最新-平行四边形单元测试题 精品

合集下载

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

人教版小学数学四年级上册第5单元《平行四边形和梯形》单元测试(含答案)

人教版小学数学四年级上册第5单元《平行四边形和梯形》单元测试(含答案)

第5单元平行四边形和梯形(单元测试)-2024-2025学年四年级上册数学人教版一、单选题(共5题;共15分)1.(3分)如图,图中共有()组平行线段。

A.1B.2C.3D.42.(3分)用长度分别是3厘米、3厘米、8厘米、8厘米的四根小棒可以搭成()个形状不同的平行四边形。

A.1B.2C.3D.无数个3.(3分)下面说法错误的是()A.正方形是特殊的长方形B.长方形是特殊的平行四边形C.平行四边形和梯形都有无数条高D.平行四边形具有稳定性4.(3分)左下图中的长方形与右边四张图形随意交叉摆放,摆出重叠部分是四边形。

当这个四边形一定是梯形时,应选择的图形是()。

A.①B.②C.③D.④5.(3分)把一张长方形纸片上下对折一次,再左右对折一次,打开后,折痕()。

A.互相平行B.互相垂直C.永不相交D.无法判断二、判断题(共5题;共15分)6.(3分)从平行四边形的一个顶点出发可以画2条不同的高。

()7.(3分)同一平面内,两条直线不互相垂直就一定互相平行。

()8.(3分)正方形中相邻的边都是互相垂直的。

()9.(3分)两条直线相交,它们的交点叫做垂足。

()10.(3分)平行四边形四条边的长度确定了,它的形状就确定了。

()三、填空题(共6题;共24分)11.(4分)两条平行线之间可以画条垂线段,所有的垂线段的长度。

12.(4分)如图,数一数有个平行四边形,个梯形。

13.(4分)长方形的长和宽互相,长方形的两条长互相。

14.(2分)一个平行四边形的周长是26厘米,其中一条边的长度是5厘米,与它相邻的一条边的长度是厘米。

15.(6分)如图,四边形ABCD是一个梯形,它的高是cm;如果把点D向平移格,这个梯形就变成一个平行四边形。

16.(4分)同一平面上不重合的两条直线一般有和两种情况。

四、解决问题(共6题;共46分)17.(7分)在同一平面内,把两根小棒都摆成和第三根小棒平行,看一看,这两根小棒平行吗?18.(7分)一个平行四边形的一条边是12厘米,它的邻边比它长2厘米。

