2013年陕西省中考数学试题(含答案)(1)
2013年陕西省中考数学试题和答案

2013年陕西中考数学试卷一、选择题(共10小题,每小题3分,计30分) 1 下列四个数中最小的数是( )A.2-B.0C.31-D.5 2 如图,下面几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )AB C D3 如图,AB//CD ,∠CED=90°,∠AEC=35°,则∠D 的大小是( ) A.65° B.55° C.45° D.35°4 不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A.21>x B.1-<x C.211<<-x D.21->x 5 我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( )A.71.8B.77 C .82 D.95.76 如果一个正比例函数的图象经过不同象限的两点,3)B()A(2,n m 、,那么一定用( )A.0,0>>n mB.0,0<>n mC.0,0><n mD.0,0<<n m 7 如图,在四边形ABCD 中,AB=AD,CB=CD,若连接AC ,BD 相交于点O ,则图中全等三角形共有( )A.1对B.2对C.3对D.4对8 根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )x -2 0 1 y 3 p 0 A.1 B.-1 C.3 D.-39.如图,在矩形ABCD 中,AD=2AB,点M 、N 分别在AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MDAM等于( ) A.83 B.32 C.53 D.54 10 已知两点),5(1y A -、),3(1y B 均在抛物线)0(2≠++=a c bx ax y 上,点),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是( )E DB CAA 50->xB 10->xC 150-<<-xD 320<<-x 第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:=-+-03)13()2( .12.一元二次方程032=-x x 的根是 .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A 在平面直角坐标系中,线段AB 的两个端点的坐标分别为)3,1()1,2(B A 、-,将线段AB 经过平移后得到线段B A ''.若点A 的对应点(3,2)A ',则点B 的对应点B '的坐标为是 . B 比较大小:︒31cos 835(填“>”、“=”或“<”).14.如图,四边形ABCD 的对角线AC 、BD 相交于点O,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留号)第14题图 第16题图15.如果一个正比例函数的图象与反比例函数xy 6=的图象交于),(),(2211y x B y x A 、两点,那么))((1212y y x x --的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7,则CE+FH 的最大值为 . 三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分)解分式方程:12422=-+-x xx 18.(本题满分6分)如图,∠AOB=90°,OA=OB,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D 。
2013陕西中考数学试题及答案word版

2013陕西中考数学一、选择题(共10小题,每小题3分,计30分) 1、下列四个数中最小的数是( ) A. 2- B. 0 C.13-D. 52、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )3、如图,AB ∥CD ,∠CED=090 ,∠AEC=035 ,则∠D的大小为( )A. 065B. 055C. 045 D.0354、不等式组102123x x ⎧->⎪⎨⎪-<⎩ ,的解集为( )A. 12x > B. 1x <- C. 112x -<< D.12x >- 5、我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这7天空气质量指数的平均数是( )A. 71.8B. 77C. 82D. 95.76、如果一个正比例函数的图像经过不同象限的两点A(2,m)、B (n ,3),那么一定有( )A. m>0,n>0B. m>0,n<0C. m<0,n>0D. m<0,n<0 7、如图,在四边形ABCD 中,AB=AD,CB=CD.若连接AC 、BD(第3题图)C B(第2题图)ABC D相交于点O ,则图中全等三角形共有( ) A. 1对 B. 2对 C. 3对 D. 4对 8、根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )A. 1B. 1-C. 3D. 3- 9、如图,在矩形ABCD 中,AD=2AB ,点M,N 分别在AD 、BC 上,连接BM 、DN.若四边形MBDN是菱形,则AMMD 等于( ) A. 38 B. 23 C. 35 D. 4510、已知两点A ()15y -, B ()23,y 均在抛物线2(0)y ax bx c a =++≠ 上,点C ()00,x y 是该抛物线的顶点.若120y y y >≥ ,则0x 的取值范围是( )A.05x >- B. 01x >- C. 051x -<<- D. 023x -<< 二、填空题(共6小题,每小题3分,计18分) 11、计算:())0321-+ =12、一元二次方程230x x -= 的根是13、请从以下两个小题中任选一个作答,若多选,则按所得的第一题计分A 、在平面直角坐标系中,线段AB 的两个端点的坐标分别为(第7题图)BDA(第9题图)DA ()2,1- ,B ()1,3 ,将线段AB 经过平移后得到线段''A B .若点A 的对应点为'(32)A ,,则点B 的对应点'B 的坐标是 B 、比较大小:08cos31(填“ >”,“=”或“<”) 14、如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC.若BD=8,AC=6,∠BOC=0120 ,则四边形ABCD 的面积为 (结果保留根号)15、如果一个正比例函数的图像与反比例函数6y x= 的图像交与A 11(,)x y 、B ()22,x y 两点,那么()()2121x x y y -- 的值为 . 16、如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=030 ,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为三、解答题(共9小题,计72分)17、(本题满分5分)解分式方程:22142xx x +=--18、(本题满分6分)如图,∠AOB=090 ,OA=OB ,直线l 经过点O,分别过A 、B 两点作A C ⊥l 于点C,BD ⊥l 交l 于点D.求证:AC=OD.(第14题图)B(第16题图)A19、(本题满分7分)我省教育厅发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?被抽查学生对“节约教育”内容了解程度的统计图(第19题图)20、(本题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立时升高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时的升高1.75m ,求路灯的高CD 的长。
