医学数据挖掘第2章
数据仓库与数据挖掘教程(第2版)课后习题答案 第二章

数据仓库与数据挖掘教程(第2版)课后习题答案第二章1. 什么是数据仓库?它与传统数据库有什么不同?答:数据仓库是一个面向主题、集成、稳定、可学习的数据集合,用于支持企业决策制定和决策支持系统。
与传统数据库相比,数据仓库更注重数据的整合和大数据的处理能力,以支持更高级别的数据分析和决策。
2. 什么是元数据?有哪些类型?答:元数据指描述数据仓库中数据的数据,用于描述数据的含义、格式、内容、质量、来源、使用和存储等方面的信息。
元数据有三种类型:技术元数据、业务元数据和操作元数据。
3. 数据仓库的架构有哪些组成部分?请简述各组成部分的作用。
答:数据仓库的架构主要包括数据源、数据抽取、清理和转换、存储和管理、元数据管理、查询和分析等几个组成部分。
- 数据源:指数据仓库的数据来源,可以是事务处理系统、外部数据源、第三方提供商等。
- 数据抽取、清理和转换:将数据从各种不同的来源抽取出来并转化为简单、标准的格式,以便进行加工和分析。
- 存储和管理:将经过抽取、转换和清洗后的数据存储在数据仓库中并进行管理,查找、更新和删除等操作。
- 元数据管理:对数据仓库中的元数据进行管理,并将其存储在元数据存储库中。
- 查询和分析:通过各种查询和分析工具来进行数据挖掘、分析和报告。
4. 请列出数据仓库中的三种主要数据类型。
答:数据仓库中的三种主要数据类型包括事实数据、维度数据和元数据。
5. 请列出数据仓库的三种不同的操作类型。
答:数据仓库的三种不同的操作类型包括基础操作、加工操作和查询操作。
6. 数据挖掘的定义是什么?答:数据挖掘是一种通过分析大量数据来发现有意义模式、趋势和关联的过程。
它是既包含统计学、机器学习和数据库技术的交叉学科,又包含更广泛的知识和业务领域。
7. 请列出数据挖掘中的四个主要任务。
答:数据挖掘中的四个主要任务包括描述性数据挖掘、预测性数据挖掘、关联数据挖掘和分类和聚类。
8. 数据仓库中经常使用OLAP分析方式,您了解OLAP是什么吗?答: OLAP是一种面向主题的数据分析方式,可以帮助用户对快速变化的数据进行多维分析和决策支持。
数据挖掘中文版

目录第一章引言 1.1 什么激发数据挖掘?为什么它是重要的?1.2 什么是数据挖掘?1.3 数据挖掘——在何种数据上进行?1.3.1 关系数据库1.3.2 数据仓库1.3.3 事务数据库1.3.4 高级数据库系统和高级数据库应用 1.4 数据挖掘功能——可以挖掘什么类型的模式? 1.4.1 概念/类描述:特征和区分1.4.2 关联分析1.4.3 分类和预测1.4.4 聚类分析 1.4.5 局外者分析 1.4.6 演变分析 1.5 所有模式都是有趣的吗? 1.6 数据挖掘系统的分类1.7 数据挖掘的主要问题1.8 总结.习题第二章数据仓库和数据挖掘的OLAP 技术 2.1 什么是数据仓库?2.2.1 操作数据库系统与数据仓库的区别2.1.2 但是,为什么需要一个分离的数据仓库. 2.2 多维数据模型2.2.1 由表和电子数据表到数据方 2.2.2 星形、雪花和事实星座:多维数据库模式. 2.2.3 定义星形、雪花和事实星座的例子 2.2.3 度量:它们的分类和计算.2.2.5 引入概念分 2.2.6 多维数据模型上的OLAP 操作2.2.7 查询多维数据库的星形网查询模型. 2.3 数据仓库的系统结构 2.3.1 数据仓库的设计步骤和结构 2.3.2 三层数据仓库结构2.3.3 OLAP 服务器类型:ROLAP、MOLAP 、HOLAP 的比较2.4 数据仓库实现2.4.1 数据方的有效计算2.4.2 索引OLAP 数据2.4.3 OLAP 查询的有效处理2.4.4 元数据存储2.5 数据方技术的进一步发展 2.5.1 数据方发现驱动的探查 2.5.2 多粒度上的复杂聚集: 多特征方2.5.3 其它进展2.6 由数据仓库到数据挖掘2.6.1 数据仓库的使用2.6.2 由联机分析处理到联机分析挖掘2.7 总结习题第三章数据预处理 3.1 为什么要预处理数据? 3.2 数据清理3.2.1 遗漏值3.2.2 噪音数据3.3 数据集成和变换3.3.1 数据集成3.3.2 数据变换3.4 数据归约3.4.1 数据方聚集3.4.2 维归约3.4.3 数据压缩3.4.4 数值归约3.5 离散化和概念分层产生3.5.1 数值数据的离散化和概念分层产生3.5.2 分类数据的概念分层产生. 3.6 总结习题第一章引言本书是一个导论,介绍什么是数据挖掘,什么是数据库中知识发现。
数据挖掘第三版第二章课后习题答案