第12章《平行四边形》单元测试(含解答)-

第12章《平行四边形》单元测试(含解答)-

第12章《平行四边形》单元测试A卷一、选择题:1.下面几组条件中,能判定一个四边形是平行四边形的是( ).A.一组对边相等; B.两条对角线互相平分C.一组对边平行; D.两条对角线互相垂直2.下列命题中正确的是( ).A.对角线互相垂直的四边形是菱形; B.对角线相等的四边形是矩形C.对角线相等且互相垂直的四边形是菱形;D.对角线相等的平行四边形是矩形3.如图所示,四边形ABCD和CEFG都是平行四边形, 下面等式中错误的是( ).A.∠1+∠8=1800; B.∠2+∠8=180°;C.∠4+∠6=180°; D.∠1+∠5=180°4.在正方形ABCD所在的平面上,到正方形三边所在直线距离相等的点有( ).A.3个 B.4个 C.5个 D.6个5.菱形的两条对角线长分别为3和4,那么这个菱形的面积为(平方单位)( ).A.12 B.6 C.5 D.76.矩形两条对角线的夹角为60°,一条对角线与短边的和为15cm,则矩形较短边长为( )A.4cm B.2cm C.3cm D.5cm7.下列结论中正确的有( )①等边三角形既是中心对称图形,又是轴对称图形,且有三条对称轴;②矩形既是中心对称,又是轴对称图形,且有四条对称轴;③对角线相等的梯形是等腰梯形;④菱形的对角线互相垂直平分.A.①③;B.①②③; C.②③④; D.③④8.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少要买( )m2的木地板A.12xy B.10xy C.8xy D.6xy二、填空题:1.用正三角形和正方形组合能够铺满地面,每个顶点周围有______个正三角形和______个正方形.2.平行四边形的一组对角和为300°,则另一组对角的度数分别为______.3.已知P为ABCD的边AB上一点,则S△PCD=____.4.已知ABCD中,∠A比∠B小20°,那么∠C的度数是________.5.在ABCD中,若一条对角线平分一个内角,则四边形ABCD为_______形.6.一个正方形要绕它的中心至少旋转______,才能和原来的图形重合;若绕它的一个顶点至少旋转________,才能和原来的图形重合.7.如图所示,在等腰梯形ABCD中,共有_____对相等的线段.8.梯形的上底长为acm,下底长为bcm(a<b),它的一条对角线把它分成的两部分的面积比为_______.三、解答题.1.在四边形ABCD中,AB∥CD,∠D=2∠B,AD与CD的长度分别为a和b.(1)求AB的长.(2)若AD⊥AB于点A,求梯形的面积.2.梯形ABCD中,DC∥AB,DC<AB,过D点作DE∥AB,交AB于点E,若梯形周长为30cm,CD=4cm,则△ADE的周长比梯形的周长少多少厘米?3.如图所示,已知四边形ABCD为正方形,M为BC边中点,将正方形折起,使点M与A重合,设折痕为EF,则ME=AB,求△AEM的面积与正方形ABCD面积的比.4.如图所示,已知ABCD中,AC的平行线MN分别交DA,DC的延长线于M,N,交AB,BC于P,Q,求证:QM=NP.5.已知AD是△ABC中∠A的平分线,DE∥AC交AB于E点,DF∥AB交AC于F 点.求证:E,F关于直线AD对称.6.试证明被凸四边形两条对角线分成的三角形中,两个相对三角形的面积的乘积等于另外两个相对三角形的面积的乘积.B卷1.(画图题)下料问题:要剪切如图1,2所示的两种直角梯形零件,且使两种零件的数量相等.有两种面积相等的矩形铝板,如图3,4所示,第一种长500mm,宽300mm,第二种长600mm,宽250mm,可供选用.(1)为了充分利用材料,应选用第_______种铝板剪零件更合理一些,一共剪______个,并说明理由.剪下这些零件后,铝板所剩的边角余料的面积是多少?(2)从图1,2中选出你要用的铝板示意图,在上面画出剪切线,并把边角余料用阴影表示出来.2.(探索题)(1)证明:在直角三角形中,若一条直角边等于斜边的一半,那么这条直角边所对的角为30°.(2)利用这个结论解决下列问题:如图所示,在梯形ABCD中,AB∥CD,AD⊥AC,AD=AC,DB=DC,AC,BD交于点E,试问CE与CB相等吗,为什么?3.(实际应用题)如图所示,在烟台市第一海水浴场铺设了一块长48m,宽32m的矩形花圃,喷水嘴安装在矩形对角线的交点P处,现计划从点P引三条射线把花圃分成面积相等的三部分,分别种植三种不同的花(不考虑各部分之间的空隙),请你通过计算,形成多个设计方案,并根据你的设计方案回答出三条射线与矩形有关边的交点位置(本题只要求设计四个正确方案以及其中一个方案的解答过程).答案:A卷一、1.B 2.D3.A 解析:∵四边形ABCD,CEFG是平行四边形,∴∠5+∠3=∠1+∠5=180°.∵∠4=∠5,∠5+∠6=180°,∴∠4+∠6=180°,同理∠2+∠8=180°,∴选项B,C,D均正确,∵∠1=∠3,∠3=∠8,∴∠1=∠8,∴选项A错.4.C 解析:如答图所示,点A,B,C,D,E即为满足条件的点.5.B 解析:菱形面积等于两条对角线乘积的一半.6.D 解析:如答图所示.∵矩形ABCD,∴OA=OB=OC=OD.∵∠AOB=60°,∴AB=OA=OB(有一个角为60°的等腰三角形是等边三角形).∵AC+AB=15,∴AB=15÷3=5(cm).7.D 解析:等边三角形是轴对称图形,有三条对称轴,对称轴是三条中线所在的直线,但不是中心对称图形,所以①不对;矩形既是中心对称图形,又是轴对称图形,但对称轴是对边中点连线所在的直线,只有两条,所以②不对;③④正确.8.A 解析:卧室和客厅的面积=2y×2x+2x×4y=4xy+8xy=12xy(m).二、1.3 22.解析:平行四边形内角和为360°,且对角相等,所以依题意可得,另一组对角的度数分别为(360°-300°)÷2=30°.答案:30°3.4.解析:如答图所示.∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∵∠B-∠A=20°,∴∠A=80°,∴∠C=∠A=80°(平行四边形对角相等).答案:80°5.菱 6.90° 360°7.解析:分别是AB=CD,BD=AC,OA=OD,OB=OC.答案:48.解析:如答图所示,对角线AC将梯形ABCD分成△ACD与△ABC,S△ACD= ,S△ABC = ,∴S△ACD:S△ABC =a:b.答案:a:b三、1.解析:如答图所示.(1)过C点作CE∥DA.∵AB∥CD,∴四边形AECD是平行四边形(两组对边分别平行的四边形是平行四边形),∴∠AEC=∠D.∵∠D=2∠B,∴∠AEC=2∠B=∠1+∠B,∴∠1=∠B,∴EC=EB.∵DC=b,AD=a,∴AE=b,CE=EB=a,∴AB=a+b.(2)S梯形ABCD= ×AB= ×a= .2.解析:如答图所示.∵DC∥AB,DE∥CB,∴四边形DEBC是平行四边形,∴DC=EB,DE=CB,∴L梯形ABCD-L△ADE=(DC+AD+AB+BC)-(AD+AE+DE)=DC+EB=2DC.∵CD=4cm,∴△ADE的周长比梯形的周长少8cm.3.解析:依题意可知EM=EA.∵EM=AB,EA=AB.∵M是BC边中点,∴MB= BC.∵正方形ABCD,∴∠B=90°,AB=BC=CD=DA,∴S△AEM:S正方形ABCD= :AB2= :AB2=1:6.4.解析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥ND.∵AC∥MN,∴四边形ACQM,APNC是平行四边形(两组对边分别平行的四边形是平行四边形),∴AC=PN=MQ(平行四边形对边相等).5.如答图所示,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵AD是△ABC中∠A的平分线,∴∠1=∠2,∴AEDF是菱形(对角线平分一组对角的平行四边形是菱形).∴EF关于直线AD对称.6.解析:如答图所示,过B,D两点分别作AC的垂线,得到两个高h1,h2,∴S△AOD=h1·OA,S△COD =h1·OC,S△AOB=OA·h2,S△BOC=OC·h2,∴S△AOD·S△BOC =OA·OC·h1·h2,S△COD·S△AOB =OA·OC·h1·h2,∴S△AOD·S△BOC = S△COD·S△AOB,即两个相对三角形的面积的乘积等于另外两个相对三角形的面积的乘积.B卷1.解析:(1)第一种,如答图所示,所选铝板所剩的边角余料的面积=500×300-2××200-2××150=150000-80000-60000=10000(mm2).(2)如答图所示.2.解析:(1)略.(2)CE=CB.证明:如答图所示,过A点,B点分别作AM⊥DC于M点,BN⊥DC于N 点.∵AB∥DC,∴AM=BN,∵AD=AC,∴DM=MC=DC.∵AD⊥AC,∴∠ACD=45°,AM=MC=MD=CD.∵DB=DC,∴BN=AM=DB,∴∠BDC=30°,∴∠CEB=∠ACD+∠DCB=45°+30°=75°,∠DCB=∠DBC=(180°-∠BDC)=(180°-30°)=75°,∴∠DBC=∠CEB,∴CE=CB.3.解析:如答图所示,如实线所示.证明:如答图(1).将AD分成三等份,将AB分成三等份.∵矩形对角线将矩形分割成四个面积相等的三角形△ABP,△BPC,△PCD,△DAP,将AD的两个三等分点分别与点P连结,且延长与BC相交,可将△ADP,△BPC三等分.同理将AB的两个三等分点分别与点P连结,且延长与CD相交,可将△ABP,△DPC三等分,这样就构成12个小三角形,且这12个小三角形的面积相等,每相邻4个小三角形的面积之和为矩形面积的,得证.(1) (2)。

平行四边形单元测试卷

平行四边形单元测试卷

平行四边形单元测试卷一、选择题(每题2分,共10分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 以上都不是2. 下列哪个不是平行四边形的性质?A. 对角线互相平分B. 对边相等C. 对角相等D. 内角和为360°3. 平行四边形的面积如何计算?A. 底乘高B. 对角线乘积的一半C. 周长除以4D. 以上都不是4. 如果一个平行四边形的两组对边分别相等,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 不能确定5. 平行四边形的对角线将平行四边形分成:A. 两个三角形B. 两个梯形C. 两个矩形D. 四个小平行四边形二、填空题(每空1分,共10分)1. 平行四边形的对角线_______。

2. 矩形的四个角都是_______。

3. 菱形的对角线_______。

4. 平行四边形的面积公式为_______。

5. 如果一个平行四边形的底为5厘米,高为3厘米,那么它的面积是_______平方厘米。

三、判断题(每题1分,共5分)1. 所有平行四边形都是矩形。

()2. 菱形的四条边都是相等的。

()3. 平行四边形的对角线一定垂直。

()4. 矩形和菱形都是特殊的平行四边形。

()5. 梯形不是平行四边形。

()四、简答题(每题5分,共10分)1. 请简述平行四边形和矩形的区别。

2. 请解释为什么平行四边形的对角线互相平分。

五、计算题(每题10分,共20分)1. 一个平行四边形的底是8厘米,高是4厘米,请计算它的面积。

2. 如果一个平行四边形的对角线长度分别为10厘米和12厘米,且它们相交于中点,求这个平行四边形的面积。

六、解答题(每题15分,共15分)1. 一个平行四边形的对角线互相垂直,且长度分别为12厘米和16厘米。

如果这个平行四边形的面积是96平方厘米,请求出它的底和高。

答案:一、选择题:1-5 BACAD二、填空题:1. 互相平分 2. 直角 3. 垂直且互相平分 4. 底×高 5.15三、判断题:1-5 ×√×√×四、简答题:1. 平行四边形的对边平行且相等,而矩形的四个角都是直角,且对角线相等。