陕西省2013年中考数学试题(WORD版含答案)

陕西省2013年中考数学试题第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列四个数中最小的数是( ) A .-2B.0C.31-D.5 2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小为( ) A.65° B.55° C.45° D.35°4.不等式组⎪⎩⎪⎨⎧--321021x x 的解集为( ) A. x >21B. x <-1C. -<x <21D. x >-215.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( ) A.71.8 B.77 C.82 D.95.7 6.如果一个正比例函数的图象经过不同..象限的两点A (2,m )、B (n ,3),那么一定有( ) A. m >0,n >0 B. m >0,n <0 C. m <0,n >0 D. m <0,n <0 7.如图,在四边形ABCD 中,AB=AD ,CD=CB.若连接AC 、BD 相交于点O ,则图中全等三角形共有( ) A.1对 B.2对 C.3对 D.4对8.x 与y 的对应值,可得P 的值为( )A.1 B .-1 C.3 D.-39.如图,在矩形ABCD 中,AD=2AB,点M 、N 分别在边AD、BC 上, 连接BM、DN.若四边形MBND 是菱形,则MDAM等于() A.83 B.32 C.53 D.54 EDB CA (第2题图) (第3题图)A B C D O DBCA(第7题图) NM DBCA (第9题图)10.已知两点A (-5,1y )、B (3,2y )均在抛物线()02≠++=a c bx ax y 上,点C (0x ,0y )是该抛物线的顶点,若1y >2y ≥0y ,则0x 的取值范围是( ) A. 0x >-5 B. 0x >-1 C .-5<0x <-1 D .-2<0x <3 B 卷第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算:()()03132-+-= .12.一元二次方程032=-x x 的根是 .13.请从经以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1)、B (1,3,)将线段AB 经过平移后得到线段A ′B ′.若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是 . B.比较8cos31.(填“>”、“=”若“<”)14.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留根号) 15.如果一个正比例函数的图象与反比例函数xy 6=的图象交于A (1x ,1y )、B (2x ,2y )两点,那么(2x -1x )(2y -1y )的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)解分式方程:12422=-+-x xx .OD B C AC (第14题图) (第16题图)18.(本题满分6分)如图,∠AOB=90°,OA=OB ,直线L 经过点O ,分别过A 、B 两点作AC ⊥L 交L 于点C ,BD ⊥L 交L 于点D. 求证:AC=OD19.(本题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A —了解很多”,B —“了解较多”,“C —了解较少”,“D —不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1) 本次抽样调查了多少名学生? (2) 补全两幅统计图;(3) 若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?lO D B C A(第18题图) 45%30%D B CA 了解程度DBC A (第19题图) 被调查学生对“节约教育”内容了解程度的统计图一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )21.(本题满分8分)“五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象.(1) 求他们出发半小时时,离家多少千米? (2) 求出AB 段图象的函数表达式;(3) 他们出发2小时时,离目的地还有多少千米?EAx/小时2.51.5O (第20题图) (第21题图)甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时. (1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.23.(本题满分8分)如图,直线L 与⊙O 相切于点D.过圆心O 作EF ∥L 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF.并分别延长交直线L 于 B 、C 两点. (1) 求证:∠ABC+∠ACB=90°;(2) 当⊙O 的半径R=5,BD=12时,求tan ∠ABC 的值.24.(本题满分10分)在平面直角坐标系中,一个二次函数的图象经过A (1,0)、B (3,0)两点. (1) 写出这个二次函数图象的对称轴;(2) 设这个二次函数图象的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AC 、DE 和DB.当⊿AOC 与⊿DEB 相似时,求这个函数的表达式.lD(第23题图)(第24题图)问题探究(1) 请在图①中作出两条直线,使它们将圆面四等分;(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.D BDB (第25题图) ① ② ③参考答案1.A;2.D;3.B;4.A;5.C;6.D;7.C;8.A;9.C;10.B11.-7;12.0,3;13.A:(6,4)B:>;14.123;15.24;16.10.5;。
【VIP专享】2013陕西中考数学试题及答案word版

9、如图,在矩形 ABCD 中,
AD=2AB,点 M,N 分别在 AD、BC
上,连接 BM、DN.若四边形பைடு நூலகம்MBDN
是菱形,则 AM 等于( )
MD
A. 3 B. 2
8
3
2
3
C. 3 D. 4
5
10、已知两点 A 5,y1 B 3, y2 均在抛物线 y ax2 bx c(a 0)
上,点 C x0, y0 是该抛物线的顶点.若 y1 y2 y0 ,则 x0 的取值范围
为( )
A. 650 B. 550 C. 450 D. 350
4、不等式组
A. x 1
2
x
1 2
1 2x 3
B.
