DNA限制性内切酶消化

合集下载

限制性内切酶

限制性内切酶

特征和种类
1.限制与修饰现象 早在 50 年代初,有许多学者发现了限制与修饰现象,当时称作寄主 控制的专一性(host controlled specificity)。 l 噬菌体表现的现 象便具有代表性和普遍性,其在不同宿主中的转染频率可明这一问题 (表 2-1)。 l 在感染某一宿主后,再去感染其它宿主时会受到限制。 E.coli 菌株 λ噬菌体感染率 lK lB lC E.coli K 1 10-4 10-4 E.coli B 10-4 1 10-4 E.coli C 1 1 1 说明 K 和 B 菌株中存在一种限制系统,可排除外来的 DNA 。 104 的存活率是由宿主修饰系统作用的结果,此时限制系统还未起作用。 而在 C 菌株不能限制来自 K 和 B 菌株的 DNA 。限制作用实际就是限 制酶降解外源 DNA ,维护宿主遗传稳定的保护机制。甲基化是常见的 修饰作用,可使腺嘌呤 A 成为 N6 甲基-腺膘呤,胞嘧啶 C 成为 5' 甲 基胞嘧啶。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目 的。
Ⅰ 型(type Ⅰ)限制与修饰系统的种类很少,只占 1% ,能识别 专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的 双链,但是切割的核苷酸顺序没有专一性,是随机的。如 EcoK 和 EcoB。其限制酶和甲基化酶 (即 R 亚基和 M 亚基) 各作为一个亚基 存在于酶分子中,另外还有负责识别 DNA 序列的 S 亚基,分别由 hsdR、hsdM 和 hsdS 基因编码,属于同一操纵子(转录单位)。 EcoK 编码基因的结构为 R2M2S。 EcoB 编码基因的结构为 R2M4S2 。 EcoB 酶的识别位点如下,其中两条链中的 A 为甲基化位点, N 表示任意碱基。 TGA*(N)8TGCT EcoK 酶的识别位点如下,其中两条链中的 A 为可能的甲基化位点。 AA°C(N)6GTGC 但是 EcoB 酶和 EcoK 酶的切割位点在识别位点 1000bp 以外, 且无特异性。 Ⅲ 型(type Ⅲ)限制与修饰系统的种类更少,所占比例不到 1% , 也有专一的识别顺序,但不是对称的回文顺序。它在识别顺序旁边几个 核苷酸对的固定位置上切割双链。但这几个核苷酸对则是任意的,如 EcoP1 和 EcoP15 。它们的识别位点分别是 AGACC 和 CAGCAG , 切割位点则在下游 24-26bp 处。 在基因操作中,一般所说的限制酶或修饰酶,除非特指,均指 Ⅱ 型 系统中的种类。

重亚硫酸盐甲基化测序

重亚硫酸盐甲基化测序

重亚硫酸盐甲基化测序一、什么是重亚硫酸盐甲基化测序?重亚硫酸盐甲基化测序(RRBS)是一种高通量测序技术,用于检测DNA中的甲基化修饰。

该技术将基因组DNA进行限制性内切酶消化和富集,然后通过转换和PCR扩增等步骤,在特定的位点上进行甲基化修饰的检测。

RRBS可以对大规模样本进行高效、准确的甲基化位点检测,并在分子水平上揭示复杂疾病发生发展的机制。

二、RRBS技术原理1. DNA消化首先将基因组DNA进行限制性内切酶消化,选择MspI或者MspI与HpaII联合消化,以保证覆盖范围更加广泛。

2. DNA富集将消化后的DNA片段通过大小筛选和磁珠富集等步骤,得到长度约为40-220bp左右的片段。

3. 甲基转换将富集后的DNA片段使用碱性条件下的亚硫酸氢钠(NaHSO3)和碘代乙酸钠(NaIO4)进行氧气化反应和脱除反应,使得未甲基化的胞嘧啶(C)被转换为尿嘧啶(T),而甲基化的胞嘧啶不受影响。

