2019年中考突破复习题型专项(八)解直角三角形的实际应用题
解直角三角形的实际应用题的解题步骤

解直角三角形的实际应用题的解题步骤解直角三角形的实际应用题的解题步骤1. 引言直角三角形是高中数学中的重要概念之一,其解题方法和应用广泛存在于实际生活中。
本文将以解直角三角形的实际应用题为主题,通过深度和广度的分析,帮助读者更好地理解和应用直角三角形的知识。
2. 实际应用题的意义和背景实际应用题是数学知识在实际问题中的运用,对于培养学生的问题解决能力和应用能力至关重要。
解直角三角形的实际应用题有助于学生将抽象的数学概念和具体的实际问题进行联系,培养他们的分析和推理能力。
3. 解题步骤的概述解直角三角形的实际应用题可以分为以下几个步骤:求两个已知角度的第三个角度、确定已知角度的对边、确定未知角度的对边、求斜边、求面积等。
4. 具体步骤的详解(1)求两个已知角度的第三个角度:根据直角三角形的性质,在直角三角形中,三个角的和为180度。
通过已知的两个角度,我们可以求得第三个角度,从而建立起直角三角形的坐标系。
(2)确定已知角度的对边:根据已知角度可以确定相应的直角三角形边长比例关系。
通过题目中给出的已知角度和对边的长度比例,我们可以推导出未知角度的对边的长度。
(3)确定未知角度的对边:根据已知角度的对边和比例关系,可以推导出未知角度的对边与已知对边之间的比例关系。
通过这个比例关系,我们可以求得未知角度对应的对边长度。
(4)求斜边:已知两个直角三角形的边长,可以利用勾股定理来求解斜边的长度。
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
(5)求面积:已知直角三角形的两个直角边,可以利用面积公式来求解三角形的面积。
直角三角形的面积等于两个直角边长度的乘积的一半。
5. 个人观点和理解直角三角形的实际应用题在我们的日常生活中具有广泛的应用,例如在建筑、导航、物理等领域。
解题过程中,我们需要根据已知条件进行分析,应用数学知识和技巧来推导出未知的数据,从而解决实际问题。
通过解题过程中的分析和推理,我们还可以培养自己的逻辑思维和问题解决能力。
天津市河西区2019届中考《解直角三角形实际问题》专项练习含答案.doc

2019年九年级数学中考复习解直角三角形实际问题解答题强化练习1.如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).2.如图,以AB为直径的⊙O交△ABC的边AC于D、BC于E,过D作⊙O的切线交BC于F,交BA延长线于G,且DF⊥BC.(1)求证:BA=BC;(2)若AG=2,cosB=0.6,求DE的长.3.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查.如图,一测量船在A岛测得B岛在北偏西30°方向,C岛在北偏东15°方向,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离.(结果保留到整数,≈1.41,≈2.45)4.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)5.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为多少?6.如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)7.如图,已知在△ABC中,AD是BC边上的高,E是AC边的中点,BC=14,AD=12,sinB=0.8.(1)求线段CD的长;(2)求tan∠EDC的值.8.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)9.如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)10.某型号飞机的机翼形状如图,AB∥CD,∠DAE=37º,∠CBE=45º,CD=1.3m,AB、CD之间的距离为5.1m.求AD、AB的长.(参考数据:,,)11.已知:如图,在△ABC中,∠A=30°, tanB=34,AC=18,求BC、AB的长.C A12.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=,试求CD的长.13.如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若BE=1.5,且sin∠CFD=0.6,求⊙O的半径与线段AE的长.14.如图是我市投入使用的“大鼻子”校车,其安全隐患主要是超速和超载,某中学九年级数学活动小组设计了如下检测公路上行驶汽车速度的实验,先在笔直的车道l旁边选取一点A,再在l上确定点B,使AB⊥l,测得AB的长为30米,又在l上选取点C,D,使∠CAB=30°,∠DAB=60°,如图所示.(1)求CD的长;(精确到0.1米,参考数据:≈1.41,≈1.73)(2)已知本路段对校车的限速为40千米/时,若测得某校车从点C到点D用时3秒,则这辆校车是否超速?并说明理由.参考答案1.解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.2.(1)证明:连结OD,如图,∵DF为切线,∴OD⊥DF,∵DF⊥BC,∴OD∥BC,∴∠ODA=∠C,而OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠C,∴BA=BC;(2)作DH⊥AB于H,如图,设⊙O的半径为r,∵OD∥BC,∴∠B=∠DOG,∴cos∠DOG=cosB=0.6,在Rt△ODG中,∵cos∠DOG=,即=,∴r=3,在Rt△ODH中,∵cos∠DOH==,∴OH=,∴AH=3﹣=,在Rt△ADH中,AD==,∵∠DEC=∠C,∴DE=DC,而OA=OB,OD∥BC,∴AD=CD,∴DE=AD=.3.解:由题意知∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里,过B点作BD⊥AC于点D,∵∠BAC=45°,∴△BAD为等腰直角三角形,∴BD=AD=50,∠ABD=45°,∴∠CBD=180°-30°-45°-45°=60°,∴∠C=30°,∴在Rt△BCD中,BC=100≈141(海里),CD=50,∴AC=AD+CD=50+50≈193(海里)4.解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.5.GE//AB//CD,BC=2GC,GE=15米,AB=2GE=30米,AF=BC=AB•cot∠ACB=30×cot60º=10米,DF=AF•tan30º=10×=10米,CD=AB-DF=30-10=20米。
【中考冲刺】2019年 九年级中考数学三轮冲刺 解直角三角形实际问题 冲刺练习(含答案)