0
,的解集为(
x 1
5、我省某市五月份第二周连续七天的空气质量指数分别为:
111,96,47,68,70,77,105.则这 7 天空气质量指数的平均数是( )
A. 71.8 B. 77 C. 82 D. 95.7
B
3
D. 5
A
C
)
C. 1 x 1 D. x 1
2
C
图 图 3图 图 图
E
2
D
D
B
AC、BD 相交于点 O,则图中全等三角形共有( )
A. 1 对 B. 2 对 C. 3 对 D. 4 对 B
8、根据下表中一次函数的自变量 x 与函数 y 的对应值,可得 p 的值为( )
x
y
A. 1 B. 1 C. 3 D. 3
2013 陕西中考数学
一、选择题(共 10 小题,每小题 3 分,计 30 分)
1、下列四个数中最小的数是( )
2013年陕西省中考数学试题(含答案)

陕西省2013年中考数学试题第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列四个数中最小的数是( ) A .-2B.0C.31-D.5 2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小为( ) A.65° B.55° C.45° D.35°4.不等式组⎪⎩⎪⎨⎧--321021x x 的解集为( ) A. x >21 B. x <-1 C. -<x <21 D. x >-215.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.7 6.如果一个正比例函数的图象经过不同..象限的两点A (2,m )、B (n ,3),那么一定有( ) A. m >0,n >0 B. m >0,n <0 C. m <0,n >0 D. m <0,n <07.如图,在四边形ABCD 中,AB=AD ,CD =CB.若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A.1对B.2对C.3对D.4对8.x 与y 的对应值,可得P 的值为( )A.1 B .-1 C.3 D.-39.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MDAM等于( )EDB CA (第2题图) (第3题图)A B C D O D BCANMDBCAA.83B.32C.53D.54 10.已知两点A (-5,1y )、B (3,2y )均在抛物线()02≠++=a c bx ax y 上,点C(0x ,0y )是该抛物线的顶点,若1y >2y ≥0y ,则0x 的取值范围是( ) A. 0x >-5 B. 0x >-1 C .-5<0x <-1 D .-2<0x <3 B 卷第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算:()()03132-+-= .12.一元二次方程032=-x x 的根是 .13.请从经以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1)、B (1,3,)将线段AB 经过平移后得到线段A ′B ′.若点A 的对应点为A ′(3,2),则点B 的对应点B′B.比较(填“>”、“=”若“<”)14.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留根号) 15.如果一个正比例函数的图象与反比例函数xy 6=的图象交于A (1x ,1y )、B (2x ,2y )两点,那么(2x -1x )(2y -1y )的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)(第7题图) (第9题图)OD B CAC(第14题图) (第16题图)解分式方程:12422=-+-x xx .18.(本题满分6分)如图,∠AOB=90°,OA=OB ,直线L 经过点O ,分别过A 、B 两点作AC ⊥L 交L 于点C ,BD ⊥L 交L 于点D. 求证:AC=OD19.(本题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A —了解很多”,B —“了解较多”,“C —了解较少”,“D —不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图. 根据以上信息,解答下列问题:(1) 本次抽样调查了多少名学生? (2) 补全两幅统计图;(3) 若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?l O D B C A(第18题图)45%30%D B C A 了解程度人数62460504030201036DBCA(第19题图)被调查学生对“节约教育”内容了解程度的统计图一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )21.(本题满分8分) “五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象. (1) 求他们出发半小时时,离家多少千米? (2) 求出AB 段图象的函数表达式;(3) 他们出发2小时时,离目的地还有多少千米?N ME D B C Ax/小时y/千米2.51.517090OBA(第20题图) (第21题图)甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.23.(本题满分8分)如图,直线L 与⊙O 相切于点D.过圆心O 作EF ∥L 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF.并分别延长交直线L 于 B 、C 两点. (1) 求证:∠ABC+∠ACB=90°;(2) 当⊙O 的半径R=5,BD=12时,求tan ∠ABC 的值.24.(本题满分10分)在平面直角坐标系中,一个二次函数的图象经过A (1,0)、B (3,0)两点. (1) 写出这个二次函数图象的对称轴;(2) 设这个二次函数图象的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AC 、DE 和DB.当⊿AOC 与⊿DEB 相似时,求这个函数的表达式.l FO E DB C A (第23题图) xy –1–2–3–41234–1–2–3–41234O(第24题图)问题探究(1) 请在图①中作出两条直线,使它们将圆面四等分;(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决 (3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.MDBCAPDBCA (第25题图)①② ③参考答案1.A;2.D;3.B;4.A;5.C;6.D;7.C;8.A;9.C;10.B11.-7;12.0,3;13.A:(6,4)B:>;14.123;15.24;16.10.5;。
2013年陕西省中考数学试题及赏析