人教版初二数学8年级下册 第18章(平行四边形)单元测试题(含答案)

人教版初二数学8年级下册 第18章(平行四边形)单元测试题(含答案)

人教版八年级数学下册 第十八章 平行四边形 单元测试题一、选择题(30分)1.甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测,你认为最有说服力的是( )A .甲量得窗框的一组邻边相等B .乙量得窗框两组对边分别相等C .丙量得窗框的对角线长相等D .丁量得窗框的两组对边分别相等且两条对角线也相等2.菱形ABCD 的边长为5,一条对角线长为6,则菱形面积为( )A .20B .24C .30D .483.平行四边形ABCD 中,若∠A =2∠B ,则∠C 的度数为( )A .120°B .60°C .30°D .15°4.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,H 为CD 边中点,正方形ABCD 的周长为8,则OH 的长为( )A .4B .3C .2D .15.如图,菱形ABCD 的面积为24cm 2,对角线BD 长6cm ,点O 为BD 的中点,过点A 作AE ⊥BC 交CB 的延长线于点E ,连接OE ,则线段OE 的长度是( )A .3cmB .4cmC .4.8cmD .5cm 6.如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则()ABCD 6AB =BD BED BC =A.8B.10C.12D.147.将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形B.菱形C.正方形D.梯形8.如图,为了测量池塘边A、B两地之间的距离,在线段AB的一侧取一点C,连接CA并延长至点D,连接CB并延长至点E,使A、B分别是CD、CE的中点,若DE=16m,则线段AB的长度是( )A.12m B.10m C.9m D.8m9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD10.如图,在平行四边形ABCD 中,,,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于的长为半径画弧,两弧相交于点N,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .1B .2C .3D .4二、填空题(15分)11.已知矩形一条对角线长8cm ,两条对角线的一个交角是60°,则矩形较短的边长为 _____cm .12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.13.如图,菱形ABCD 的周长为40,面积为80,P 是对角线BC 上一点,分别作P 点到直线AB .AD 的垂线段PE .PF ,则等于______.14.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.15.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.①;②;③.上述结论正确的是__________.4AB =5BC =12PQ PE PF +BG CE =CE BG ⊥120AME ∠=︒三、解答题(75分)16.如图,点O 是△ABC 外一点,连接OB 、OC ,线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,连接DE 、EF 、FG 、GD .(1)判断四边形DEFG 的形状,并说明理由;(2)若M 为EF 的中点,OM =2,∠OBC 和∠OCB 互余,求线段DG 的长.17. 如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1)求证:BD =EC .(2)当∠DAB =60°时,四边形BECD 为菱形吗?请说明理由.18.如图,四边形是平行四边形.求:(1)和的度数;(2)和的长度.19.如图,在矩形ABCD 中,已知AB =4,∠DBC =30°,求AC的长.ABCD ADC ∠BCD ∠AB BC20.如图,在中,点E ,H ,F ,G 分别在边上,,,与相交于点O ,图中共有多少个平行四边形?21.如图,A ,B 两地被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A ,B 间的距离:先在外选一点C ,然后步测出的中点M ,N ,并测出的长,如果M ,N 两点之间还有阻隔,你有什么解决办法?说明你的理由.22.如图,在平行四边形中,过点作于点,点在边上,且,连接、.(1)求证:四边形是矩形;(2)若平分,,,求的长.23.如图,在四边形ABCD 中,,,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作交AB 的延长线于点E.ABCD ,,,AB BC CD DA //AD EF //CD GH EFGH AB ,AC BCMN ABCD D DE AB ⊥E F CD FC A E =AFBF DEBF AF DAB ∠6FC =10DF =BF AB DC ∥AB AD =CE AB⊥(1)求证:四边形ABCD 是菱形;(2)若,,求CE 的长.【参考答案】1.D 2.B 3.A 4.D 5.B 6.C 7.B 8.D 9.B 10.A11.412.513.814.15.①②16.解:(1)四边形DEFG 是平行四边形,理由是:∵线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,∴EF ∥BC ,EF=BC ,DG ∥BC ,DG =BC ,∴EF ∥DG ,EF =DG ,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC +∠OCB =90°,∴∠BOC =180°﹣90°=90°,∴∠EOF =90°,△EOF 为直角三角形,∵M 为EF 的中点,OM =2,∴EF =2OM =4,∵EF =DG ,∴DG =4.17.(1)证明:四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,又∵BE =AB ,∴BE =CD ,BE ∥CD ,∴四边形BECD 是平行四边形,∴BD =EC ;(2)解:结论:四边形BECD 是菱形.理由:∵四边形ABCD 是菱形,8AC =6BD =6+1212∴AD =AB ,∵∠DAB =60°,∴△ADB ,△DCB 都是等边三角形,∴DC =DB ,∵四边形BECD 是平行四边形,∴四边形BECD 是菱形.18.解:(1)∵四边形ABCD 是平行四边形∴ ,∵∴(2)∵四边形ABCD 是平行四边形∴∵∴19.解:∵四边形ABCD 是矩形,∴CD =AB =4,AC =BD ,∠BCD =90°,又∵∠DBC =30°,∴BD =2CD =2×4=8,∴AC =8.20.四边形是平行四边形,,,,平行四边形有:ABCD ,ABHG ,CDGH ,BCFE ,ADFE ,AGOE ,BEOH ,OFCH ,OGDF 共9个,共有9个平行四边形.21.解:用步测出CM ,CN 中点D 、E , 只要测量出DE 长便可求出AB ,∵点D 、E 分别为CM ,CN 的中点,∴DE =(三角形的中位线平行于第三边,并且等于第三边的一半),又∵点M ,N 分别为的中点,∴MN =(三角形的中位线平行于第三边,并且等于第三边的一半),∴AB =2MN =4DE .∴只要测量出DE 长便可求AB .=ADC B ∠∠180B BCD ∠+∠=56B =∠5618056124ADC BCD ∠=∠=-=,=,AB DC BC AD=25,30DC AD ==25,30AB BC == ABCD ∴//,//AB CD AD BC //AD EF //CD GH //,//AB GH BC EF∴∴ ∴12MN ,AC BC 12AB22.解:(1)证明:∵四边形是平行四边形,∴,,∵,∴,即,∴四边形是平行四边形,又∵,∴,∴平行四边形是矩形;(2)∵平分,∴,∵,∴,∴,∴,在中,,由勾股定理得:,由(1)得四边形是矩形,∴.23.(1)证明:∵,∴,∵AC 平分∠BAD ,∴,∴,∴,∵AB=AD ,∴,∵,ABCD //CD AB CD AB =FC A E =CD FC AB AE -=-DF BE =DEBF DE AB ⊥90DEB ∠=︒DEBF AF DAB ∠DAF BAF ∠=∠//CD AB DFA BAF ∠=∠DFA DAF ∠=∠10AD DF ==Rt AED △6AE FC ==8DE ===DEBF 8BF DE ==//AB DC OAB DCA ∠=∠OAB DAC ∠=∠DAC DCA ∠=∠CD AD =AB CD =//AB DC∴四边形ABCD 是平行四边形,又∵,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD =6,AC =8,∴,,,∴,在中,根据勾股定理可知,,∴菱形的面积,∵,∴菱形面积,∴AB AD =118422OA OC AC ===⨯=BD AC ⊥116322OB OD BD ===⨯=90AOB ∠=︒Rt AOB△5AB ===11862422S AC BD ==⨯⨯= CE AB ⊥524S AB CE CE === 245CE =。

