录等;更有未知信息部分,如未来年代的雨量大小、流量丰枯,洪水、干旱的出现时刻以及水环境的前景变化等;因此,水文系统是一灰色系统,可用灰色系统理论对其进行分析、研究。
2 灰色系统预测的基本原理2.1 灰色预测及其分类以灰色系统理论的GM(1,1)模型为基础的预测,叫灰色预测。
它可以分为以下7类:(1)数列预测:对某一事物发展变化趋势的预测。
(2)灾变预测:即灾变出现时间的预测,灾变有多种,如洪水、干旱、涝等灾害。
(3)季节灾变预测:指对灾害出现在一年内的某个特定时区的预测。
(4)拓朴预测:也叫波形预测、整体预测,是用GM(1,1)模型来预测未来发展变化的整个波形。
(5)系统预测:指对系统的综合研究所进行的综合预测。
(6)包络GM(1,1)灰色区间预测:参考数列分布趋势构造一个上、下包络线为边界的灰色预测带,建立上、下2个包络模型。
(7)激励——阻尼预测:将激励、阻尼因数以量化形式反映在GM(1,1)模型中的预测,叫激励——阻尼预测。
本文主要讨论GM(1,1)模型用于水文灾变预测的问题。
2.2 GM(1,1)模型GM(1,1)模型是适合于预测用的1个变量的一阶灰微分方程模型,它是利用生成后的数列进行建模的,预测时再通过反生成以恢复事物的原貌。
假定给定时间数据序列{x(0)(k),k=1,2,…,n},作相应的1阶累加序列{x(1)(k),k=1,2,…,n},则序列{x(1)(k),k=1,2,…,n}的GM(1,1)模型的白化微分方程为:dx(1)(t)/dt + ax(1)(t)=u (1)经过拉普拉斯变换和逆变换,可得到:x(1)(k十1)=(x(0)(1) –u/a)e (-k)+u/a (2)利用最小二乘法进行参数辨识,参数向量A的估计公式为:=(B T B) -1B T Y N (3)其中:式(3)即为GM(1,1)模型的一般数学表达式。
GM(1_1)模型,灰色预测

小额贷款远程智能预警系统 人数预测算法的设计一、灰色系统的引入:灰色系统是指“部分信息已知,部分信息未知”的“小样本”,“贫信息”的不确定性系统,它通过对“部分”已知信息的生成、开发去了解、认识现实世界,实现对系统运行行为和演化规律的正确把握和描述. 灰色系统模型的特点:对试验观测数据及其分布没有特殊的要求和限制,是一种十分简便的新理论,具有十分宽广的应用领域。
目前,灰色系统已经成为社会、经济、科教、技术等很多领域进行预测、决策、评估、规划、控制、系统分析和建模的重要方法之一。
特别是它对时间序列短、统计数据少、信息不完全系统的建模与分析,具有独特的功效。
灰色模型的优点(一) 不需要大量的样本。
(二) 样本不需要有规律性分布。
(三) 计算工作量小。
(四) 定量分析结果与定性分析结果不会不一致。
(五) 可用于近期、短期,和中长期预测。
(六) 灰色预测精准度高。
二、GM (1,1)模型(grey model 一阶一个变量的灰微分方程模型)灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。
灰数的生成,就是从杂乱中寻找出规律。
同时,灰色理论建立的是生成数据模型,不是原始数据模型。
因此,灰色预测的数据是通过生成数据的GM(1,1)模型所得到的预测值的逆处理结果。
GM (1,1)的具体模型计算式设非负原始序列()()(){}n x x x X )0()0()0()0(,...,2,1=对)0(X作一次累加()()∑==ki i x k x1)0()1( ;k=1,2,…,n得到生成数列为()()(){}n x x x X )1()1()1()1(,...,2,1=于是()k x)0(的GM (1,1)白化微分方程为u ax dtdx =+)1()1( (1—1)其中a,u 为待定参数,将上式离散化,即得()()()()u k x az k x =+++∆11)1()1()1((1—2)其中()()1)1()1(+∆k x 为)1(x在(k+1)时刻的累减生成序列,()()()[]()[])1()()1(11)0()1()1()()0()1()0()1()1(+=-+=∆-+∆=+∆k x k x k x k x k x k x r(1—3)()()1)1(+k x z 为在(k+1)时刻的背景值(即该时刻对应的x 