4. PCR扩增将转换后的DNA片段进行PCR扩增,得到足够的DNA量用于高通量测序。

5. 高通量测序将PCR扩增后的DNA片段进行高通量测序,得到数百万个碱基对的数据,并通过计算机程序分析,确定每个位点是否被甲基化修饰。

三、RRBS技术优势1. 高效性:RRBS可以同时检测大规模样本中数百万个位点,具有高效性和高通量。

2. 精准性:该技术可以检测到单个碱基对上的甲基化修饰状态,并且具有高度准确性和可重复性。

3. 覆盖范围广:RRBS可以覆盖基因组中大部分的CpG岛和CpG岛外区域,包括启动子、外显子、内含子等区域。

4. 低成本:相比于全基因组测序技术,RRBS具有更低的成本,并且可以在较短时间内完成样本处理和数据分析。

四、RRBS技术应用1. 癌症研究:RRBS可以揭示癌症发生发展的分子机制,包括肿瘤基因和抑癌基因的甲基化状态,以及DNA甲基化与癌症治疗的关系。

2. 脑科学研究:RRBS可以用于检测脑组织中神经元和胶质细胞的甲基化状态,并揭示其在神经系统发育和功能中的作用。

DNA限制性内切酶酶切反应

DNA限制性内切酶酶切反应
• III型酶和I型酶类似,也有甲基化功能,但无ATP酶和 DNA解旋酶活性。此类酶可在DNA链的特异位点切割 ,但切割位点在识别位点之外,对基因工程的意义也 不大。
一、核酸限制性内切酶
• II型酶就是通常基因工程中使用的DNA限制性内 切酶。II型酶限制修饰系统分别由限制酶和修饰酶 组成。II型限制酶需要Mg2+作为催化反应辅助因 子,能识别双链DNA的特定序列,一般为4-6个碱 基的反转重复序列。II型限制酶一般在识别序列内 进行切割,产生特异的DNA片断。
切割下来,装入1.5ml微量离心管中。 ⑦ 置-20℃保存。
• 本周实验报告: 1. 实验原理 2. 实验步骤 3. 实验结果 4. 实验结果分析 • 下周请预习:离心吸附柱法从琼脂糖凝胶
中回收DNA
0.5μl
④ Xho I (10Units/μl)
0.5μl
2. 混匀试剂。将离心管置37℃水浴,反应1小 时。
三、实验步骤
3. 琼脂糖凝胶电泳回收酶切片段
① 制备1%琼脂糖凝胶。 ② 在每个酶切反应管中加入1/10体积10X上样缓
冲液,混匀。 ③ 将样品平均加入2个加样孔内,每个孔加样
27.5μl。 ④ 135V衡压电泳30-40分钟。 ⑤ 在紫外灯下观察酶切条带。 ⑥ 将酶切完全的质粒大片断、PCR产物从凝胶中
二、限制性内切酶酶切反应
2. 酶切温度及时间:根据产品说明确定最佳反应 温度。反应时间不宜太长,以免内切酶产生星 活性。
– 星活性(Star Activity):是指限制性内切酶在某 些反应条件产生的识别并切割非特异序列位点的现 象。其结果是酶切条带增多。
– 星活性除了与酶本身的性质有关外,与酶过量、甘 油浓度过高,pH值不合适、离子浓度过低、酶切 时间过长等有关。酶切时间比增加酶量更易产生星 活性。