2019年九年级中考数学三轮冲刺解直角三角形实际问题冲刺练习考点一:解直角三角形应用—仰角俯角问题1.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73).2.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)3.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B 处测得着火点C的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)4.如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC (结果精确到1m).5.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD(CD⊥AE),在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米,试求该校地下停车场的高度AC及限高CD(≈1.73,结果精确到0.1米)6.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)7.如图,某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)考点二:解直角三角形应用—坡度问题1.如图,水库大坝的横断面为四边形ABCD,其中AD∥BC,坝顶BC=10米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°.(1)求坝底AD的长度(结果精确到1米);(2)若坝长100米,求建筑这个大坝需要的土石料(参考数据:)2.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)3.如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为6米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)4.如图,已知斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)5.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.考点三:解直角三角形应用—方位角问题1.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)2.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.3.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)4.钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)5.如图,大海中某岛C的周围25km范围内有暗礁.一艘海轮向正东方向航行,在A处望见C在北偏东60°处,前进20km后到达点B,测得C在北偏东45°处.如果该海轮继续向正东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.41,≈1.73)6.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)参考答案考点一:1.解:2.解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.3.解:作AD⊥BC垂足为D,AB=40×25=1000,∵BE∥AC,∴∠C=∠EBC=30°,∠ABD=90°﹣30°﹣15°=45°,在Rt△ABD中,sin∠ABD=,AD=ABsin∠ABD=1000×sin45°=1000×=500,AC=2AD=1000,答:热气球升空点A与着火点C的距离是1000米.4.解:过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,由题意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,∴cos∠ADE=cos15°=≈0.97,∴≈0.97,解得:DE=1552(m),sin15°=≈0.26,∴≈0.26,解得;AE=416(m),∴DF=500﹣416=84(m),∴tan∠BDF=tan15°=≈0.27,∴≈0.27,解得:BF=22.68(m),∴BC=CF+BF=1552+22.68=1574.68≈1575(m),答:他飞行的水平距离为1575m.5.解:连接AC,∵∠ABE=90°,∠E=30°,∴AB=0.5AE=8,∴AC=8﹣1.2=6.8,∴CD=AC•sin∠EAB=6.8×≈5.9,答:地下停车场的高度AC为6.8米,限高CD约为5.9米.6.7.解:过点D作DM⊥BC于点M,DN⊥AC于点N,如图所示:则四边形DMCN是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣10,在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴x=tan50°•[(x﹣5)],解得:x≈21,答:建筑物BC的高约为21m.考点二:1.解:(1)作BE⊥AD于E,CF⊥AD于F,则四边形BEFC是矩形,∴EF=BC=10米,∵BE=20米,斜坡AB的坡度i=1:2.5,∴AE=50米,∵CF=20米,斜坡CD的坡角为30°,∴DF==20≈35米,∴AD=AE+EF+FD=95米;(2)建筑这个大坝需要的土石料:×(95+10)×20×100=105000米3.2.3.4.解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴AH:PH=5:12,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=BC:AC,即x:(x-14)≈4.0,解得x≈19,答:古塔BC的高度约为19米.5.解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.考点三:1.解:2.解:设巡逻船从出发到成功拦截所用时间为小时.如图所示,由题得,,,过点作的延长线于点,在中,,∴.∴.在中,由勾股定理得:解此方程得(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时。
初中考数学专题总复习《三角形》解直角三角形的实际应用

cos 26
答:轮船航行的距离AD约为20 km.
第2题解图
对接中考 改变背景→由单动点母子型变成双动点母子型 3. 南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行 常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份 的船只正在向东南方向航行,便迅速沿北偏东75° 的方向前往监视巡查,经过一段时间后在C处成 功拦截不明船只,问我国海监执法船在前往监 视巡查的过程中行驶了多少海里?(结果保留根号)
图示
全国视野 核心素养提升
1. (2020遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan
15°时,如图,在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,
连接AD,得∠D=15°,所以tan 15°= AC 1
2 3
2 3 .类
CD 2 3 (2 3)(2 3)
第4题图
母题变式
改变背景→观测点数量增加.