2013年陕西省中考数学试题及赏析洋县教研室柯贤华第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项最符合题意的)1.下列四个数中最小的数是()A.-2B.0 C.-D.5【考点】:有理数大小比较.【分析】:根据有理数的大小比较方法,找出最小的数即可.【解答】:解:∵-2<-<0<5,∴四个数中最小的数是-2;故选A.【点评】:此题考查了有理数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()A.B.C.D.(第2题图)3.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()(第3题图)A.65°B.55°C.45°D.35°【考点】:平行线的性质.【分析】:根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.【解答】:解:∵∠CED=90°,∠AEC=35°,∴∠BED=180°-∠CED-∠AEC=180°-90°-35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选B.【点评】:本题考查了平行线的性质,平角的定义,熟记性质是解题的关键,属于基础题,.4.不等式组的解集为()A.X>B.x<-1 C. -1<x< D. X>-【考点】:解一元一次不等式组.【分析】:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解答】:解:由x->0得,x>,由1-2x<3得,x>-1.∴不等式组的解集为:x>故选A.小大中间找;大大小小找不到.5.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8B.77C.82D.95.7【考点】:算术平均数.【分析】:根据平均数的计算公式列出算式,再进行计算即可.【解答】:解:根据题意得:(111+96+47+68+70+77+105)÷7=82;故选C.【点评】:此题考查了算术平均数,用到的知识点是平均数的计算公式,关键是根据公式列出算式.6.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0【考点】:正比例函数的性质.【分析】:根据正比例函数图象所在象限,可判断出m、n的正负.【解答】:解:∵正比例函数经过一、三象限或二、四象限,A(2,m),B(n,3),∴正比例函数经过四、二象限,∴m<0,n<0,故选D.【点评】:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y 随x的增大而减小.7.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()(第7题图)A.1对B.2对C.3对D.4对A.1B.-1C.3D.-3【分析】:设一次函数的解析式为y=kx+b(k≠0),再把x=-2时,y=3;x=1时,y=0代入即可求出k,b的值,故可得出一次函数的解析式为y=-x+1;再把x=0代入可求出p的值,即当x=0时,y=1,故p=1.【解答】:解:一次函数的解析式为y=kx+b(k≠0),∵x=-2时y=3;x=1时y=0,∴−2k+b=3,①k+b=0②联立①②,解得k=−1, b=1∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.故选A.【点评】:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.9.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()(第9题图)A. B. C. D.【考点】:勾股定理;菱形的性质;矩形的性质.【专题】:压轴题.【分析】:首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABE中三边的关系.【解答】:解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x-y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x-y)2,解得x=,∴MD=MB=2x-y=,∴==故选C.【点评】:此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.10.已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>-5B.x0>-1C.-5<x0<-1D.-2<x0<3【考点】:二次函数图象上点的坐标特征.【专题】:压轴题.【分析】:先判断出抛物线开口方向上,然后分点A、B在对称轴的同一侧与异侧两种情况讨论求解.【解答】:解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,①点A、B在对称轴的同一侧,∵y1>y2≥y0,∴x0≥3,②点A、B在对称轴异侧,∵y1>y2≥y0,∴x0>=-1;综上所述,x0的取值范围是x0>-1.故选B.【点评】:本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.第Ⅱ卷(非选择题共90分)二、填空题(共6小题,计18分)11.计算:(-2)3+( - 1)0=-7【专题】:计算题.【分析】:先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】:解:原式=-8+1=-7.故答案为:-7.【点评】:本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.12.一元二次方程x2-3x=0的根是x1=0,x2=3【考点】:解一元二次方程-因式分解法.【专题】:方程思想;因式分解.【分析】:首先利用提取公因式法分解因式,由此即可求出方程的解.【解答】:解:x2-3x=0,x(x-3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.【点评】:此题主要考查了因式分解法解一元二次方程,解题的关键会进行因式分解.13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是(6 ,4)B、比较大小:8cos31°>(填“>”,“=”或“<”)【考点】:坐标与图形变化-平移;实数大小比较.【分析】:(1)比较A(-2,1)与A′(3,2)的横坐标、纵坐标,可知平移后横坐标加5,纵坐标加1,由于点A、B平移规律相同,坐标变化也相同,即可得B′的坐标;(2)分别求出8cos31°与的近似值,再比较即可.由点A到点A′可知,点的横坐标加5,纵坐标加1,故点B′的坐标为(1+5,3+1),即(6,4);(2)∵8cos31°≈8×0.8572=6.8576,≈5.9161,∴8cos31°>.故答案为:(6,4);>.【点评】:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.比较对应点的坐标变化,寻找变化规律,并把变化规律运用到其它对应点上,同时考查了实数的大小比较.14.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为12(结果保留根号)(第14题图)【考点】:解直角三角形.【分析】:如图,过点E作AE⊥BD于点E,过点C作CF⊥BD于点F.则通过解直角△AEO和直角△CFO求得AE=CF=,所以易求四边形ABCD的面积.【解答】:解:如图,过点E作AE⊥BD于点E,过点C作CF⊥BD于点F.∵BD平分AC,AC=6,∴AO=CO=3.∵∠BOC=120°,∴∠AOE=60°,∴AE=AO•sin60°=.同理求得CF=,∴S四边形ABCD=S△ABD+S△CBD=BD•AE+BD•CF=2×××8=12.故答案是:12.【点评】:本题考查了解直角三角形,三角形的面积的计算.求图中相关线段的长度时,也可以根据勾股定理进行解答.15.如果一个正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为24【考点】:反比例函数与一次函数的交点问题.【专题】:压轴题.