《第18章 平行四边形》单元测试(2)

《第18章 平行四边形》单元测试(2)

《第18章平行四边形》单元测试(2)一.选择题(共10小题)1.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点D在AB上,点E在AC上,分别过B、E作AC、BC的平行线,两平行线交于点H,已知CD=4,则BE长度是()A.4B.4C.4D.52.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2011个正方形(正方形ABCD看作第1个)的面积为()A.5()2010B.5()2010C.5()2011D.5()2011 3.我们给出如下定义,顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()A.4B.8C.D.5.如图,把一张长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,BE与AD相交于点F,则下列结论不一定成立的是()A.△BFD是等腰三角形B.△ABF≌△EDFC.BE平分∠ABDD.折叠后的图形是轴对称图形6.如图,平行四边形ABCD中,AC、BD交于点O,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于M、N两点,作直线MN,交AB于点E,交CD于点F,连接CE,若AD=3,CD=4,则△BCE的周长为()A.7B.6C.5D.37.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.108.下列四边形中,对角线互相垂直的是()A.B.C.D.9.Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是()A.5cm B.15cm C.10cm D.2.5cm10.如图,矩形ABCD的周长是16,DE=2,△FEC是等腰三角形,∠FEC=90°,则AE 的长是()A.3B.4C.5D.6二.填空题(共8小题)11.如图,在边长为6的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=S,则PB+PC的最小值为.菱形ABCD12.若菱形的周长为16,高为2,则该菱形两邻角的度数分别是.13.如图,直线m过正方形ABCD的顶点B,点A,C到直线m的距离分别是1和3,则正方形的边长是.14.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.15.如图,在△ABC中,∠C=90°,AB=13,AD是△ABC的一条角平分线,E为AB的中点,连接DE,若CD=,则△AED的面积为.16.如图,将一张矩形纸片沿EF折叠后,点D、C分别落在点D′,C′的位置,若∠1=40°,则∠D′EF=.17.如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.18.已知直角坐标系中,菱形ABCD的顶点A、B、C的坐标分别是A(﹣2,0),B(0,﹣4),C(2,0),则点D的坐标是三.解答题(共9小题)19.如图所示,把四个相同的直角三角形拼成正方形,直角三角形两直角边长分别为24和7,通过面积计算该直角三角形的斜边长.20.如图,E,F是四边形ABCD的对角线BD的三等分点,CE,CF的延长线分别平分AB,AD,交点分别为点G,H.(1)求证:CE=2EG;(2)求证:四边形ABCD是平行四边形.21.2022年新版的《义务教育数学课程标准》、重新将梯形的概念作为需要理解的内容,如图所示:四边形ABCD为梯形,AB∥CD,E为AD的中点、解答下列问题:(1)作图:过点E作EF∥AB、交BC于点F;(2)EF和CD的位置关系如何?请写出简单的推理过程(推理的依据要写出来);(3)用刻变尺量一下BF和CF的长度,请你大胆猜想,直接写出BF和CF的数量关系;(4)用刻度尺量一下CD、EF、AB的长度,请你大胆猜想,直接写出CD、EF、AB这三条线段的数量关系.22.如图,将边长为6的正三角形ABC沿着MN折叠,使点A落在BC边上的D点处.(1)当折痕MN为△ABC的中位线时,求BD的长;(2)试说明△BDM与△CND是否相似;(3)若AM:AN=2:3时,求S△ABD:S△ADC.23.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是AO,CO的中点,连结BE,DF.(1)求证:BE=DF.(2)若BD=2AB=8,BC=6,求AC的长.24.矩形ABCD中,AB=3,AD=4,△ABC沿着AC翻折得到△AB'C,B'C交AD于点E,连接B'D.(1)求证:B'D∥AC;(2)求线段AE的长,直接写出线段B'D的长.25.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1.请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画一个周长为8的菱形ABCD(非正方形);(2)在图2中画出一个面积为9,且∠MNP=45°的▱MNPQ,并直接写出▱MNPQ较长的对角线的长度.26.下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,ABC=90°.求作:矩形ABCD.作法:如图,①分别以点A,C为圆心、大于AC的长为半径作弧,两弧相交于E,F两点;②作直线EF,交AC于点P;③连接BP并延长至点D,使得PD=BP;④连接AD,CD.则四边形ABCD是矩形.根据小明设计的尺规作图过程,解决以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AE,CE,AF,CF.∵AE=CE,AF=CF,∴EF是线段AC的垂直平分线.∴AP=.又∵BP=DP,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴四边形ABCD是矩形()(填推理的依据).27.[定义]:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABDC就称为“美妙四边形”.[问题]:(1)下列四边形:平行四边形,矩形,菱形,正方形,其中是“美妙四边形”的是;(填写名称)(2)四边形ABCD是“美妙四边形”,AB=2,∠BAD=60°,∠ABC=90°,求美妙四边形ABCD的面积.(请画出图形,并写出解答过程)。

人教版八年级数学下册精品习题(含答案)

人教版八年级数学下册精品习题(含答案)