5. (2020遵义)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门
截面示意图,已知测温门AD的顶部A处距地面高为2.2 m,为了解自己的有效测温区
间.身高1.6 m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,
此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此
教材母题 1
1. (人教九下P76例5)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向 上的B处,这时,B处距离灯塔P有多远? (结果保留整数,参考数据:sin 25°≈0.423, cos 25°≈0.906,tan 25°≈0.466,sin 34°≈0.559, cos 34°≈0.829,tan 34°≈0.675)
2019年中考试题汇编:解直角三角形

20.(6分)天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A 处开始,沿A ﹣B ﹣C 路线对索道进行检修维护.如图:已知AB =500米,BC =800米,AB 与水平线AA 1的夹角是30°,BC 与水平线BB 1的夹角是60°.求:本次检修中,检修人员上升的垂直高度CA 1是多少米?(结果精确到1米,参考数据:≈1.732)22.(本小题满分8分)如图,在岷江的右岸边有一高楼AB ,左岸边有一坡度i=1∶2的山坡CF ,点C 与点B 在同一水平面上,CF 与AB 在同一平面内.某数学兴趣小组为了测量楼AB 的高度,在坡底C 处测得楼顶A 的仰角为450,然后沿坡面CF 上行了205米到达点D处,此时在D 处测得楼顶A 的仰角为300,求楼AB 的高度.20.(9分)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A 至B 共有30级阶梯,平均每级阶梯高30cm ,斜坡AB 的坡度i =1:1;加固后,坝顶宽度增加2米,斜坡EF 的坡度i =1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)A B CE DF 34岷第2219.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)2.(10分)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (D C B A O ,,,,在同一条直线上).测得m 2=AC ,m 1.2=BD ,如果小明眼睛距地面高度DG BF ,为m 6.1,试确定楼的高度OE .1. (本题满分8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行.(1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果精确到0.1米,≈1.41, ≈1.73)..21.(10分)某体育看台侧面的示意图如图所示,观众区AC 的坡度i 为1:2,顶端C 离水平地面AB 的高度为10m ,从顶棚的D 处看E 处的仰角α=18°30′,竖直的立杆上C 、D 两点间的距离为4m ,E 处到观众区底端A 处的水平距离AF 为3m .求:(1)观众区的水平宽度AB ;(2)顶棚的E 处离地面的高度EF .(sin18°30′≈0.32,tan l 8°30′≈0.33,结果精确到0.1m )24.(10分)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan76°≈4)3.(8分)某区域平面示意图如图所示,点D 在河的右侧,红军路AB 与某桥BC 互相垂直,某校“教学兴趣小组”在“研学旅行”活动中,在C 处测得点D 位于西北方向,又在A 处测得点D 位于南偏东65°方向,另测得BC=414m ,AB=300m ,求出点D 到AB 的距离。
中考数学解直角三角形实际应用题型集锦

中考数学解直角三角形实际应用题型集锦全国各地解直角三角形中考题集锦1.(2019?济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为()(参考数据:tan37°≈34,tan53°≈43)A.225m B.275m C.300m D.315m2.(2019?日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为()A.11米B.(36﹣153)米C.153米D.(36﹣103)米3.(2019?长春)如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.3sinα米D.3cosα米4.(2019?宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC 的值为()A.43B.34C.35D.455.(2019?广西)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O 的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米6动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.atanα+a tanβ7.(2019?苏州)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为183m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m8.(2019?阜新)如图,一艘船以40nmile/h的速度由西向东航行,航行到A处时,测得灯塔P在船的北偏东30°方向上,继续航行2.5h,到达B处,测得灯塔P在船的北偏西60°方向上,此时船到灯塔的距离为nmile.(结果保留根号)9.(2019?葫芦岛)如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b 上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为米.(3≈1.73,结果精确到0.1米)10.(2019?辽阳)某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A 处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C 在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车(填“超速”或“没有超速”)(参考数据:3≈1.732)11.(2019?大连)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).12.(2019?徐州)如图,无人机于空中A处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)13.(2019?恩施州)如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为30°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:2≈1.41,3≈1.73,精确到0.1m.)14.(2019?盘锦)如图,池塘边一棵垂直于水面BM的笔直大树AB在点C处折断,AC部分倒下,点A与水面上的点E重合,部分沉入水中后,点A与水中的点F重合,CF交水面于点D,DF=2m,∠CEB=30°,∠CDB=45°,求CB部分的高度.(精确到0.1m.参考数据:2≈1.41,3≈1.73)15.(2019?