限制性内切酶名词解释

限制性内切酶名词解释

限制性内切酶名词解释限制性内切酶(Restriction enzyme)是一类由细菌产生的酶,主要作用是切割DNA分子特定的酶切位点。

限制性内切酶在遗传工程和分子生物学研究中被广泛应用,能够将长的DNA 分子切割成特定大小的片段,从而使得研究者能够更好地研究和操作DNA。

限制性内切酶的发现和研究起源于1970年代。

当时,研究人员发现一些特定的细菌能够产生一种奇特的酶,它对DNA分子具有特异性的切割作用。

这种切割作用通常发生在特定的核苷酸序列上,被称为酶切位点或限制性位点。

每个限制性内切酶所识别和切割的酶切位点都有其独特的序列特征,并且有许多不同类型的限制性内切酶,如EcoRI、BamHI、HindIII等。

限制性内切酶的酶切作用是通过切割DNA分子的磷酸二酯键来实现的。

酶在酶切位点附近结合DNA分子,然后通过水解反应切割两股DNA的骨架,形成切割产物。

限制性内切酶的切割位置对两股DNA是对称的,意味着切割产物的两端都有一小段单链的“黏性末端”。

这种黏性末端的单链序列是由酶切位点的一部分序列决定的,如EcoRI酶切产生的末端序列是5'-GAATTC-3'。

黏性末端可以与其他黏性末端互补配对,形成DNA双链的黏性连接。

这种黏性连接有助于分子生物学研究者将DNA分子重新连在一起,或者将不同的DNA分子连接在一起,从而构建新的DNA分子。

限制性内切酶的应用非常广泛。

一方面,通过限制性内切酶的切割作用,可以将长的DNA分子切割成小片段,从而方便进行测序、克隆和分析。

另一方面,限制性内切酶可以用于DNA重组和基因工程。

研究人员可以利用黏性末端的互补配对原理,将不同的DNA片段连在一起,构建新的DNA分子,例如将外源基因插入到质粒中,形成重组DNA分子。

此外,限制性内切酶还可以用于DNA分子的鉴定和分析,例如通过切割产物的大小和形态来鉴定特定的DNA序列。

总之,限制性内切酶是一种重要的分子工具,广泛应用于分子生物学研究、遗传工程和基因工程等领域。

实验五 质粒DNA酶切(质粒限制性内切酶消化酶切)

实验五 质粒DNA酶切(质粒限制性内切酶消化酶切)

p C A M B IA 1 3 0 2
10549 bp
Kan
Eco RV (6218)
大p肠BR杆3菌22复or制i 起始位点
pVS1-REP 农杆菌复制起始位点
二、限制性内切酶
1) 概念 2) 命名原则 3) 类型 4) 基本特性及用途 5) 影响核酸限制性内切酶活性的因素 6)Ⅱ限制性核酸内切酶操作的注意事项
实验原理
• 限制性内切酶能特异地结合于一段被称为 限制性酶识别序列的DNA序列之内或其附 近的特异位点上,并切割双链DNA。
限制性内切酶EcoR Ⅴ 特异性识别位点为:
GATATC CTATAG
产生平末端:
GAT ATC CTA TAG
则pCAMBIA1302经EcoR Ⅴ酶切后产生大小分别为:1600bp、 2624bp和6325bp的三条DNA 片段
属名
种名 株系
Haemophilus influenzae d
流感嗜血杆菌d株
HindⅡ HindⅢ
同一菌株中所含的多个不同的限制性核割特性、催化条件及是否具有修饰酶活 性,可分为Ⅰ、Ⅱ、Ⅲ型三类。
4) 基本特性及用途
Ⅱ限制性核酸内切酶有严格的识别、切割顺序,它以核酸内切 方式水解DNA链中的磷酸二酯键,产生的DNA片段5′端为P,3′ 端为OH,识别序列一般为4~6个碱基对,通常是反转录重复 顺序,具有180°的旋转对称性即迴文结构。Ⅱ限制性核酸内切 酶切割双链DNA产生3种不同的切口。
第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源 基因的插入。
第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源 DNA片段。 一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。

生物化学--实验十五DNA的限制性内切酶酶切分析

生物化学--实验十五DNA的限制性内切酶酶切分析

实验十五 DNA的限制性内切酶酶切分析【目的要求】1.掌握限制性核酸内切酶的基本概念、作用特点及作用原理2.熟悉DNA的限制性内切酶酶切分析操作技术及其影响因素3.了解DNA酶解技术生物研究领域的应用【实验原理】限制性内切酶(restriction endonuclease,RE)是一类能识别双链DNA分子中特定核苷酸顺序(一般具有双重对称的回文结构),并以内切方式水解水解双链DNA的核酸水解酶。

它主要分布于细菌体内,目前已发现1800多种。

根据酶的组成、辅助因子及水解DNA的方式不同,可将限制性内切酶分为Ⅰ、Ⅱ、Ⅲ三种类型,而Ⅱ型限制性内切酶是重组DNA技术中常用的限制性内切酶,如Eco RⅠ、BamHⅠ等,它们被誉为分子生物学家的手术刀。

临床上某些遗传病由于基因突变发生在限制性内切酶切割位点,因此当用一定的限制性内切酶切割时,产生的酶切DNA片段大小就会与正常人酶切DNA片段发生差异,因而发生DNA限制性酶切图谱改变,据此可达到基因诊断的目的。

实验选用价格低廉、酶切效果较好的Eco RⅠ(识别位点G↓AATTC)对λDNA进行酶切分析,观察限制性内切酶的特定切割作用及其限制性图谱,理论上可产生21226bp,7421bp,5804bp,5604bp,4878bp和3530bp等不同分子量的DNA片段。