的取值)()()()()()k x k x k x z )1()1()1(1211++=+ (1—4)将(1—3)和(1—4)带入(1—2)得()()()()u k x k x a k x +++-=+]121[1)1()1()0( (1—5)将(1—5)式展开得()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡u a n x n x x x x x n x x x 1:11121:32212121:32)1()1()1()1()1()1()0()0()0( (1—6)令()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n x x x Y )0()0()0(:32,()()()()()()()()()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=1:11121:32212121)1()1()1()1()1()1(n x n x x x x x B ,[]Tu a =Φ 为待辨识参数向量,则(1—6)可以写成Φ=B Y (1—7)参数向量Φ可用最小二乘法求取,即[]()Y B B B u a T T T 1ˆ,ˆˆ-==Φ(1—8)把求取的参数带入(2—16)式,并求出其离散解为()()a u e a u x k xk a ˆˆˆˆ11ˆ)1()1(+⎥⎦⎤⎢⎣⎡-=+- (1—9)还原到原始数据得()()()()()ka a e a u x e k x k x k x ˆ)1(ˆ)1()1()0(ˆˆ11ˆ1ˆ1ˆ-⎥⎦⎤⎢⎣⎡--=-+=+ (1—10)(1—9)、(1—10)式称为GM (1,1)模型的时间相应函数模型,它是GM (1,1)模型灰色预测的具体计算公式。
灰色预测GM(1,1)模型分析

SPSS分析SPSS教程SPSSAU 灰色预测模型GM11 灰色模型灰色预测GM(1,1)模型分析Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)灰色预测模型可针对数量非常少(比如仅4个),数据完整性和可靠性较低的数据序列进行有效预测,其利用微分方程来充分挖掘数据的本质,建模所需信息少,精度较高,运算简便,易于检验,也不用考虑分布规律或变化趋势等。
但灰色预测模型一般只适用于短期预测,只适合指数增长的预测,比如人口数量,航班数量,用水量预测,工业产值预测等。
灰色预测模型有很多,GM(1,1)模型使用最为广泛,第1个数字表示进行一阶微分,第2个数字1表示只包含1个数据序列。
特别提示:GM(1,1)模型仅适用于中短期预测,不建议进行长期预测;GM(1,1)模型适用于数量少(比如20个以内)时使用,大量数据时不适合。
灰色预测模型案例Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)1背景当前某城市1986~1992共7年的道路交通噪声平均声级数据,现希望预测出往后一期器械声平均声级数据。
数据如下:年份城市交通噪声/dB(A)198671.10198772.40198872.40198972.10199071.40199172.00199271.602理论灰色预测GM(1,1)模型一般针对数据量少,有一定指数增长趋势的数据。
在进行模型构建时,通常包括以下步骤:第一步:级比值检验;此步骤目的在于数据序列是否有着适合的规律性,是否可得到满意的模型等,该步骤仅为初步检验,意义相对较小。
级比值=当期值/上一期值。
一般情况下级比值介于[0.982,1.0098]之间则说明很可能会得到满意的模型,但并不绝对。
第二步:后验差比检验;在进行模型构建后,会得到后验差比C值,该值为残差方差/ 数据方差;其用于衡量模型的拟合精度情况,C值越小越好,一般小于0.65即可。
数控机床误差数据处理GM(1,1)模型及其应用

( 0) x , t =1,2,3,…,N。 (t )
正序列 x 成,可得
0
一般不能直接建模,因为所得数列常是随机的,甚至离散性较大,若将它累加生 ( t )
( 0)
x
由此得到新的数列
(1) (t )
=
∑ x ((k024
5.56
25
7.32
26