营口)如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60°方向上,位于B 市北偏西45°方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A,B两市的高速公路,高速公路AB是否穿过风景区?通过计算加以说明.(参考数据:3≈1.73)16.(2019?鞍山)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile 的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:2≈1.41,3≈1.73,6≈2.45)17.(2019?朝阳)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=3,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:3≈1.732)418.(2019?抚顺)如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)19.(2019?铁岭)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:sin53°≈0.8,cos53°≈0.6,tan53≈1.3,3≈1.7)20.(2019?株洲)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.。
新课标版2019年全国各地中考真题分类详解 - —— 解直角三角形及其应用

新课标版2019年全国各地中考真题分类详解解直角三角形及其应用一、选择题8.(2019·苏州)如同,小亮为了测量校园里教学楼AB的高度.将测角仪CD竖直放置在与教学楼水平距离为m的地面上,若测角仪的高度是1.5m,测得教学楼的顶部A处的仰角为30°,则教学楼的高度是()A.55.5 m B.54 m C.19. 5 m D.18 m(第8题)【答案】C【解析】过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选C.8.(2019·温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.95sinα米B.95cosα米C.59sinα米D.59cosα米【答案】B【解析】如图,过点A作AD⊥BC,垂足为点D,则BD=1.5+0.3=1.8(米).在Rt△ABD中,∠ADB=90°,cosB=BDAB,所以AB=cosBDα=1.8cosα=95cosα.故选B.10.(2019·长沙)如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60 n mile的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是 【 】A..60 n mile C .120 n mile D.(30+ n mile【答案】D【解析】过C 作CD ⊥AB 于D 点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt △ACD 中,cos∠ACD=CD AC,∴CD=AC •cos ∠ACD=60在Rt △DCB 中,∵∠BCD=∠B=45°,∴B 处与灯塔P 的距离是(nmile .故本题选:D .8.(2019·益阳)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图1,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为()A. asin α+asin βB. acos α +a cos βC. atan α+atan βD.βαtan tan aa + D BA第8题图【答案】C【解析】在Rt △ABD 中,∵tan β=ABBD,∴BD=atan β. 在Rt △ABD 中,∵tan α=ABBC,∴BC=atan α. ∴CD=BD+BC=atan α+atan β.1.(2019·泰安)如图,一艘船由A 港沿北偏东65°方向航行km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为________km.D【答案】B【解析】如图,由题中方位角可知∠A =45°,∠ABC =75°,∠C =60°,过点B 作BD ⊥AC 于点D,在Rt △ABD 中,∠A =45°,AB =∴AD =ABcosA =30,BD =ABsinA =30,在Rt △BCD 中,∠C =60°,∴CD =tan BDC=,∴AC =AD+CD =故选B.2.(2019·重庆B 卷)如图,AB 是垂直于水平面的建筑物,为测量AB 的高度,小红从建筑物底端B 出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D 在同一平面内).斜坡CD 的坡度(或坡比)i=1:2.4,那么建筑物AB 的高度约为()【答案】B【解析】作EN ⊥AB 于N,EM ⊥BC 交BC 的延长线于M . ∵斜坡CD 的坡度(或坡比)i=1:2.4,DC=BC =52米,设DM =x 米,则CM =2.4x 米,在Rt △ECM 中,∵2DM + 2CM =2DC ,∴2x +()22.4x =252解得x =20 ∴CM =48米,EM =20+0.8=20.8米,BM =ED +DM =52+48=100米∵EN ⊥AB,EM ⊥BC ,AB ⊥BC ∴四边形ENBM 是矩形. ∴EN=BM=100米,BN=EM =20.8米. 在Rt △AEN 中,∵∠AEF =27°∴AN=EN ﹒tan 27°≈100×0.51=51米 ∴AB=AN +BN =51+20.8=71.8米.故选B .3.(2019·重庆A 卷)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离AC =26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED =48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为()(参考数据:sin 48°≈0.73,cos48°≈0.67,tan48°≈1.11)A .17.0米B .21.9米C .23.3米D .33.3米【答案】C.【解析】如答图,延长DC交EA于点F,则CF⊥EA.∵山坡AC上坡度i=1:2.4,AC=26米,∴令CF=k,则AF=2.4k,由勾股定理,得k2+(2.4k)2=262,解得k=10,从而AF=24,CF=10,EF=30.在Rt△DEF中,tan E=DFEF,故DF=EF•tan E=30×tan48°=30×1.11=33.3,于是,CD=DF-CF=23.3,故选C.二、填空题20.(2019·遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固,如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1,加固后坝顶宽度增加2米,斜坡EF的坡度i=1:5,问工程完工后,共需土石多少立方米?(计算土石时忽略阶梯,结果保留根号)解:如图,分别过点A,E作AN⊥FC于N,EM⊥F于M,则AN=EM,∵从A至B共有30级阶梯,平均每级阶梯高30cm,∴AN=9米=EM,∵斜坡AB的坡度i=1:1,∴BN=AN=9米,∵斜坡EF的坡度i=1:5,∴FM=95,∴FB=FM+MN-BN=95+2-9=95-7,S梯=EMBFAE⨯+)21(=24552819)759221-=⨯-+(,∴体积为200S梯=81005-4500(m3)答:共需土石81005-4500立方米.21.