【分析】:正比例函数与反比例函数y=的两交点坐标关于原点对称,依此可得x1=-x2,y1=-y2,将(x2-x1)(y2-y1)展开,依此关系即可求解.【解答】:解:∵正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,∴x1=-x2,y1=-y2,∴(x2-x1)(y2-y1)=x2y2-x2y1-x1y2+x1y1=x2y2+x2y2+x1y1+x1y1=6×4=24.故答案为:24.【点评】:考查了反比例函数与正比例函数的交点问题,正比例函数与反比例函数的两交点坐标关于原点对称.16.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为10.510.5(第16题图)【考点】:垂径定理;三角形中位线定理;圆周角定理.【专题】:压轴题.【分析】:连接OA、OB,根据圆周角定理,得出∠AOB=60°,△AOB为等边三角形,则AB=OA=OB=7,由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF=AB=3.5为定值,则GE+FH=GH-EF=GH-3.5,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH 为⊙O的直径时,GE+FH有最大值14-3.5=10.5.【解答】:解:如图,当GH为⊙O的直径时,GE+FH有最大值.∵⊙O的半径为7,∴GH=14.连接OA、OB.∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=OA=OB=7,∵点E、F分别是AC、BC的中点,∴EF=AB=3.5,∴GE+FH=GH-EF=14-3.5=10.5.故答案为10.5.【点评】:本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH 的位置是解题的关键.三、解答题(共9小题,计72分,解答应写出过程)17.(本题满分5分)解分式方程:+=1【考点】:解分式方程.【专题】:计算题.【分析】:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】:解:去分母得:2+x(x+2)=x2-4,解得:x=-3,经检验x=-3是分式方程的解.【点评】:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(本题满分6分)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.(第18题图)【考点】:全等三角形的判定与性质.【专题】:证明题.【分析】:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.【解答】:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,∵∠A=∠BOD,∠ACO=∠BDO=90°,OA=OB,∴△AOC≌△OBD(AAS),∴AC=OD.【点评】:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用。
2013年陕西省中考数学试卷(含解析)

2013年陕西省中考数学试卷一、选择题1、下列四个数中最小的数是( )A .-2B .0C .-D .52、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A .B .C .D .3、如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D 的大小为( )A .65°B .55°C .45°D .35°4、不等式组的解集为( ) A .x > B .x <-1 C .-1<x < D .x >-5、我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A .71.8B .77C .82D .95.76、如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有( )A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0 7、如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对8、根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.-1C.3D.-39、如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.10、已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y)是该抛物线的顶点.若y1>y2≥y,则x的取值范围是()A.x0>-5B.x>-1C.-5<x<-1D.-2<x<3二、填空题11、计算:(-2)3+(-1)0= __________ .12、一元二次方程x2-3x=0的根是__________ .13、请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是 __________ .B、比较大小:8cos31°__________(填“>”,“=”或“<”)14、如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为 __________ .(结果保留根号)15、如果一个正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为 __________ .16、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为__________ .三、解答题17、解分式方程:+=1.18、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.19、我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A--了解很多”、“B--了解较多”,“C--了解较少”,“D--不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20、一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).21、“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22、甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23、如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.24、在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x-x1)(x-x2)].25、问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.2013年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:根据有理数的大小比较方法,找出最小的数即可.试题解析:∵-2<-<0<5,∴四个数中最小的数是-2;故选A.2、答案:D试题分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.试题解析:从上面看所得到的图形是一个长方形,中间有一个没有圆心的圆,与长方形的两边相切.