1.1什么是数据挖掘?(a)它是一种广告宣传吗?(d)它是一种从数据库、统计学、机器学和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出一种观点,说数据挖掘是数据库进化的结果,你认为数据挖掘也是机器学习研究进化的结果吗?你能结合该学科的发展历史提出这一观点吗?针对统计学和模式知识领域做相同的事(d)当把数据挖掘看做知识点发现过程时,描述数据挖掘所涉及的步骤答:数据挖掘比较简单的定义是:数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。
数据挖掘不是一种广告宣传,而是由于大量数据的可用性以及把这些数据变为有用的信息的迫切需要,使得数据挖掘变得更加有必要。
因此,数据挖掘可以被看作是信息技术的自然演变的结果。
数据挖掘不是一种从数据库、统计学和机器学习发展的技术的简单转换,而是来自多学科,例如数据库技术、统计学,机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成。
数据库技术开始于数据收集和数据库创建机制的发展,导致了用于数据管理的有效机制,包括数据存储和检索,查询和事务处理的发展。
提供查询和事务处理的大量的数据库系统最终自然地导致了对数据分析和理解的需要。
因此,出于这种必要性,数据挖掘开始了其发展。
当把数据挖掘看作知识发现过程时,涉及步骤如下:数据清理,一个删除或消除噪声和不一致的数据的过程;数据集成,多种数据源可以组合在一起;数据选择,从数据库中提取与分析任务相关的数据;数据变换,数据变换或同意成适合挖掘的形式,如通过汇总或聚集操作;数据挖掘,基本步骤,使用智能方法提取数据模式;模式评估,根据某种兴趣度度量,识别表示知识的真正有趣的模式;知识表示,使用可视化和知识表示技术,向用户提供挖掘的知识1.3定义下列数据挖掘功能:特征化、区分、关联和相关性分析、分类、回归、聚类、离群点分析。
(完整版)数据挖掘概念课后习题答案

(完整版)数据挖掘概念课后习题答案第 1 章1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使⽤你熟悉的现实⽣活的数据库,给出每种数据挖掘功能的例⼦。
特征化是⼀个⽬标类数据的⼀般特性或特性的汇总。
例如,学⽣的特征可被提出,形成所有⼤学的计算机科学专业⼀年级学⽣的轮廓,这些特征包括作为⼀种⾼的年级平均成绩(GPA:Grade point a ve r s ge) 的信息,还有所修的课程的最⼤数量。
区分是将⽬标类数据对象的⼀般特性与⼀个或多个对⽐类对象的⼀般特性进⾏⽐较。
例如,具有⾼GPA 的学⽣的⼀般特性可被⽤来与具有低GPA 的⼀般特性⽐较。
最终的描述可能是学⽣的⼀个⼀般可⽐较的轮廓,就像具有⾼GPA 的学⽣的75%是四年级计算机科学专业的学⽣,⽽具有低GPA 的学⽣的65%不是。
关联是指发现关联规则,这些规则表⽰⼀起频繁发⽣在给定数据集的特征值的条件。
例如,⼀个数据挖掘系统可能发现的关联规则为:m a j or(X,“c omput i ng s c i e nc e”) ?owns(X, “pe r s ona l c omput e r”)[s uppor t=12%,c on f i d e nc e=98%]其中,X 是⼀个表⽰学⽣的变量。
这个规则指出正在学习的学⽣,12%(⽀持度)主修计算机科学并且拥有⼀台。
个⼈计算机。
这个组⼀个学⽣拥有⼀台个⼈电脑的概率是98%(置信度,或确定度)分类与预测不同,因为前者的作⽤是构造⼀系列能描述和区分数据类型或概念的模型(或,⽽后者是建⽴⼀个模型去预测缺失的或⽆效的、并且通常是数字的数据值。
它们的功能)相似性是他们都是预测的⼯具:分类被⽤作预测⽬标数据的类的标签,⽽预测典型的应⽤是预测缺失的数字型数据的值。
聚类分析的数据对象不考虑已知的类标号。
对象根据最⼤花蕾内部的相似性、最⼩化类之间的相似性的原则进⾏聚类或分组。
形成的每⼀簇可以被看作⼀个对象类。
《数据挖掘导论》第2章 基本数据挖掘技术(2)——关联规则