(2019·广元)如图,某海监船以60海里时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡查此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方向.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.第21题图解:(1)过点C作CE⊥AB于点E,在Rt△BEC中,设BC=x,∵∠BCE=30°,∴BE=12BC=12x,CEx,在Rt△ACE中,AE=CEx,∴AB=AE-BEx-12x,已知AB=60×1.5=90,∴x-12x=90,解之得,x=答:B,C两处之间的距离海里;(2)过点B作BF⊥DC于点F,在Rt△BDF中,∠DBF=60°,由(1)得,BF=CE=CEx=135+45∴BD=2BF=270+90,∴时间为(270+90)÷90=答:海监船追到可疑船只所用的时间为小时.16.(2019·温州)图1是一种折叠式晾衣架.晾FE衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′-BE为分米.【答案】【解析】(1)过点O分别作OL⊥MD、ON⊥AM,垂足分别为点L、N,则∠LON=90°,四边形NMLO是矩形,∴MN=LO. ∵OC=OD=10分米,∠COD=60°,∴∠COL=30°,CL=12CD=5,OL=∵∠AOC=90°,∴∠AON=30°,∴AN=12AO=5,∴;(2)过点F分别作FQ⊥OB、FP⊥OC,垂足分别为点Q、N. 在Rt△OPQ中,∠OQP=90°,∠BOD=60°,∴OQ=2,Rt△EFQ中,∠EQF=90°,,EF=6,∴,BE=10-2-2=8-2;同理可得PE′=2,∴B′E′=2+10-2=12-2,∴B′E′)=4. 故填:15.(2019·盐城)如图,在△ABC中,BC,∠C=45°,AB,则AC的长为________.【答案】2【解析】如图,过点A作AD⊥BC于点D,又∠C=45°,故s i n2ADCAC==,tan1ADCCD==,设AD x=,则AC==,CD=x,2AB x==,在Rt△ACD中,∠ADB=90°,由勾股定理可得:AD2+BD2=AB2,得B D=,所以BC BD CD x=+==1)AB C解得x ,故AC =2.1.(2019·枣庄)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 点6m 的位置,在D 处测得旗杆顶端A 的仰角为53°,若测角仪的高度是1.5m,则旗杆AB 的高度约为________m(精确到0.1m).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】9.5【解析】由题可知BC =6m,CD =1.5m,过D 作DE ∥BC 交AB 于点E,易知四边形BCDE 是矩形,∴DE =BC =6m,在Rt △ADE 中,AE =DE ·tan53°=7.98m,EB =CD =1.5m,∴AB =AE+EB =9.48m ≈9.5m.第15题答图2.(2019·湖州)有一种落地晾衣架如图①所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图②是支撑杆的平面示意图.AB 和CD 分别是两根不同的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为________cm .(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6)ABC【答案】120.【解析】如图,过点A 作AE ⊥BD 于点E ,则∠AEB =90°.∵AO =85cm ,BO =DO =65cm α=74°, ∴∠ODB =∠B =53°,AB =150cm . 在Rt △ABE 中,sin B =h AB, 故h =AB •sin B =150×sin53°≈150×0.8=120.3.(2019·金华)如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪,量角器的0刻度线AB 对准楼顶时,铅垂线对应的度数是50°,则此时观察楼顶的仰角度数是___________.【答案】40°.【解析】量角器的0刻度线AB 对准楼顶时,铅垂线对应的度数是50°,则过AB 中点的水平线对应的是140°,所以此时观察楼顶的仰角度数是40°.4.(2019·金华)图2,图3是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门AB 、CD 的门轴A 、B 、C 、D 都在滑动轨道上,两门关闭时(图2),A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合);两门同时开启,A 、D 分别沿E→M ,F →N 的方向匀速滑动,带动B 、C 滑动;B 到达E 时,C 恰好到达F ,此时两门完全开启,已知AB =50cm ,CD =40cm.(1)如图3,当∠ABE =30°时,BC =_______cm. (2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为_______cm 2.【答案】(1)(90-;(2)2256.【解析】(1)利用直角三角形的性质先求得EB ,CF ,然后进行线段加减即可; (2)根据题意,得S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF ,计算可得.图3图2图1B (C )E (A )EF (D )B解:(1)∵ AB =50,CD =40,∴AB +CD = EB +CF =EF =90.在Rt △ABE 中,∵∠E =90°,∠ABE =30°,∴EB =同理可得CF =∴BC =90-cm ).(2)根据题意,得AE =40, DF =32, EB 30,CF 24, ∴S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF=12(AE +DF )·EF -12AE ·EB -12CF ·DF =12(40+32)×90-12×40×30-12×24×32 =2256.5. (2019·宁波)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为________米.【答案】566【解析】在Rt △AOH 中,OH =AOcos45°=,在Rt △BOH 中,BO =566cos60OH=.6.(2019·衢州)如图,人字梯AB ,AC 的长都为2米,当α=50°时,人字梯顶端离地面的高度AD 是米_________(结果精确到0.1m 参考数据;sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).【答案】1.5【解析】由三角函数的定义得:sinα= sin50°=ADAC=2AD≈0.77,所以AD≈2×0.77=1.54≈1.5米.三、解答题20.(2019年浙江省绍兴市,第20题,8分如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:73.13,41.12≈≈)【解题过程】22.(2019·嘉兴)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD 的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1米)?(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,1.73)【解题过程】(1)如图2-1,过点C作CG⊥AM于点G,∵AB⊥AM,DE⊥AM,∴AB//DE//CG ∴∠DCG=180°-∠CDE=110°.∴∠BCG=∠BCD -∠DCG=30°.∴∠ABC=180°-∠BCG=150°.