第十八章平行四边形单元测试题第一卷选择题一、选择题(每小题3分,共24分)1.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( C )A.∠D=60° B.∠A=120° C.∠C+∠D=180°D.∠C+∠A=180°2.矩形,菱形,正方形都具有的性质是( B )A.对角线相等 B.对角线互相平分 C.对角线平分一组对角 D.对角线互相垂直3.如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( B )A. 6cm B. 12cm C. 4cm D. 8cm第3题第4题第5题第7题4.如图所示,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是()A.10<m<12 B.2<m<22 C. 1<m<11 D.5<m<65.如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A. 1对B. 2对C. 3对D. 4对6.已知菱形的边长为6cm,一个内角为60°,则菱形较短的对角线长是()A. 6cm B.cm C. 3cm D.cm7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°8.菱形的周长为20cm,两邻角的比为.1:2,则较长的对角线长为()A. 4.5cm B. 4cm C. 5cm D. 4cm9.矩形的四个内角平分线围成的四边形()A.一定是正方形 B.是矩形 C.菱形 D.只能是平行四边形10.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A. 9.5 B.10.5 C. 11 D. 15.5第二卷非选择题二、填空题(每小题3分,共24分)11.已知正方形的一条对角线长为4cm,则它的面积是cm2.12.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.13.如图,菱形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AB和CD于点E、F,BD=6,AC=4,则图中阴影部分的面积和为.14.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.bnnnn第13题第14题第15题第16题15.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,若△ABC的周长为12cm,则△DEF的周长是cm.16.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)17.已知Rt△ABC的周长是4+4,斜边上的中线长是2,则S△ABC= .18.将七个边长都为1的正方形如图所示摆放,点A1、A2、A3、A4、A5、A6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是.第19题图第20题图三、解答题(共7小题,共66分)19.如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.证明:四边形DECF是平行四边形.(6分)20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.(8分)21.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,(8分)(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.22.如图所示,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,(10分)求证:AD⊥EF.23.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(10分)(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(12分)(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(12分)(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)第十六章二次根式一、选择题(每小题3分,共24分)1.在下列各式中,不是二次根式的有( B )①-10;②10a(a≥0);③mn(m,n同号且n≠0);④x2+1;⑤38.A .3个B .2个C .1个D .0个2.若代数式x +1(x -3)2有意义,则实数x 的取值范围是( B )A .x ≥-1B .x ≥-1且x ≠3C .x >-1D .x >-1且x ≠33.下列计算:(1)( 2)2=2;(2) (-2)2=2;(3)(-2 3)2=12;(4)(2+3)(2- 3)=-1.其中结果正确的个数为( D ) A .1 B .2 C .3 D .44.下列式子中为最简二次根式的是( A ) A. 3 B. 4 C.8 D.125.若75n 是整数,则正整数n 的最小值是( B ) A .2 B .3 C .4 D .56.一个直角三角形的两条直角边长分别为2 3 cm ,3 6 cm ,那么这个直角三角形的面积是( C )A .8 2 cm 2B .7 2 cm 2C .9 2 cm 2 D. 2 cm 27.如果a -b =2 3,那么代数式(a 2+b 22a -b )·aa -b的值为( A )A. 3 B .2 3 C .3 3 D .4 3 8.甲、乙两人计算a +1-2a +a 2的值,当a =5的时候得到不同的答案,甲的解答是a +1-2a +a 2=a +(1-a )2=a +1-a =1;乙的解答是a +1-2a +a 2=a +(a -1)2=a +a -1=2a -1=9.下列判断正确的是( D )A .甲、乙都对B .甲、乙都错C .甲对,乙错D .甲错,乙对 二、填空题(每小题3分,共24分)9.已知a <2,则(a -2)2=____2-a____. 10.计算:27-613=___根号三_____. 11.在实数范围内分解因式:x 2-5=_____(x-根号五)(x+根号五)_______. 12.计算:18÷3×13=____根号二____. 13.化简:(1)13 2=____六分之根号二____;(2)112=___十二分之二倍的根号三_____;(3)102 5=____十分之五倍的根号二____;(4)23-1=____根号三加一____. 14.一个三角形的三边长分别为8 cm ,12 cm ,18 cm ,则它的周长是____五倍的根号二加二倍的根号三____ cm.15.已知a 是13的整数部分,b 是13的小数部分,则ab =____三倍的根号十三减九____.16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为a ,b ,c ,那么该三角形的面积为S =14[a 2b 2-(a 2+b 2-c 22)2].已知△ABC 的三边长分别为5,2,1,则△ABC 的面积为____1____.三、解答题(共52分) 17.(10分)计算:解(1)2(12+20)-3(3-5); =根号三加七倍的根号五(2)(3-2 5)(15+5)-(10-2)2. =负的五倍的根号三减三倍的根号五减十二18.(10分)已知a =7+2,b =7-2,求下列代数式的值:(1)a 2b +b 2a ;(2)a 2-b 2. (1)=六倍的根号七 (2)=八倍的根号七19.(10分)先化简,再求值:1x 2+2x +1·(1+3x -1)÷x +2x 2-1,其中x =2 5-1.十分之根号五20.(10分)王师傅有一根长45米的钢材,他想将它锯断后焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框,王师傅的钢材够用吗?请通过计算说明理由.四倍的根号二加四倍的根号十八加四倍的根号三十二等于四倍的根号二加十二倍的根号二加十六倍的根号二等于三十倍的根号二三十二倍的根号二大于四十五所以王师傅的钢材不够用21.(12分)阅读材料:小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方的形式,如3+2 2=(1+2)2,善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为正整数),则有a+b2=m2+2n2+2mn2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=___m的平方加三倍的n方_____,b=___2mn_____;(2)利用所探索的结论,找一组正整数a,b,m,n填空:___13___+___4___3=(____1__+__2____3)2;(3)若a+4 3=(m+n3)2,且a,m,n均为正整数,求a的值.A=13or勾股定理单元复习测试题一.选择题二.01.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.2.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.3.如图,字母B所代表的正方形的面积是()A.12 B.144 C.13 D.1944.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5 B.1 C.1.5 D.25.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.136.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米7.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A.B.C.D.8.下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A.1个B.2个C.3个D.4个9.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对10.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE ⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6 C.D.二.填空题11.如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.12.已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.则四边形ABDC的面积是.13.如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为.14.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为m.15.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.三.解答题16.已知:如下图,Rt△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AD的长;(3)求AB的长.17.《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:;(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.18.如图的一块地(图中阴影部分),∠ADC=90°,AD=12,CD=9,AB=25,BC=20.(1)求∠ACB的度数;(2)求阴影部分的面积.19.如图所示,永定路一侧有A、B两个送奶站,C为永定路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AC⊥BC,∠1=30°.(1)连接AB,求两个送奶站之间的距离;(2)有一人从点C处出发沿永定路边向右行走,速度为2.5km/h,多长时间后这个人距B 送奶站最近?并求出最近距离.20.如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.(1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是.(2)直接写出线段AC的长为,AD的长为,BD的长为.(3)直接写出△ABD为三角形,四边形ADBC面积是.21.如图,有一公路AB和一铁路CD在点A处交汇,且∠BAD=30°,在公路的点P处有一所学校(学校看作点P,点P与公路AB的距离忽略不计),AP=320米,火车行驶时,火车周围200米以内会受到噪音的影响,现有一列动车在铁路CD上沿AD方向行驶,该动车车身长200米,动车的速度为180千米/时,那么在该动车行驶过程中.(1)学校P是否会受到噪声的影响?说明理由;(2)如果受噪声影响,那么学校P受影响的时间为多少秒?,勾股定理参考答案一.选择题1.解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.2.