经琼脂糖凝胶电泳后,在紫外扫描仪下摄影即可观察到λDNA的Eco RⅠ限制性酶切图谱。

【实验准备】一、器材1.恒温水浴箱2.电泳仪和电泳槽3.紫外扫描分析仪4.台式高速离心机5.微波炉6.加样枪、EP管及试管架等二、试剂1.DNA底物λDNA或质粒DNA或制备的肝组织DNA。

2.限制性内切酶Eco RⅠ及其缓冲液购自华美生物工程公司,每种限制性内切酶均配有2种缓冲液,在配套的缓冲液中该限制性内切酶均可获得100%酶切活性。

3.10×TAE 电泳缓冲液取Tris24.2g,冰醋酸5.7ml,0.25mol/L EDTA (pH8.0)20ml,加蒸馏水至500ml。

rflp标记的名词解释

rflp标记的名词解释

rflp标记的名词解释RFLP是"Restriction Fragment Length Polymorphism"(限制性片段长度多态性)的缩写,是一种基因分型技术,用于研究DNA序列的差异性。

通过观察DNA片段的长度变化,RFLP可以帮助人们了解基因座在个体之间的多态性,从而提供了一种分子遗传分析的方法。

一、RFLP的原理RFLP技术基于DNA序列的变异,而DNA的变异表现为序列中的一处或多处核苷酸序列发生突变。

这些变异会导致限制性内切酶切割DNA序列时产生不同的片段长度。

通过将DNA进行限制性内切酶消化,再通过凝胶电泳技术分离DNA片段,并通过特定的探针杂交以检测特定的片段,就可以确定个体之间的差异。

二、RFLP技术的应用1. 生物学研究:RFLP技术被广泛应用于生物学研究中,特别是用于研究种群遗传学、亲子关系以及进化等方面。

通过分析特定基因座的RFLP分型,可以推测个体或群体之间的亲缘关系、种群的遗传多样性以及基因座的分布情况,为生物学研究提供了宝贵的遗传数据。

2. 遗传疾病检测:RFLP技术在遗传疾病的检测与诊断中也有重要的应用。

许多遗传疾病与特定的基因突变有关,通过分析这些突变引起的RFLP变异,可以确定某些疾病的患病风险。

例如,围绝经期乳腺癌与BRCA1基因的RFLP分型相关,通过进行RFLP分析,可以预测遗传性乳腺癌的风险。

三、RFLP的优缺点1. 优点:RFLP技术在技术成熟的同时,具有高度可靠性和准确性。

通过分析特定基因座的RFLP分型,可以得出有关个体间遗传关系、多态性以及基因特征等信息。

此外,RFLP技术还具有较高的灵敏度,能够检测到充分稀释的DNA样本。

2. 缺点:然而,RFLP技术也存在一些局限性。

首先,该技术要求大量的DNA 样本,通常需要提取和纯化大量高质量的DNA,这在某些情况下可能是困难的。

此外,从样本收集到结果分析需要较长的时间,限制了该技术应用于实时或紧急情况的能力。

限制性内切酶酶切的常见问题及解决方法

限制性内切酶酶切的常见问题及解决方法
欢迎战友多多讨论。
关于相关的资料可以参见:
/cn/tech/re/cleavage_olig.htm [针对PCR产物酶切位点保护性碱基的资料]
/cn/tech/re/cleavage_vector.htm [针对载体酶切位点近末端位点碱基个数对酶切影响的资料]
SatI 5'...G cG GC...3' C Completely
SmaI 5'CGGG...3' E Completely
XbaI 5'...TCTAGa TC...3' B Completely
XhoI 5'...CTCGAG...3' E partially