故选:D.3、答案:B试题分析:根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.试题解析:∵∠CED=90°,∠AEC=35°,∴∠BED=180°-∠CED-∠AEC=180°-90°-35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选B.4、答案:A试题分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.试题解析:,由①得:x>,由②得:x>-1,不等式组的解集为:x>,故选:A.5、答案:C试题分析:根据平均数的计算公式列出算式,再进行计算即可.试题解析:根据题意得:(111+96+47+68+70+77+105)÷7=82;故选C.6、答案:D试题分析:根据正比例函数图象所在象限,可判断出m、n的正负.试题解析:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.7、答案:C试题分析:首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.8、答案:A试题分析:设一次函数的解析式为y=kx+b(k≠0),再把x=-2,y=3;x=1时,y=0代入即可得出k、b 的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.试题解析:一次函数的解析式为y=kx+b(k≠0),∵x=-2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.故选A.9、答案:C试题分析:首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x-y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x-y)2,解得x=y,∴MD=MB=2x-y=y,∴==.故选:C.10、答案:B试题分析:先判断出抛物线开口方向上,进而求出对称轴即可求解.试题解析:∵点C(x0,y)是抛物线的顶点,y1>y2≥y,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a-5b+c>9a+3b+c,∴<1,∴->-1,∴x>-1∴x0的取值范围是x>-1.故选:B.二、填空题11、答案:试题分析:先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:原式=-8+1=-7.故答案为:-7.12、答案:试题分析:首先利用提取公因式法分解因式,由此即可求出方程的解.试题解析:x2-3x=0,x(x-3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.13、答案:试题分析:(1)比较A(-2,1)与A′(3,2)的横坐标、纵坐标,可知平移后横坐标加5,纵坐标加1,由于点A、B平移规律相同,坐标变化也相同,即可得B′的坐标;(2)8cos31°很接近4,再比较即可.试题解析:(1)由于图形平移过程中,对应点的平移规律相同,由点A到点A′可知,点的横坐标加5,纵坐标加1,故点B′的坐标为(1+5,3+1),即(6,4);(2)∵8cos31°≈4,∴4>.故答案为:(6,4);>.14、答案:试题分析:如图,过点A作AE⊥BD于点E,过点C作CF⊥BD于点F.则通过解直角△AEO和直角△CFO求得AE=CF=,所以易求四边形ABCD的面积.试题解析:如图,过点A作AE⊥BD于点E,过点C作CF⊥BD于点F.∵BD平分AC,AC=6,∴AO=CO=3.∵∠BOC=120°,∴∠AOE=60°,∴AE=AO•sin60°=.同理求得CF=,∴S四边形ABCD =S△ABD+S△CBD=BD•AE+BD•CF=2×××8=12.故答案是:12.15、答案:试题分析:正比例函数与反比例函数y=的两交点坐标关于原点对称,依此可得x1=-x2,y1=-y2,将(x2-x 1)(y2-y1)展开,依此关系即可求解.试题解析:∵正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,关于原点对称,依此可得x1=-x2,y1=-y 2,∴(x2-x1)(y2-y1)=x2y2-x2y1-x1y2+x1y1=x2y2+x2y2+x1y1+x1y1=6×4=24.故答案为:24.16、答案:试题分析:由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF=AB=3.5为定值,则GE+FH=GH-EF=GH-3.5,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值14-3.5=10.5.试题解析:当GH为⊙O的直径时,GE+FH有最大值.当GH为直径时,E点与O点重合,∴AC也是直径,AC=14.∵∠ABC是直径上的圆周角,∴∠ABC=90°,∵∠C=30°,∴AB=AC=7.∵点E、F分别为AC、BC的中点,∴EF=AB=3.5,∴GE+FH=GH-EF=14-3.5=10.5.故答案为:10.5.三、解答题17、答案:试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:2+x(x+2)=x2-4,解得:x=-3,经检验x=-3是分式方程的解.18、答案:试题分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.19、答案:试题分析:(1)由等级A的人数除以所占的百分比,即可求出调查的学生人数;(2)根据总人数减去A、C、D等级的人数求出等级B的人数,补全条形统计图;由C的人数除以总人数求出C的百分比,进而求出D的百分比,补全扇形统计图即可;(3)由1800乘以B的百分比,即可求出对“节约教育”内容“了解较多”的人数.试题解析:(1)抽样调查的学生人数为36÷30%=120(名);(2)B的人数为120×45%=54(名),C的百分比为×100%=20%,D的百分比为×100%=5%;补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有1800×45%=810(名).20、答案:试题分析:根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.试题解析:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN∴EC=CD=x∴△ABN∽△ACD,∴即解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米.21、答案:试题分析:(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2代入AB段图象的函数表达式,求出对应的y 值,再用170减去y即可求解.试题解析:(1)设OA段图象的函数表达式为y=kx.∵当x=1.5时,y=90,∴1.5k=90,∴k=60.∴y=60x(0≤x≤1.5),∴当x=0.5时,y=60×0.5=30.故他们出发半小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(1.5,90),B(2.5,170)在AB上,∴,解得,∴y=80x-30(1.5≤x≤2.5);(3)∵当x=2时,y=80×2-30=130,∴170-130=40.