∴动臂BC与AB的夹角为150°.(2)如图2-2,过点C作CP⊥DE于点P,过点BQ⊥DE于点Q交CG于点N. 在Rt△CPD中,DP=CD×cos70°=0.51(米)在Rt△BCN中,CN=BC×sin60°≈1.04(米)∴DE=DP+PQ+QE=DP+CN+AB≈2.35(米)如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K.在Rt△CKD中,DK=CD×sin5°≈1.16(米)∴DH=DK+KH≈3.16(米)∴DH-DE≈0.8(米).所以斗杆顶点D的最高点比初始位置高了约0.8米.23.(2019浙江省杭州市,23,12分)(本题满分12分)如图,已知锐角三角形ABC内接于⊙O,OD⊥BC于点D.连接0A.(1)若∠BAC=60°,①求证:OD=12 OA.②当OA=1时,求△ABC面积的最大值.(1)点E在线段0A上.OE=OD.连接DE,设∠ABC=m∠OED.∠ACB=n∠OED(m,n是正数).若∠ABC<∠ACB.求证:m-n+2=0【解题过程】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD 过点O 时,AD 最大,即:AD=AO+OD=32,△ABC 面积的最大值=12×BC ×AD=12×2OBsin60°×32;(2)如图2,连接OC ,设∠OED=x ,则∠ABC=mx ,∠ACB=nx , 则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=12∠BOC=∠DOC , ∵∠AOC=2∠ABC=2mx ,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx , ∵OE=OD ,∴∠AOD=180°-2x ,即:180°+mx-nx=180°-2x ,化简得:m-n+2=0. 23.(2019山东烟台,23,10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA ,OB 可绕点O 开合,在OB 边上有一固定点P ,支柱PQ 可绕点P 转动,边OA 上有六个卡孔,其中离点O 最近的卡孔为M ,离点O 最远的卡孔为N .当支柱端点Q 放入不同卡孔内,支架的傾斜角发生変化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康.现测得OP 的长为12 cm ,OM 为10cm ,支柱PQ 为8cm . (1)当支柱的端点Q 放在卡孔M 处时,求AOB ∠的度数.(2)当支柱的端点Q 放在卡孔N 处时,20.5AOB ∠=︒,若相邻两孔的距离相等,求此间距.(结果精确到十分位).【解题过程】(1)解:当支柱的端点Q 放在卡孔M 处时,作出该支架的截面图如图(1),过点P 作,垂足为E ,此时,12OP =,10OM OQ ==,8PQ =, 因为PE OA ⊥,所以90OEP PEQ ∠=∠=︒,设OE x =,所以10EQ OQ OE x =-=-, 在Rt △OPE 中,由勾股定理得,222PE OP PE =-2212x =-,在Rt △PEQ 中,由勾股定理得,222P E P Q E Q =-228(10)x =--, 所以2222128(10)x x -=--,解得9x =,所以9OE =,OA在Rt △OPE 中,9cos 0.4512OE AOB OP ∠===, 由参考数据表,可得,41AOB ∠=︒.(2)解:当支柱的端点Q 放在卡孔N 处时,作出该支架的截面图如图(2),过点P 作PE OA ⊥,垂足为F ,此时,12OP =,ON OQ =,8PQ =,20.5AOB ∠=︒, 因为PE OA ⊥,所以90OEP PEQ ∠=∠=︒, 在Rt △OPE 中,sin PEAOB OP∠=, 所以sin sin 20.5120.45 4.2PE OP AOB OP =⨯∠=⨯︒=⨯=, 在Rt △PEQ 中,由勾股定理得,236 6.8F Q ==, 在Rt △OPE 中,由勾股定理得,11.24OF ====2212x =-,所以11.24 6.818O N O F F Q =+=+=,所以18.04101.655ON OM d --==≈, 所以相邻两孔的距离为1.6cm .22(2019山东威海,22,9分)如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG =2米,货厢底面距地面的高度BH =0.6米,坡面与地面的夹角∠BAH =α,木箱的长(FC )为2米,高(EF )和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C 与坡面底部点A 重合时,木箱上部顶点E 会不会触碰到汽车货厢顶部.OA35【解题过程】∵BH =0.6,sinα=, ∴AB ==1, ∴AH =0.8,∵AF =FC =2,∴BF =1,作FQ ⊥BG 于点Q ,作EP ⊥FQ 于点P ,∵EF =FB =AB =1,∠EPF =∠FQB =∠AHB =90°,∠EFP =∠FBQ =∠ABH , ∴△EFP ≌△FBQ ≌△ABH , ∴EP =FQ =AH ,BQ =BH ,∴BQ +EP =0.6+0.8=1.4(米)<2米,∴木箱上部顶点E 不会触碰到汽车货厢顶部.20.(2019江西省,20,8分)图1是一台实物投影仪,图2是它的示意图,折线B —A —O 表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量:AO =6.8cm ,CD =8cm ,AB =30cm ,BC =35cm.(结果精确到01)(1)如图2,∠ABC =70°,BC ∥OE. ①填空:∠BAO = °; ②求投影探头的端点D 到桌面OE 的距离.(2)如图3,将(1)中的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm 时,求∠ABC 的大小.(参考数:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)350.63sin 5BH α=【解题过程】解:(1)①如图所示,延长OA 交BC 于点F ,∵BC ∥OE ,OA ⊥OE , ∴∠BFA=∠AOE=90°,∴∠BAO=∠BFA+∠ABC=90°+70°=160°. 答案:160②∵∠BFA=90°,∠ABC=70°,AB =30cm ,sin70°≈0.94, ∴AF=AB ·sin70°≈30×0.94=28.2(cm ). ∵OA=6.8cm ,∴OF=AF+OA=28.2+6.8=35(cm ).又∵CD 始终垂直于水平桌面OE ,且CD =8cm , ∴点D 到桌面OE 的距离为:OF-CD=35-8=27(cm ). (2)如图所示,作BH ⊥CD 于点H ,∵D 到桌面OE 的距离为6cm ,H 到桌面OE 的距离为35cm ,CD =8cm , ∴CH=35-8-6=21(cm ), 又∵BC =35cm ,∠H=90°, ∴sin ∠CBH=6.0533521===BC CH , ∵sin36.8°≈0.60, ∴∠CBH=36.8°. 又∵∠ABH=70°,∴∠ABC=∠ABH-∠CBH=70°-36.8°=33.2°. 20.(2019·山西)某"综合与实践"小组开展了测量本校旗杆高度的实践活动.他们制定了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表(不完整).