1.3 buffer问题。有些酶切的buffer中,添加了一些较为容易析出或溶解的成分[连接酶的buffer更是这样],有时酶切的buffer没有完全融化时,buffer的浓度是不均一的。新的buffer先融化的部分,盐离子浓度要高,使用一段时间后,融化部分的离子浓度会变低。通常,这种影响不大,但如果是使用一些对离子浓度敏感的内切酶时就会出现问题。
下面附上一些酶热失活的温度表
内切酶星号活性
在非理想的条件下,内切酶切割与识别位点相似但不完全相同的序列,这一现象称星号活性。有人提出,这种"星号"活性可能是内切酶的一种普遍特性(1),如果提供给相应反应条件,所有内切酶都会出现非特异性切割。NEB已证实下列酶存在星号活性:Apo I(2)、Ase I(2)、BamH I(3)、BssH II(2)、EcoR I(4)、EcoR V(5)、Hind III(1)、Hinf I(6、7)、Pst I(8)、Pvu II(9)、Sal I(8)、Sca I(2)、Taq I(10)、Xmn I(2)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三类限制性内切酶也有专一的识别顺序,但不是对称的回文顺序。它在识别顺序旁边几个核苷酸对的固定位置上切割双链。但这几个核苷酸对则是任意的。因此,这种限制性内切酶切割后产生的一定长度DNA片段,具有各种单链末端。这对于克隆基因或克隆DNA片段没有多大用处。
| ↑
垂直虚线表示中心对称轴,从两侧“读”核苷酸顺序都是GAATTC或CTTAAG,这就是回文顺序(palindrome)。实线剪头表示在双链上交错切割的位置,切割后生成5’……G和AATTC……3’、3’……CTTAA和G……5’二个DNA片段,各有一个单链末端,二条单链是互补的,可通过形成氢键而“粘合”。另一种是在同一位置上切割双链,产生平头末端。例如HaeⅢ的识别位置是:
[操作]
l.样品DNA的限制性内切酶消化
(1)取2μg样品DNA溶液加入0.5ml的Eppendorf管中,加2μl 10×限制性内切酶缓冲液,6~10个U的相应限制性内切酶,加消毒双蒸水至总体积20μl,于37℃保温酶解2小时,按上述条件用适当的几种不同的内切酶进行单酶或双酶解。
(2)在65℃加热5分钟或用适量的0.5 mol/L EDTANa2终止反应。
4.当样品在37℃与65℃保温时,要注意:
(l)防止因盖子未盖严密使水汽进入管内,使反应溶液体积大量增加,造成实验失败。
(2)防止由于标签脱落,分不清Байду номын сангаас品类型。
5.由于温差原因,往往在盖上有水汽,因此样品酶切完毕或中间取样电泳要离心2秒钟,以集中体积内溶液,否则会发现酶切后体积少了。
[试剂和器材]
1.试剂
(5)6×上样缓冲液:0.25%溴酚蓝;40%蔗糖;用消毒双蒸水配制,贮存于4℃。
(6)溴化乙锭溶液:称取溴化乙锭5mg溶解于lml消毒双蒸水中,4℃避光保存。
(7)消毒双蒸水。
2.器材
恒温水温箱;电泳仪;水平电泳糟;50μl可调移液器;紫外灯(上海康华生化仪器制造厂)。
限制性内切酶分类
限制性内切酶主要分成三大类。第一类限制性内切酶能识别专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的双链,但是切割的核苷酸顺序没有专一性,是随机的。这类限制性内切酶在DNA重组技术或基因工程中没有多大用处,无法用于分析DNA结构或克隆基因。这类酶如EcoB、EcoK等。
一定的DNA分子的核苷酸顺序是一定的,某种限制性内切酶作用于该DNA的切点数一定,故所得的DNA片段数和片段的大小也一定,通过琼脂糖凝胶电泳或聚丙烯酸胺凝胶电泳分离,以标准DNA(λDNA/HindⅢ或λDNA/EcoRI)作对照,溴化乙锭染色后,测出各DNA片段移动的位置和距离。以各标准DNA片段的分子量对数为纵坐标,各标准DNA片段的移动距离为横坐标,求出各样品DNA片段的分子大小。

5’……GG↓CC……3’
3’……CC↓GG……’

在箭头所指处切割,产生的两个DNA片段是:
5’……GG CC……3’