解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.3.解:如图,根据勾股定理我们可以得出:a2+b2=c2a2=25,c2=169,b2=169﹣25=144,因此B的面积是144.故选:B.4.解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.故选:A.5.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.6.解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m 由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选:A.7.解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本选项正确;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.故选:B.8.解:①、设较短的一个直角边为M,则另一个直角边为2M,所以M×2M=2,解得M =,2M=2.根据勾股定理解得斜边为.所以此项正确;②、根据勾股定理解得,另一边==,所以此项正确;③、设∠A=x,则∠B=5x,∠C=6x.因为x+5x+6x=180°解得x=15°,从而得到三个角分别为15°、75°、90°.即△ABC为直角三角形,所以此项正确;④、已知面积和高则可以得到底边为6,又因为是等腰三角形,则底边上的高也是底边上的中线,则可以得到底边的一半为3.此时再利用勾股定理求得腰长为=5.所以此项正确.所以正确的有四个.故选:D.9.解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选:D.10.【解答】解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S=BD•PE,△PBDS=DC•PF,△PCDS=BD•AC,△BCD所以PE+PF=AC=2×2=4.故选:C.二.填空题(共5小题)11.解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.12.解:连接BC,∵∠A=90°,AB=4,AC=3∴BC=5,∵BC=5,BD=13,CD=12∴BC2+CD2=BD2∴△BCD是直角三角形∴S四边形ABCD=S△BCD+S△ABC=×4×3+×5×12=36,故答案为:3613.解:过A作AE⊥AD,使AE=AD,连接CE,DE,过C作CF⊥AD于F,则△ADE是等腰直角三角形,∵∠ADC=45°,∴△CDF是等腰直角三角形,∴CF=DF=CD=1,∵AC⊥AB,∠ABC=45°,∴△ABC是等腰直角三角形,∴AC=BC=,∴AF==2,∴AD=3,∴DE=AD=3,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE,(SAS),∴CE=BD,∵∠ADE=∠ADC=45°,∴∠CDE=90°,∴CE==2,∴BD=CE=2.故答案为:2.14.解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB===9m.同理,在Rt△COD中,DO===12m,∴BD=OD﹣OB=12﹣9=3(m).故答案是:3.15.解:如图所示:故答案是:3.三.解答题(共6小题)16.解:(1)在Rt△DCB中,DC2+DB2=BC2,∴DC2=9﹣,∴DC=;(2)在Rt△ACD中,AD2+CD2=AC2,∴AD2=16﹣,∴AD=;(3)AB=AD+DB=+=5.17.解:(1)图(1)中的大正方形的面积可以表示为c2,也可表示为(b﹣a)2+4×ab ∴(b﹣a)2+4×ab=c2化简得b2﹣2ab+b2+2ab=c2∴当∠C=90°时,a2+b2=c2;(2)(x+y)(x+2y)=x2+3xy+2y2故填:(x+y)(x+2y)=x2+3xy+2y2(3)依题意得则2ab=12∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2=25.18.解:在Rt△ADC中,∵AD=12,CD=9,∴AC2=AD2+CD2=122+92=225,∴AC=15(取正值).在△ABC中,∵AC2+BC2=152+202=625,AB2=252=625.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠A CB=90°.(2)S阴影=AC×BC﹣AD×CD=×15×20﹣×12×9=96.答:阴影部分的面积为96.19.解:(1)∵AC=8km,BC=15km,AC⊥BC,∴A C2+BC2=AB2,AB=km,(2)过B作BD⊥永定路于D,∵△ABC是直角三角形,且∠ACB=90°,∵∠1=30°,∴∠BCD=180°﹣90°﹣30°=60°,在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°,∴CD=BC==7.5(km),∵7.5÷2.5=3(h),∴3小时后这人距离B送奶站最近.最近距离为km.20.解:(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为=,AD的长为=2,BD的长为=.(3)∵AB==5,AD=2,BD=,(2)2+()2=(5)2,∴△ABD为直角三角形,四边形ADBC面积是2×=20.故答案为:(0,﹣4);,2,;直角,20.21.解:(1)如图作PH⊥CD于H.在Rt△APH中,∵∠PAH=30°,PA=320m,∴PH=PA=160m,∵160<200,∴学校P会受到噪声的影响.(2)当PE=PF=200时,动车在线段EF上时,受噪声影响,∵EF=2FH==240m,180千米/时=50米/秒∵=8.8秒,答:学校P受影响的时间为8.8秒.二次根式详解详析1.B [解析] ①的被开方数是负数,不是二次根式.②符合二次根式的定义,是二次根式.③m,n同号,且n≠0,则被开方数是非负数,是二次根式.④因为x2≥0,所以x2+1>0,被开方数是正数,是二次根式.⑤的根指数不是2,所以不是二次根式.2.B [解析] 由题意得⎩⎪⎨⎪⎧x +1≥0,(x -3)2≠0, 解得x ≥-1且x ≠3.3.D [解析] (1)根据“( a )2=a (a ≥0)”可知( 2)2=2成立;(2)根据“ a 2=||a ”可知 (-2)2=2成立;(3)根据“(ab )2=a 2b 2”可知,计算(-2 3)2,可将-2和 3分别平方后,再相乘,所以这个结论正确;(4)根据“(a +b )(a -b )=a 2-b 2”,( 2+3)( 2- 3)=( 2)2-( 3)2=2-3=-1.4.A5.B [解析] ∵75=25×3,∴使75n 是整数的正整数n 的最小值是3.故选B. 6.C7.A [解析] 原式=(a -b )22a ·a a -b =a -b 2,把a -b =2 3代入,原式=2 32=3,故选A.8.D [解析] ∵a =5,∴(1-a )2=|1-a |=a -1.9.2-a 10. 311.(x +5)(x -5) 12. 2 13.(1)26 (2)36 (3)22(4)3+1 14.(5 2+2 3) [解析] 8+12+18=2 2+2 3+3 2=(5 2+23)cm.15.3 13-9 [解析] 根据题意,得a =3,b =13-3,所以ab =3()13-3= 3 13-9.16.1 [解析] 把5,2,1代入三角形的面积公式得S =14[5×4-(5+4-12)2]=14(20-16)=1,故填1. 17.解:(1)原式=2(2 3+2 5)-3 3+3 5 =4 3+4 5-3 3+3 5 =3+7 5. (2)原式=3×15+ 5 3- 25×15-10 `5-[](10)2-2×10×2+(2)2=3 5+5 3-10 3-10 5-10+4 5-2=-3 5-5 3-12.18.解:(1)原式=ab (a +b ).当a =7+2,b =7-2时,原式=6 7. (2)原式=(a +b )(a -b ).当a =7+2,b =7-2时,原式=8 7.19.解:原式=1(x +1)2·x +2x -1·(x +1)(x -1)x +2=1x +1. 当x =2 5-1时, 原式=12 5-1+1=510.20.解:不够用.理由如下: 焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框所需的钢材的总长是4(2+18+32)=4(2+3 2+4 2)=32 2(米),(32 2)2=2048,452=2025. ∵2048>2025,∴王师傅的钢材不够用.21.解:(1)m 2+3n 22mn(2)答案不唯一,如:4 2 1 1(3)根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn .∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2, ∴a =7或a =13.平行四边形答案:所以D 是错误的.故选D .2、解:菱形对角线不相等,矩形对角线不垂直,也不平分一组对角,故答案应为对角线互相平分,故选B .3、解:∵▱ABCD 的周长是28cm ,∴AB+BC=14cm,∵AB+BC+AC=22cm,∴AC=22﹣14=8 cm.故选D.4、解:∵平行四边形ABCD∴OA=OC=6,OB=OD=5∵在△OAB中:OA﹣OB<AB<OA+OB∴1<m<11.故选C.5、解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO∵∠AOB=∠COD,∠AOD=∠COB∴△ABO≌△CDO,△ADO≌△CBO(ASA)∵BD=BD,AC=AC∴△ABD≌△CDB,△ACD≌△CAB(SAS)∴共有四对.故选D.6、解:根据菱形的性质可得较短的对角线与菱形的两边组成一个等边三故选D.8、解:由已知可得,菱形的边长为5cm,两邻角分别为60°,120°.又菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得30°的角,所对边为2.5cm,则此条对角线长5cm.根据勾股定理可得,另一对角线长的一半为cm,则较长的对角线长为5cm.故本题选C.9、解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°.又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形,故选A.∴△DEF的周长为△EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.故选D.第二卷非选择题二、填空题(每小题3分,共24分)11、解:设这个正方形的边长为xcm,则根据正方形的性质可知:x2+x2=42=16,解可得x=2cm;则它的面积是x2=8cm2,故答案为8cm2.12、解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.∴∠CAB=30°∴PA=2EP∵AB=2,E是AB的中点∴AE=1在Rt△APE中,PA2﹣PE2=1∴PE=,PA=∴PE+PB=PE+PA=.故答案为.所以S1=S2.故答案为S1=S2.17、解:∵Rt△ABC的周长是4+4,斜边上的中线长是2,∴斜边长为4,设两个直角边的长为x,y,则x+y=4,x2+y2=16,解得:xy=8,∴S△ABC=xy=4.18、解:连接BD和AA2,∵四边形ABA2D和四边形A1EFC都是正方形,∴DA1=A1A2,∠A1DN=∠A1A2M=45°,∠DA1A2=∠NA1M=90°,∴∠DA1N=∠A2A1M,∵在△DA1N和△A2A1M中∠A1DN=∠A1A2M,DA1=A1A2,∠DA1N=∠A2A1M,∴△DA1N≌△A2A1M,即四边形MA1NA2的面积等于△DA1A2的面积,也等于正方形ABA2D的面积的,同理得出,其余的阴影部分的面积都等于正方形面积的,则这七个正方形重叠形成的重叠部分的面积是6××12=,故答案为:.三、解答题(共7小题,共66分)∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.22、证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形.又∵∠1=∠2,而∠2=∠3,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF.23、(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.∴△AFE≌△DBE.∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(4分)(2)解:四边形ADCF是矩形;∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∠ADB=∠CDB,∴∠PMD=∠PND=90°,PM=PN,∵∠ADC=90°,∴四边形MPND是矩形,∵PM=PN,∴四边形MPND是正方形.25、证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.。