示意图说明点点GH 测量项目第一次任务二:根据以上测量结果,请你帮助该"综合与实践"小组求出学校旗杆GH 的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该"综合与实践"小组在制定方案时,讨论过"利用物体在阳光下的影子测量旗杆的高度"的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可) 【解题过程】任务一:平均值=(5.4+5.6)÷2=5.5m任务二:由题意可得,四边形ACDB,ACEH 都是矩形,∴EH =AC =1.5,CD =AB =5.5,设EG =xm,在Rt △DEG 中,∠DEG =90°,∠GDE =31°,∵tan31°=EG DE ,∴DE =tan 31x,在Rt △CEG 中,∠CEG =90°,∠GCE =25.7°,∵tan25.7°=EG CE ,∴CE =tan 25.7x,∵CD =CE -DE,∴tan 25.7x -tan 31x=5.5,∴x =13.2,∴GH =GE+EH =13.2+1.5=14.7.答:旗杆GH 的高度为14.7m.任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 22.(2019·娄底)如图(11),某建筑物CD 高96米,它的前面有一座小山,其斜坡AB 的坡度为i =1:1.为了测量山 顶A 的高度,在建筑物顶端D 处测得山顶A 和坡底B 的俯角分别为α,β.已知tan 2α=,tan 4β=,求山顶A 的高度AE (C 、B 、E 在同一水平面上).解:如图(11-1),设DA与CB的交点为O.∵96tan tan2DCOOC OCα∠====,∴48OC=同理,∵96tan tan4DCDBCBC BCβ∠====∴24BC=.∴482424OB OC BC=-=-=.设AE x=米,则则由i=1:1得BE x=,12OE x=;∴1242x x+=,∴16x=∴山顶A的高度AE为16米.22.(2019·衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D 处测得楼房顶部A的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=10米,山坡的坡度i=1,(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1米)(参考)解:设楼房AB的高为x米,则EBx,∵坡度i=1: ,∴坡面CD的铅直高度为5米,坡面的水平宽度为米,∴105)3x x+=-,解得x=15+(米).所以楼房AB的高度约为237米.21.(2019·泰州,21题,10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1∶2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m,求:⑴观众区的水平宽度AB;⑵顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan18°30′≈0.33,结果精确到0.1m)第21题图【解题过程】(1)因为AC的坡度i为1∶2,所以12CBAB=,因为BC=10m,所以AB=20m; (2)在Rt△DEG中,∠EDG=18°30′,tan∠EDG=EGGD,GD=FB=FA+AB=23m,所以EG=7.59m,所以EF=EG+GF=EG+DB=EG+DC+CB=21.59≈21.6m,顶棚的E处离地面的高度EEF为21.6m.第21题答图22.(2019·黄冈)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.≈1.414,)【解题过程】22.(2019·陇南)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD 可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH=CE=34.6(cm)∵DH=49.6cm,∴DF=DH﹣FH=49.6﹣34.6=15(cm),在Rt△CDF中,sin∠DCF===,∴∠DCF=30°,∴此时台灯光线为最佳.21.(2019·株洲)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点).求障碍物的高度.【解题过程】 (1) 如图,∵l 1∥l 2∴∠ABC=α∴tan ∠ABC=AC BC =tan α=13,∴BC=3AC==⨯3 1.6 4.8(米)∴BC 的长度为4.8米。
2019年中考数学真题分类 解直角三角形实际问题 解答题(15题)精选 一(含答案)

2019年中考数学真题分类解直角三角形实际问题解答题(15题)精选一1.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.(参考数据:2=1.414,3=1.732)(1)若新坡面坡角为α,求坡角α度数;(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM是否需要拆除?请说明理由.2.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).3.慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F 处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.4.在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离;(2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.5.进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41).6.小明利用刚学过的测量知识来测量学校内一棵古树的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型专项(八) 解直角三角形的实际应用题
类型1 仰角、俯角问题
1.(2019·湘西)测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°,观测旗杆底部B 点的仰角为45°.(可用的参考数据:sin 50°≈0.8,tan 50°≈1.2)
(1)若CD =20米,求建筑物BC 的高度;
(2)若旗杆的高度AB =5米,求建筑物BC 的高度.
解:(1)∵∠BDC =45°,
∴DC =BC =20 m .
答:建筑物BC 的高度为20 m .
(2)设DC =BC =x m ,根据题意,得
tan 50°=AC DC =5+x x
=1.2, 解得x =25.
答:建筑物BC 的高度为25 m .
2.(2019·深圳)某兴趣小组借助无人飞机航拍校园,如图,无人飞机从A 处飞行至B 处需8秒,在地面C 处同一方向上分别测得A 处的仰角为75°.B 处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)
解:过点A 作AD ⊥BC 于点D ,过点B 作BH ⊥水平线于点H.
∵∠ACH =75°,∠BCH =30°,AB ∥CH ,
∴∠ABC =30°,∠ACB =45°.
∵AB =4×8=32(m ),
∴AD =CD =AB·sin 30°=16 m ,
BD =AB·cos 30°=16 3 m .
∴BC =CD +BD =(16+163)m .
∴BH =BC·sin 30°=(8+83)m .
答:这架无人飞机的飞行高度是(8+83)m .
类型2 方位角问题
3.(2019·临沂)一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45°方向上的B 处?(参考数据:3≈1.732,结果精确到0.1)
解:过点A 作AC ⊥PC 于点C ,则∠APC =60°,∠BPC =45°,AP =20,
在Rt △APC 中,
∵sin ∠APC =AC AP
, ∴AC =20·sin 60°=10 3.