故他们出发2小时,离目的地还有40千米.22、答案:试题分析:(1)首先根据题意画出表格,由表格求得所有等可能的结果,即可求出甲伸出小拇指取胜的概率;(2)由(1)中所求即可得出乙取胜的概率;试题解析:解;(1)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:出小拇指获胜)=,;(2)又上表可知,乙取胜有5种可能,故P(乙获胜)==.23、答案:试题分析:(1)由题意可知EF是圆的直径,所以∠EAF=90°,即∠ABC+∠ACB=90°;(2)连接OD,则OD⊥BD,过E作EH⊥BC于H,则四边形EODH是正方形,易求tan∠BEH==,再证明∠ACB=∠BEH即可.试题解析:(1)证明:∵EF是圆的直径,∴∠EAF=90°,∴∠ABC+∠ACB=90°;(2)连接OD,则OD⊥BD,过E作EH⊥BC于H,∴EH∥OD,又∵EO∥HD,∴四边形OEHD是矩形,又∵OE=OD,∴四边形EODH是正方形,∴EH=HD=OD=5,又∵BD=12,∴BH=7,在Rt△BEH中,tan∠BEH==,∵∠ABC+∠BEH=90°,∠ABC+∠ACB=90°,∴∠ACB=∠BEH,∴tan∠ACB=.24、答案:试题分析:(1)根据二次函数对称性得出对称轴即可;(2)首先求出C,D点坐标,进而得出CO的长,利用当△AOC与△DEB 相似时,根据①假设∠OCA=∠EBD,②假设∠OCA=∠EDB,分别求出即可.试题解析:解;(1)∵二次函数的图象经过点A(1,0)、B(3,0)两点,∴二次函数图象的对称轴为直线x=2;(2)设二次函数的表达式为:y=a(x-1)(x-3)(a≠0),当x=0时,y=3a,当x=2时,y=-a,∴点C坐标为:(0,3a),顶点D坐标为:(2,-a),∴OC=|3a|,又∵A(1,0),E(2,0),∴AO=1,EB=1,DE=|-a|=|a|,当△AOC与△DEB相似时,①假设∠OCA=∠EBD,可得=,即=,∴a=或a=-,②假设∠OCA=∠EDB,可得=,∴=,此方程无解,综上所述,所得二次函数的表达式为:y=x2-x+或y=-x2+x-.25、答案:试题分析:(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC =S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC -S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.试题解析:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP =S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP 中∴△ABP≌△DEP(ASA ),∴BP=EP,连接CP ,∵△BPC 的边BP 和△EPC 的边EP 上的高相等,又∵BP=EP,∴S △BPC =S △EPC ,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE ,由三角形面积公式得:PF=PG ,在CB 上截取CQ=DE=AB=a ,则S △CQP =S △DEP =S △ABP ∴S △BPC -S △CQP +S △ABP =S △CPE -S △DEP +S △CQP 即:S 四边形ABQP =S 四边形CDPQ ,∵BC=AB+CD=a+b,∴BQ=b,∴当BQ=b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分.。
2013年陕西初中中考毕业考试卷数学(带解析)

2013年陕西初中中考毕业考试卷数学(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释 一、单选题(注释)1、下列四个数中最小的数是【 】 A .B .C .D .2、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是【 】A .B .C .D .3、如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小【 】A .65°B .55°C .45°D .35°4、不等式组的解集为【 】A .B .C .D .5、我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是【 】 A .71.8 B .77 C .82 D .95.76、如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有【 】A .m>0,n>0B .m>0,n<0C .m<0,n>0D .m<0,n<07、如图,在四边形中,对角线AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有【 】A .1对B .2对C .3对D .4对】 A .1 B .-1 C .3 D .-39、如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN ,若四边形MBND 是菱形,则等于【 】A .B .C .D .10、已知两点均在抛物线上,点是A.B.C.D.分卷II分卷II 注释二、填空题(注释)11、计算:.12、一元二次方程的根是.13、请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面直角坐标第中,线段AB的两个端点的坐标分别为,将线段AB经过平移后得到线段,若点A的对应点为,则点B的对应点的坐标是.14、比较大小:(填“>”,“=”,“<”).15、如图,四边形ABCD的对角线AC、BD相交于点O,且BD平分AC,若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为 .(结果保留根号)16、如果一个正比例函数的图象与一个反比例函数的图象交,那么值为 .17、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.三、解答题(注释)18、解分式方程:.19、如图,∠AOB=90°,OA=0B ,直线经过点O,分别过A 、B 两点作AC ⊥交于点C ,BD ⊥交于点D. 求证:AD=OD.20、我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A -了解很多”,“B -了解较多”,“C -了解较少”,“D -不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题: 被调查学生对“节约教育”内容了解程度的统计图(1)本次抽样调查了多少名学生? (2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?21、一天晚上,李明和张龙利用灯光下的影子来测量一路灯D 的高度,如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省2013年中考数学试题
第Ⅰ卷(选择题 共30分)
A 卷
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列四个数中最小的数是( ) A .-2B.0C.3
1-
D.5 2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )
3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小为( ) A.65° B.55° C.45° D.35°
4.不等式组⎪⎩
⎪⎨⎧--3210
2
1
x x 的解集为( ) A. x >21 B. x <-1 C. -<x <21 D. x >-2
1
5.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.