【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷

【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷

人教版数学八年级下册第18章平行四边形培优单元卷一.选择题(共10小题)1.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边2.已知?ABCD的周长是22,△ABC的周长是17,则AC的长为()A.5 B.6 C.7 D.83.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD 是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD4.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.125.用两块完全相同的直角三角形拼下列图形:①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.一定能拼成的图形是( )A.①②⑤B.①③⑤C.③⑤⑥D.①③④6.若菱形的两条对角线分别长8、6,则菱形的面积为()A.48 B.24 C.14 D.127.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A.(3,0),(-1,2) B.(1,1),(-1,2)C.(1,1),(3,0) D.(2,0),(0,2)8.如图,矩形ABCD的周长是28,点O是线段AC的中点,点P是AD的中点,△AOD的周长与△COD的周长差是2(且AD>CD),则△AOP的周长为()A.12 B.14 C.16 D.189.下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.D.二.填空题(共6小题)11.如图,在?ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为.12.如图,在平行四边形ABCD中,E是BC边上的一点,且AB=AE,若AE平分∠DAB,∠EAC=27°,则∠ACD= .13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD=20,则平行四边形ABCD的面积为.14.如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E 和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒1个单位长度的速度移动,移动到第2019秒时,点P的坐标为.16.如图,矩形ABCD的周长为36,点O为对角线BD的中点,点E是线段BA延长线上的一点,且满足AE=5,3AB连接OA,OE,若∠AOD=120°,则线段OE的长为.三.解答题(共7小题)17.已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.18.如图,分别延长?ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.19.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10.(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.21.已知E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.22.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.23.如图1,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,求S△PAC;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,求菱形EFGH的周长.答案:1-5 CBCDB6-10 BAABD11. 40°12. 87°13.4814.415.16.717. 证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEO=∠CFO=90°,在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF.18. 证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形19. (1)证明:∵∠DBC=90°,BE=3,BC=4,∴又∵AE=AC-CE,且AC=10∴AE=10-5=5∴AE=EC,又∵DE=EB,∴四边形ABCD是平行四边形.(2)解:S平行四边形ABCD=BC·BD=4×6=24.20. 证明:(1)∵四边形ABCD是矩形∴AD∥BC∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO∵AB2+BE2=AE2,∴36+(8-CE)2=CE2,∴CE=∵AB=6,BC=8,∴AC==10∴AO=CO=5∵EO==∴EF=2EO=21. (1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF(SAS).(2)∵四边形AECF是菱形,∴EA=EC,∴∠EAC=∠ECA,∵∠BAC=90°,∴∠BAE+∠EAC=90°,∠B+∠ECA=90°,∴∠B=∠EAB,∴EA=EB,∴BE=CE=5.22. (1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=3,∵AD=10,AB=DC,∴AB=(10-3)=.23.解:(1)∵▱ABCD中,EF∥BC,HG∥AB,∴S△ABD=S△BCD,S△PBE=S△PBG,S△PDH=S△PDF,∴S▱AEPH=S▱PGCF,S▱ABGH=S▱EBCF,S▱AEFD=S▱HGCD,故答案为:▱AEPH和▱PGCF或▱ABGH和▱EBCF或▱AEFD和▱HGCD;(2)易得S△ABC=S△ADC,S△PAE=S△PAG,S△PCH=S△PCF,∵S▱BHPE=3,S▱PFDG=5,∴S△PAC=S△PAG+S△PCF+S▱PFDG-S△ACD=S△PAG+S△PCF+S▱PFDG-S▱ABCD=S△PAG+S△PCF+S▱PFDG-(2S△PAG+2S△PCF+S▱BHPE+S▱PFDG)=S▱PFDG-(S▱BHPE+S▱PFDG)=1;(3)∵①②③④四个平行四边形面积的和为14,∴S△ABE+S△BCF+S△CDG+S△ADH=7,∵四边形ABCD的面积为11,∴S菱形EFGH=11+7=18,∵菱形EFGH的一个内角为30°,∴设菱形EFGH的边长为x,则高为x,∴x•x=18,解得x=6,∴菱形EFGH的周长为24.人教版八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形单元测试题
一、填空题
1、□ABCD中,∠A和∠B是一对邻角,如果∠A︰∠B=4︰5,那么∠A=_____,∠D=________.
2、一个菱形的边长与一个等腰直角三角形的直角边长相等,若菱形的一个内角为30°,则菱形的面积与等腰直角三角形的面积之比为________.
3、以线段a=16,b=13为梯形的两底,c=10为一腰,那么另一腰d的长度范围是________.
4、如图,若将正方形分成k个完全一样的矩形,其中上、下各横排两个,中间竖排若干个,则k=________.
5、已知:矩形ABCD中,CE⊥BD,E为垂足,∠BCE︰∠ECD=3︰1,那么∠ACE=________度.
二、选择题
6、如图,□ABCD的对角线AC,BD相交于点O,EF过点O,与AD、BC分别相交于点E、F,如果AB=4,BC=5,OE=1.5,则四边形EFCD的周长为()
A.16 B.14 C.12 D.10
7、能够找到一点,使该点到各顶点的距离都相等的图形是()
①平行四边形②菱形③矩形④正方形
A.①与② B.②与③ C.②与④ D.③与④
8、等腰梯形ABCD中,对角线AC=BC+AD,则∠DCB的度数是()
A.30° B.45° C.60° D.90°
9、下面的图形中,既是轴对称图形,又是中心对称图形的是()
A.角 B.任意三角形 C.矩形 D.等腰三角形
10、已知直角梯形的一条腰长为5厘米,这腰与底边成30°的角,则这梯形另一腰的长为()
A.10厘米 B.5厘米 C.2.5厘米 D.7.5厘米
11、如图矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于()
A.15° B.30° C.45° D.60°
12、已知一个四边形ABCD的边长分别是a,b,c,d,其中a,c为对边,且a2+b2+c2+d2=2ac+2bd,则此四边形是()
A.任意四边形 B.对角线互相垂直的四边形 C.平行四边形 D.对角线相等的四边形
13、如图,正方形ABCD中,CE⊥MN,∠MCE=40°,则∠ANM=()
A.40° B.45° C.50° D.55°
14、如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分
的面积,其面积是()
A.ac+bc-ab+c2 B.ab-bc-ac+c2 C.a2+ab+bc-ac D.b2-bc+a2-ab
15、下图四个图形中,既是轴对称图形又是中心对称图形的是()
A.(1)(2)(3)(4) B.(1)(2)(3) C.(1)(3) D.(3)
三、解答题
16、如图,若F为矩形ABCD外一点,且∠BFD=90°,求证:∠AFC=90°.
17、如图已知六边形ABCDEF的每一个内角都是120°,且AB=1,BC=CD=7,DE=3,求这个六边形的周长。