3’……CC GG……5’
有时候两种限制性内切酶的识别核苷酸顺序和切割位置都相同,差别只在于当识别顺序中有甲基化的核苷酸时,一种限制性内切酶可以切割,另一种则不能。例如HpaⅡ和MspⅠ的识别顺序都是5’……GCGG……3’,如果其中有5’-甲基胞嘧啶,则只有HpaⅡ能够切割。这些有相同切点的酶称为同切酶或异源同工酶(isoschizomer)。
(1)限制性内切酶:如EcoRI、HindⅢ、PstⅡ、BamH1等,-20℃贮存。
(2)样品DNA:如λDNA、pBR322等,-20℃贮存。
(3)限制性内切酶缓冲浪配制,见下表(用消毒双蒸水配制,贮存于-20。C);
表 不同限制性内切酶缓冲液配制表
缓冲液 NaCl TrisHCl(pH7.5) MgCl2DTT
2.要注意酶切时加样的次序,一般次序为水、缓冲液、DNA各项试剂,最后才加酶液。取液时,Tip头要从溶液表面吸取,以防止Tip头沾去过多的液体与酶,待用的内切酶要放在冰浴内,用后盖紧盖子,立即放回-20℃冰箱,防止限制性内切酶的失活。
3.凡用在酶切反应中的一切塑料器皿(Eppendorf管,Tip头等),都要新的,最后用重蒸水清洗,湿热灭菌,置50℃温箱中烘干,使用前打开包装,用镊子夹取,不直接用手去拿,严防手上杂酶污染。
DNA限制性内切酶消化
[原理]
DNA限制性内切酶消化是基因分析中的关键步骤。内切酶是最关键的工具酶。限制性内切酶是一类具有严格识别位点,并在识别位点内或附近切割双链DNA的脱氧核糖核酸酶。
酶单位规定为:在最适反应条件下1小时完全消化lμg λDNA的酶量为1个单位。需注意酶单位数是以切割线性DNA为标准定出的。消化其它种DNA则应根据DNA分子大小、形状适当增加或减少所需的酶量,影响限制性内切酶活性的因素包括DNA的纯度、缓冲液、温度及酶本身。不同的限制性内切酶对缓冲液中盐浓度的要求各不相同。一般配制高、中、低盐3种缓冲液,用于酶反应。DNA甲基化,附有蛋白质或高分子量DNA胶体溶液太粘稠均会降低内切酶的消化效率。由于在限制性内切酶消化反应中,甘油浓度超过5%(V/V)会抑制内切酶活性,因此在20μl反应体系中,甘油浓度应少于lμl。用2种酶消化DNA时,各种酶所需盐浓度相同,则消化可同时进行;若需要的盐浓度不相同,则必须先用低盐浓度的限制性内切酶消化完后,再调整到高盐缓冲系统,加入高盐浓度的限制性内切酶,继续消化。
低离子强度 0~10 mmol/L 10 mmol/L 10 mmol/L 1 mmol/L
中离子强度 50 mmol/L 10 mmol/L 10 mmol/L 1 mmol/L
高离子强度 100 mmol/L 50 mmol/L 10 mmol/L 1 mmol/L
(4)10×TBE电泳缓冲液:0.89 mol/L Tris;0.89 mol/L硼酸;0.02 mol/L EDTA Na2pH8.0,高温灭菌,贮存于4℃。
第二类限制性内切酶能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。由于这类限制性内切酶的识别和切割的核苷酸都是专一的。所以总能得到同样核苷酸顺序的DNA片段,并能构建来自不同基因组的DNA片段,形成杂合DNA分子。因此,这种限制性内切酶是DNA重组技术中最常用的工具酶之一。这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、9个、10个和11个核苷酸的。如果识别位置在DNA分子中分布是随机的,则识别4个核苷酸的限制性内切酶每隔46(4096)个核苷酸就有一个切点。人的单倍体基因组据估计为3×199核苷酸,识别4个核苷酸的限制性内切酶的切点将有(3×109/2.5×102)约107个切点,也就是可被这种酶切成107片段,识别6个核苷酸的限制性内切酶也将有(3×109/4×103)约106个切点。
第二类限制性内切酶的识别顺序是一个回文对称顺序,即有一个中心对称轴,从这个轴朝二个方向“读”都完全相同。这种酶的切割可以有两种方式。一是交错切割,结果形成两条单链末端,这种末端的核苷酸顺序是互补的,可形成氢键,所以称为粘性末端。如EcoRI的识别顺序为:
↓ |
5’……GAA | TTC……3’
3’……CTT | AAG……5’
2.DNA酶解片段的电泳分离
取DNA酶解作品2μl加上样缓冲液10μl(含溴酚蓝指示剂和甘油),在0.8%琼脂糖(含0.5μg/ml溴化乙锭)凝胶进行水平电泳,电压<5V/cm,时间2小时左右,用紫外灯观察分析。
[注定事项]
1.分子克隆是微量操作技术,DNA样品与限制性内切酶的用量都极少,必须严格注意吸样量的准确性及全部放入反应体系中。
相关文档
最新文档