在△PBC 中,∠BPC =45°,
∴△PBC 为等腰直角三角形.
∴BC =PC =10.
∴AB =AC -BC =103-10≈7.3(海里).
答:它向东航行约7.3海里到达灯塔P 南偏西45°方向上的B 处.
4.(2019·南充)马航MH 370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A ,B 同时收到有关可疑漂浮物的讯息,可疑漂浮物P 在救助船A 的北偏东53.50°方向上,在救助船B 的西北方向上,船B 在船A 正东方向140海里处.(参考数据:sin 36.5°≈0.6,cos 36.5°≈0.8,tan 36.5°≈0.75,2≈1.414)
(1)求可疑漂浮物P 到A ,B 两船所在直线的距离;
(2)若救助船A ,救助船B 分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P 处.
解:(1)过点P 作PE ⊥AB 于点E ,由题意知,∠PAE =36.5°,∠PBA =45°,
设PE 为x 海里,则BE =PE =x 海里,
∵AB =140海里,∴AE =(140-x)海里.
在Rt △PAE 中,tan ∠PAE =PE AE ,即x 140-x
=0.75,解得x =60. ∴可疑漂浮物P 到A ,B 两船所在直线的距离为60海里.
(2)在Rt △PBE 中,PE =60海里,∠PBE =45°,
则BP =2PE =602≈84.8(海里),
B 船需要的时间为84.830
≈2.83(小时), 在Rt △PAE 中,sin ∠PAE =PE AP
, ∴AP =PE÷sin ∠PAE =60÷0.6=100(海里).
∴A 船需要的时间为100÷40=2.5(小时).
∵2.83>2.5,∴A 船先到达.
5.(2019·达州)如图,在一条笔直的东西向海岸线l 上有一长为1.5 km 的码头MN 和灯塔C ,灯塔C 距码头的东端N 有20 km .一轮船以36 km /h 的速度航行,上午10:00在A 处测得灯塔C 位于轮船的北偏西30°方向,上午10:40在B 处测得灯塔C 位于轮船的北偏东60°方向,且与灯塔C 相距12 km .
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:2≈1.4,3≈1.7)
解:(1)延长AB 交海岸线l 于点D ,过点B 作BE ⊥海岸线l 于点E ,过点A 作AF ⊥l 于点F.
∵∠BEC =∠AFC =90°,∠EBC =60°,∠CAF =30°,
∴∠ECB =30°,∠ACF =60°.∴∠BCA =90°.
∵BC =12,AB =36×4060
=24,∴AB =2BC. ∴∠BAC =30°,∠ABC =60°.
∵∠ABC =∠BDC +∠BCD =60°,
∴∠BDC =∠BCD =30°.∴BD =BC =12.
∴t =1236=13
(小时)=20分钟. ∴轮船照此速度与航向航向,上午11:00到达海岸线.
(2)该轮船能停靠在码头.理由:
∵BD =BC ,BE ⊥CD ,∴DE =EC.
在Rt △BEC 中,∵BC =12,∠BCE =30°,
∴BE =6,EC =63≈10.2.
∴CD =20.4.
∵20<20.4<21.5,
∴轮船不改变航向,轮船可以停靠在码头.
类型3 坡度、坡角问题
6.(2019·济宁)某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3.
(1)求新坡面的陂角α;
(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.
解:(1)∵新坡面的坡度为1∶3,
∴tan α=tan ∠CAB =13=33
. ∴∠α=30°.
答:新坡面的坡角α为30°.
(2)文化墙PM 不需要拆除.理由:
过点C 作CD ⊥AB 于点D ,则CD =6,
∵坡面BC 的坡度为1∶1,新坡面的坡度为1∶3,
∴BD =CD =6,AD =6 3.
∴AB =AD -BD =63-6<8.
∴文化墙PM 不需要拆除.
7.(2019·天水)如图所示,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得C
的仰角为45°,已知OA =200米,山坡坡度为13(即tan ∠PAB =13
),且O ,A ,B 在同一条直线上,求电视塔OC 的
高度以及此人所在的位置点P 的垂直高度.(侧倾器的高度忽略不计,结果保留根号)
解:过点P 作PE ⊥OB 于点E ,PF ⊥CO 于点F ,
在Rt △AOC 中,AO =200,∠CAO =60°,
∴CO =AO·tan 60°=200 3.
设PE =x 米,
∵tan ∠PAB =PE AE =13
, ∴AE =3x.
在Rt △PCF 中,∠CPF =45°,CF =2003-x ,PF =OA +AE =200+3x ,
∵PF =CF ,
∴200+3x =2003-x.
解得x =50(3-1).
答:电视塔OC 的高度是2003米,所在位置点P 的垂直高度是50(3-1)米.
类型4 与实际生活相关的问题
8.(2019·娄底)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB 与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离BC 为2米,两拉索底端距离AD 为20米,请求出立柱BH 的长.(结果精确到0.1米,3≈1.732)
解:设DH =x 米,
∵∠CDH =60°,∠H =90°,
∴CH =DH·tan 60°=3x.
∴BH =BC +CH =2+3x.
∵∠A =30°,
∴AH =3BH =23+3x.
∵AH =AD +DH ,
∴23+3x =20+x.
解得x =10- 3.
∴BH =2+3×(10-3)=103-1≈16.3(米).
答:立柱BH 的长约为16.3米.。