从表可知,一步预测结果从整体上与数据重合度很好(当 K 取值不同时,数据重合度有所 变化) ,建立模型后还可对其它未测点进行预测,再作误差数据分析(如图 1)。若进一步根据数控 机床精度评定标准进行有关计算和处理,便可以得到该机床精度评定曲线(如图 2)。
( 0)
i
对应于 1~8 点数据(即 K=8), x(0) =﹛+5.1,
(1) (1 − 8)( k )
+3.5,+3.3,+3.0,+2.2,+2.9,+1.2,+0.6﹜,按照前述方法求得 x 此类推建立新陈代谢一步预测值(如表 3)。 表 3 GM(1,1)新陈代谢模型计算值(µm) i
X
(0) (i)
x
i
( 0) ( k + 1)
=x
(1) ( k + 1)
− x (1)
(k )
(12)
i i i
若将 k 还原成变量 y , x ( 0) 还原成变量 x ,则得到 x 、 y 的拟合函数。
(k )
计算拟合结果后,再作模型精度检验。后验差检验方法如下: 记 k 时刻实际值 x 与计算值 x ( 0) 之差为 q
4.模型的应用
用步距规对某大型立式加工中心的 X 轴向直线运动定位精度进行检测,测点数 i=25,误差 测量值δ如表 2 所示。由于原始数据有正有负,在应用模型之前先进行“正化”处理,根据原始 数据特点,取W=10。 表2 i δ i δ 原始误差测量值(µm) 1 2 3
GM(1_1)模型

一、GM(1,1)模型(grey model一阶一个变量的灰微分方程模型)灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。
灰数的生成,就是从杂乱中寻找出规律。
同时,灰色理论建立的是生成数据模型,不是原始数据模型。
因此,灰色预测的数据是通过生成数据的GM(1,1)模型所得到的预测值的逆处理结果。
GM(1,1)的具体模型计算式设非负原始序列对作一次累加; k=1,2,…,n得到生成数列为于是的GM(1,1)白化微分方程为(1—1)其中a,u为待定参数,将上式离散化,即得(1—2)其中为在(k+1)时刻的累减生成序列,(1—3)为在(k+1)时刻的背景值(即该时刻对应的x的取值)(1—4)将(1—3)和(1—4)带入(1—2)得(1—5)将(1—5)式展开得(1—6)令,,为待辨识参数向量,则(1—6)可以写成(1—7)参数向量可用最小二乘法求取,即(1—8)把求取的参数带入(2—16)式,并求出其离散解为(1—9)还原到原始数据得(1—10)(1—9)、(1—10)式称为GM(1,1)模型的时间相应函数模型,它是GM(1,1)模型灰色预测的具体计算公式。
二、灰建模事例北方某城市1986-1992年交通噪声平均声级数据序号年份Leq1 1986 71.12 1987 72.43 1988 72.44 1989 72.15 1990 71.46 1991 72.07 1992 71.6表:某城市近年来交通噪声数据[dB(A)]第一步:级比检验,建模可行性分析。
1、建立交通噪声平均声级数据时间序列:2、求级比:3、级比判断:由于所有的,(k=2,3,…7),故可以用作满意的GM(1,1)建模。
(注:由此处可见,当样本数量增加时,GM模型能够接受的相邻两个样本的变化范围变小,正常情况上公司每天的上班人数基本恒定,因此可以在样本数量的选择和可能的变换范围之间作一个平衡:n取20时,允许的变化范围大致为(0.91 , 1.1);n取40时,允许的变化范围大致是(0.95 ,1.05)…在进行预测时,只要使用最新的n组数据即可)第二步:用GM(1,1)建模1、对原始数据作一次累加:(k=1,2, (7)得:=(71.1,143.5,215.9, 288, 359.4, 431.4, 503)2、构造数据矩阵B以及数据向量Y:于是可以得,3、用最小二乘法估计求参数列于是可以得到,4、建立模型解得时间响应序列为=5、 求生成数列值及模型还原值;令k=1,2,…,6带入时间响应函数即可得到 其中取由,得到还原值 =(71.1, 72.4, 72.2, 72.1, 71.9, 71.7, 71.6) 第三步:模型的误差分析由此可见,该模型精确度较高,可以进行预报及预测。
GM(1,1)灰色模型在建筑物沉降预测中的应用