则这七天空气质量指数的平均数是( )
A.71.8
B.77
C.82
D.95.7 6.如果一个正比例函数的图象经过不同..象限的两点A (2,m )、B (n ,3),那么一定有( ) A. m >0,n >0 B. m >0,n <0 C. m <0,n >0 D. m <0,n <0
7.如图,在四边形ABCD 中,AB=AD ,CD =CB.若连接AC 、BD 相交于点O ,则图中全等三角形共有( )
A.1对
B.2对
C.3对
D.4对
8.
x 与y 的对应值,可得P 的值为( )
A.1 B .-1 C.3 D.-3
9.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,
连接BM 、DN.若四边形MBND 是菱形,则MD
AM
等于( )
E
D
B C
A (第2题图) (第3题图)
A B C D O D B
C
A
N
M
D
B
C
A
A.83
B.32
C.53
D.5
4 10.已知两点A (-5,1y )、B (3,2y )均在抛物线()02≠++=
a c bx ax y 上,点C
(0x ,0y )是该抛物线的顶点,若1y >2y ≥0y ,则0x 的取值范围是( ) A. 0x >-5 B. 0x >-1 C .-5<0x <-1 D .-2<0x <3 B 卷
第Ⅱ卷(非选择题 共90分)
二、填空题(共6小题,每小题3分,共18分) 11.计算:()
()0
3
132
-+
-= .
12.一元二次方程032=-x x 的根是 .
13.请从经以下两个小题中任选一个....
作答,若多选,则按所选的第一题计分. A.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1)、B (1,3,)将线段AB 经过平移后得到线段A ′B ′.若点A 的对应点为A ′(3,2),则点B 的对应点B
′B.比较(填“>”、“=”若“<”)
14.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留根号) 15.如果一个正比例函数的图象与反比例函数x
y 6
=
的图象交于A (1x ,1y )、B (2x ,
2y )两点,那么(2x -1x )(2y -1y )的值为 .
16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .
三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)
(第7题图) (第9题图)
O
D B C
A
C
(第14题图) (第16题图)
解分式方程:
12
422=-+-x x
x .
18.(本题满分6分)
如图,∠AOB=90°,OA=OB ,直线L 经过点O ,分别过A 、B 两点作AC ⊥L 交L 于点C ,BD ⊥L 交L 于点D. 求证:AC=OD
19.(本题满分7分)
我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》通知中要求各学校全面持续开展“光盘行动”.
某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A —了解很多”,B —“了解较多”,“C —了解较少”,“D —不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图. 根据以上信息,解答下列问题:
(1) 本次抽样调查了多少名学生? (2) 补全两幅统计图;
(3) 若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容
“了解较多”的有多少名?
l O D B C A
(第18题图)
45%
30%
D B C A 了解程度
人数6
24
6050
4030201036
D
B
C
A
(第19题图)
被调查学生对“节约教育”内容了解程度的统计图
一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )
21.(本题满分8分) “五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象. (1) 求他们出发半小时时,离家多少千米? (2) 求出AB 段图象的函数表达式;
(3) 他们出发2小时时,离目的地还有多少千米?
N M
E D B C A
x/小时
y/千米2.51.5170
90
O
B
A
(第20题图) (第21题图)
甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.
(1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.
23.(本题满分8分)
如图,直线L 与⊙O 相切于点D.过圆心O 作EF ∥L 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF.并分别延长交直线L 于 B 、C 两点. (1) 求证:∠ABC+∠ACB=90°;
(2) 当⊙O 的半径R=5,BD=12时,求tan ∠ABC 的值.
24.(本题满分10分)
在平面直角坐标系中,一个二次函数的图象经过A (1,0)、B (3,0)两点. (1) 写出这个二次函数图象的对称轴;
(2) 设这个二次函数图象的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连
接AC 、DE 和DB.当⊿AOC 与⊿DEB 相似时,求这个函数的表达式.
l F
O E D
B C A (第23题图) x
y –1–2–3–41234
–1
–2–3–4
1
234O
(第24题图)
问题探究
(1) 请在图①中作出两条直线,使它们将圆面四等分;
(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线
必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决 (3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.
M
D
B
C
A
P
D
B
C
A (第25题图)
①
② ③
参考答案
1.A;
2.D;
3.B;
4.A;
5.C;
6.D;
7.C;
8.A;
9.C;10.B
11.-7;12.0,3;13.A:(6,4)B:>;14.123;15.24;16.10.5;。