18、印刷一张矩形广告(如图),它的印刷面积为32平方分米,上下空白各1分米,两边空白各0.5分米,设印刷部分从
上到下的长为x分米,四周空白处的面积为S平方分米。

(1)写出S与x的关系式.
(2)当要求四周空白处的面积为18平方分米时,求用来印刷这张广告的纸张的长和宽各是
多少?
19、如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,求BC于E,过F作FH∥AB,交BC于H.
求证: CE=BH.
20、已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.
参考答案
一 1 、 80°, 100°
提示:利用邻角互补求解 .
2 、 1 ︰ 1
提示:设菱形边长为 x ,则面积:
∴比为 1 ︰ 1.
3 、 7<d<13
提示:如图,过 D 作 DE ∥ AB ,在△ DEC 中,可知 10 - 3<d<10 + 3 ,
即 7<d<13.
4 、 8
5 、 45
提示:如图,连结 AC ,交 BD 于点 O ,则 OB=OC.
由∠3 +∠2 +∠4=90 °,且∠3 ︰(∠2 +∠4 ) =1 ︰ 3
可知∠3= ∠2= ∠1=22.5 °,∴∠4=2 × 22.5 ° =45 ° .
6 、 C
7 、 D
8 、 C
9 、 C 10 、 C
11 、A 12 、C 13 、C 14 、B 15 、D
10 、提示:如图,过 A 作 AE ∥ DC ,在 Rt△ABE 中易求,
∴选 C 。

11 、
提示:易知△ ADE ≌△ AFE ,∴∠DAE= ∠FAE
∠DEA= ∠FEA ,∵∠BAF=60°,易知∠AFB= ∠FEC=30°
∴∠DEF=180°- 30° =150°,故∠AED=75°
∴∠DAE=15° .
13 、
提示:由∠BCE=45°,可知∠CEB=50° .
∴∠AEC=130°,又∠NAE=90°, MN ⊥ EC ,垂足设为 O.
则∠EON=90°,易知∠ANO=180°- 130° =50° .
14 、
提示:∵S□=bc ,S矩形=ac ,又重叠部分的面积为c2 ,∴应选 B 。

16 连结OF ,在Rt△BDF 中,OF 为斜边BD 上的中线,OF=BD ,所以OF=AC ,即OA=OC=OF ,从而可
证得∠AFC=90 °。

17 解:如图,延长 FA 、 CB 相交于 G 点,延长 CD 、 FE 相交于 H 点,
由条件可知:
△ABG 和△EDH 都是等边三角形 .
∴∠G= ∠H=60 °
∴四边形 CGFH 是平行四边形
∴ GF=CH=CD + DH=CD + DE=7 + 3=10
∴ AF=GF - AG=GF - AB=10 - 1=9
同理 FE=5
∴六边形的周长为 1 + 7 + 7 + 3 + 9 + 5=32
18 解:(1)设印刷部分长为 x 分米,于是其宽为分米,进而广告纸宽为.
∴空白部分面积.
这就是 S 与 x 的关系式 .
(2)当 S=18dm2 时,有,整理得 (x - 8)2=0 , x=8.
∴广告纸的长为 x+2=10(dm) ,宽为+ 1=5(dm)
19 证明:过 F 作 FP ∥ BC 交 AB 于 P ,则四边形 FPBH 为平行四边形 .
∴∠B=∠FPA.BH=FP (平行四边形对边相等)
∵∠ACB=90 °, CD ⊥ AB.
∴∠5 +∠ CAB=90 °,∠ B +∠ CAB=90 ° .
∴∠5=∠B ,∴∠5=∠FPA.
又∵∠1=∠2 , AF=AF.
∴△ CAF ≌△ PAF.
∴ CF=FP ,∵∠4=∠1 +∠ 5 ,∠ 3=∠2 +∠ B,
∴∠3=∠4
∴ CF=CE ,∴ CE=BH.
20 证明:作 DG∥EF 交 BC 于 G ,作 CH∥MN 交 AB 于 H.
∵ CH∥MN , DG∥EF , FE ⊥ MN
∴ CH ⊥ DG ,又∵ DC ⊥ BC
∴∠BCH=∠CDG ,∵ BC=CD ,∠ HBC=∠GCD
∴△DCG 按顺时针旋转 90°后再向左平移 .
BC 的长可与△ CBH 重合 .
∴ CH=DG ,又∵ AD∥BC,DG∥EF
∴四边形 EFGD 为平行四边形,∴ EF=DG ,
同理 CH=MN ,∴ MN=EF.。

相关文档
最新文档