GM(1,1)灰色模型在建筑物沉降预测中的应用麻超河海大学土木工程学院,南京 (210098)E-mail :machao2902@摘 要:本文详细介绍了 GM(1,1) 灰色理论模型,并利用该模型对一泵站的沉降进行了预测,同时将预测结果与回归模型进行了对比,最后从分析结果可知GM(1,1)灰色模型能较好地预测该建筑物的沉降发展趋势。
关键词:GM(1,1)模型;灰色理论;回归模型;沉降预测众所周知,建筑物在其施工过程中以及竣工后,由于受到诸如基础变形、上部荷重、工程地质条件及外界扰动等多因素影响,会产生沉降、倾斜、甚至倒塌。
因此对于正在施工中或竣工后的建筑物进行变形观测,并及时、准确地通过观测数据了解和预测建筑物的变形情况显得尤为重要。
目前建筑物沉降预测方法一般有:回归分析法、德尔菲法、最小方差预测法、马尔柯夫预测法、趋势外推法等,但这些方法均属统计型方法,要想达到一定的精度,就必须依赖大量的原始观测数据[1]。
为克服上述缺陷,本文在一泵站现有沉降观测数据的基础上,利用GM(1,1)模型对该建筑物进行沉降建模预测,同时其结果与回归模型的结果进行了对比分析,最后得出了一些参考性的结论。
1 灰色理论灰色理论[2]是我国著名学者邓聚龙教授1982年创立的一门横断学科,它以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定系统作为研究对象,主要通过对部分已知的信息开发、提取出有价值的信息,实现对系统运行规律的正确描述和有效控制。
1.1 GM(1,1)模型设非负离散数列为(0)(0)(0)(0){(1),(2),...,()}xx x x n =,n 为序列长度(此序列一般取等时距序列,当原始数据为非等时距序列,则可采用线性差值的方法来处理,从而保证模型有较高的滤波精度),对(0)x 进行一次累加生成(1-AGO ),即可得到一个生成序列: (1)(1)(1)(1){(1),(2),...,()}x x x x n = (1)对此生成序列建立一阶微分方程:(1)(1)dx ax u dt+⊗=⊗,记为GM(1,1)。
灰色系统GM(1,1)模型解读

以及
X 0 D2 ( x0 (1)d 2 , x0 (2)d 2 , x0 (3)d 2 , x0 (4)d 2 )
其中 于是
1 x0 (k )d ( x0 (k )d x0 (k 1)d 4 k 1
2
x0 (4)d );
X 0 D2 (27260,29547,32411,35388) X x 1 , x 2 , x 3 , x 4
平均相对误差
1 4 k 0.00067 0.067% 0.01 4 k 1
模拟误差4 0.0002 0.01 ,精度为一级。
计算 X 与x 的灰色绝对关联度 :
1 s x 4 x 1 11502 x k x 1 2 k 2
0 1 1
b ak 1 e x0 1 e ; a
a
k 1, 2,
,n
2.灰色系统预测模型的精度检验
预测就是借助于过去的探讨去推测、了解未 来。灰色预测就是通过原始数据的处理和灰 色模型的建立,发现、掌握系统发展规律, 对系统未来状态做出科学定量预测。
灰色系统模型
研究一个系统,一般应首先建立系统的数学模型, 进而对系统的整体功能,协调功能以及系统各因素 之间的关联关系,因果关系进行具体的量化研究。 这种研究必须以定性分析为先导,定量与定性紧密 结合。系统模型的建立,一般要经过思想开发,因 素分析,量化,动态化,优化五个步骤。即语言模 型,网络模型,量化模型,动态模型,优化模型。 在建模过程中,要不断的将下一阶段中所得的结果 回馈,经过多次循环往返,使整个模型逐步趋于完 善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第32卷第3期
2002年5月数学的实践与认识MATHEMATICSINPRACTICEANDTHEORYVol132 No13 May,2002
关于“
GM
(1,1)
模型的适用范围”一文的一个注记
李 群
1, 陈 伟2
(11大连理工大学应用数学系,辽宁大连 116024;山东财政学院,山东济南 250014)
(21山东大学威海分校计算中心,山东威海 264200)
摘要:
本文扩展了刘思峰和邓聚龙的一个命题的适用范围,最后给出了一个相应新命题
.
关键词:
GM
(1,1)
;发展系数阀值;有效区;禁区;
适用范围
1
引 言
收稿日期:20012082
07
在文[1]中,以模拟、实验为基础,研究了
GM
(1,1)
模型的适用范围,并按照发展系数阀
值,明确界定了
GM
(1,1)
模型的有效区、慎用区、不宜区和禁区.无疑该文的研究结果将对
GM
(1,1)
模型的正确、有效应用提供了科学的依据.但是,笔者通过阅读全文发现:该文中
命题212还可以进一步改进,其命题条件还可以再拓宽放大
.
2
改进后
GM
(1,1)
模型的禁区
作者在文[1]中给出了
GM
(1,1)模型的多种不同形式,参见文[1]中(1)—(13)
式.为
了方便,现将原文中命题212复述如下
:
原命题212 当
GM
(1,1)发展系数a≥2时,GM(1,1)
模型无意义
.
由原命题212可知,(-∞,-2)∪[2,+∞)是
GM
(1,1)
发展系数
a
的禁区.通过观察
和证明,我们发现区间[1,2]也是
GM
(1,1)
发展系数a的禁区.显然原命题212没有将区
间[1,2]作为
GM
(1,1)
发展系数a的禁区.通过上述讨论,于是我们经过改进得出一个新
的命题
:
新命题212 当
GM
(1,1)发展系数a≤-2或a≥1时,GM(1,1)
模型无意义
.
证明 与命题212的证明相似,我们考虑,由
GM
(1,1)表达式(10)(见文[1])
x(0)(k)=1(1-a)3x(0)(3)ekln(1-a),k=3,4,…,n
可知,当a≥1时
,
x
(0)
(k)不存在.因此,[1,+∞)也是GM(1,1)
发展系数
a的禁区.即,当a
∈[1,+∞)时
,
GM
(1,1)模型失去意义.结合命题212的结论,综合起来得出:区间(
-∞,
-2]∪[1,+∞)是GM(1,1)发展系数a的禁区.因此,即当a∈(-∞,-2]∪[1,+
∞)是
GM(1,1)发展系数a的禁区.因此,即当a∈(-∞,-2]∪[1,+∞)时,GM
(1,1)
模型失去
意义
.
因此,一般地,当a∈(-2,1)时
,
GM
(1,1)模型才有意义,即GM(1,1)
发展系数
a
的有
效区是
(-2,1)
.
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
参考文献
:
[1] 刘思峰,邓聚龙1GM(1,1)模型的适用范围[J].系统工程理论与实践,2000,5:121—124.
ANoteoftheRangeSuitableforGM
(1,1)
LIQun1, CHENWei
2
(1.DepartmentofMathematics,DalianUniversityofTechnology,Dalian116024,China)
(2.ComputationCenter,ShandongUniversityatWeihai,Weihai264200,China)
Abstract: ThispaperextendstherangesuitableofapropositionaboutLIUSi2fengandDENG
Ju2longandgetsacorrespondingproposition
.
Keywords: GM(1,1);thresholdofdevelopingcoefficients;theareaofvalidity;theprohibited
areaofGM(1,1);rangesuitableforGM
(1,1)
444
数 学 的 实 践 与 认 识32卷
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net