清华大学出版社
Apriori算法在冰山查询中的应用
• 通过某属性或属性集计算聚集函数,找 出某个大于阈值的聚集值,通常,聚集 结果的数目非常小(冰山一角),而数 据本身非常大(冰山)。
2019年12月3日星期二
第40页,共15页
清华大学出版社
新例8.7 Sales(cust_ID,item_ID,qty)
• 关联关系以一组特殊的规则形式出现——关联规则(Association Rules)
2019年12月3日星期二
第2页,共15页
2.2.1 关联规则概述
清华大学出版社
• 一般表现为蕴涵式规则形式:X→Y。
• 其中——
– X和Y分别称为关联规则的前提或先导条件(Antecedent)和 结果或后继(Consequent)。
2019年12月3日星期二
第29页,共15页
步骤
清华大学出版社
(5)以生成的条目集为基础创建关联规则。 • 首先设置置信度阈值为80%; • 然后从双项和三项条目集表中生成关联规则; • 最后,所有不满足置信度阈值的规则将被删除。 • 以双项条目集中的第一条条目生成的两条规则——
– IF Book =1 THEN Earphone = 1 (置信度:4/5 = 80%,保留) – IF Earphone = 1 THEN Book =1(置信度:4/7 = 57.1%,删除)
第20页,共15页
清华大学出版社
2019年12月3日星期二
第21页,共15页
清华大学出版社
2019年12月3日星期二
第22页,共15页
清华大学出版社
2019年12月3日星期二
第23页,共15页
清华大学出版社
数据挖掘与知识发现(第二章)

15
属性的类型也可以用不改变属性意义的变换来描述:
例: 如果长度分别用米和英尺度量,其属性意义是否有变化。计算平均长 度时,有什么变化? 例:温度 我们说“温度2度是1度的两倍”,用下列哪种测量有意义? 绝对标度?摄氏度?华氏度?
16
三、非对称的属性
对于非对称的属性,只有非零值才是重要的
例1:对象是学生,属性是学生是否选修某门大学课程。对某个学生,如果他选 择了对应某属性的课程,则该属性取1,否则取0。
22
稀疏数据矩阵
数据矩阵的特殊形式 属性类型相同 非对称
23
三、基于图形的数据
带有对象之间联系的数据
数据对象映射到图中的结点 对象之间的联系用对象之间和链、方向、权值表示
2 5 2 5 1
24
具有图形对象的数据
若对象具有结构(包含具有联系的子对象),则对象常用图形表示
25
34
一、测量误差和数据收集错误
测量误差:
测量过程中导致的问题,在某种程度上,记录的值与实际值不符 例: 一个人连续两次测量体重,得到的值不一样
数据收集错误:
遗漏数据对象或属性值,或不当的包含了其他数据对象 例: 一类特定种类动物研究可能包含了其他相关种类的动物,他们只是表面上与要 研究的种类相似。
12
二、属性类型
属性的性质不必与用来度量他的值的性质相同 属性类型告诉我们,属性的哪些性质反映在用于测量他的 值中。 例1:雇员年龄与ID号 这两个属性都可以用整数表示 雇员的平均年龄有意义,而平均ID却无意义 年龄有最大最小值,而整数却无此限制 但用整数来表示时,并未暗示有限制
13
例2:线段长度
TID
Items
第2章 数据预处理

二、数据预处理
3.数据集成和数据变换 3.1 数据集成 3. 数据值冲突的检测与处理 在一个系统中记录的属性的抽象层可能比另一个系统中“相同的”属性
低。数据集成时将一个数据库的属性与另一个匹配时,要考虑数据的结构用 来保证原系统中的属性函数依赖和参照约束与目标系统中的匹配。
二、数据预处理
3.数据集成和数据变换 3.2 数据变换 数据变换的目的是将数据转换或统一成适合于挖掘的形式。
二、数据预处理
4.数据规约 数据归约技术可以用来得到数据集的归约表示,它比原数据小得多,但
仍接近保持原数据的完整性。
常见的数据规约的方法包括数据立方体聚集、维规约、数据压缩、数值 规约以及数据离散化与概念分层等。
二、数据预处理
4.数据规约 4.1 数据立方体聚集 数据立方体聚集主பைடு நூலகம்是用于构造数据立方体,数据立方体存储多维聚集
二、数据预处理
4.数据规约 4.5 数值离散化与概念分层
1、数值数据的离散化和概念分层产生
(5)聚类分析 聚类分析是一种流行的数据离散化方法。 将属性A的值划分成簇或组,聚类考虑A的分布以及数据点的邻近性,可
以产生高质量的离散化结果。遵循自顶向下的划分策略或自底向上的合并策 略,聚类可以用来产生A的概念分层,其中每个簇形成概念分层的一个节点。 在前者,每一个初始簇或划分可以进一步分解成若干子簇,形成较低的概念 层。在后者,通过反复地对邻近簇进行分组,形成较高的概念层。
i1 j1
eij
其中,oij是联合事件 ( Ai , Bj )的观测频度(即实际计数),而 eij是( Ai , Bj ) 的期
望频度,可以用下式计算
二、数据预处理
3.数据集成和数据变换
数据挖掘——探索数据的奥秘智慧树知到课后章节答案2023年下青岛工学院

数据挖掘——探索数据的奥秘智慧树知到课后章节答案2023年下青岛工学院青岛工学院第一章测试1.数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
()A:对 B:错答案:对2.下面哪些是时空数据的应用()。
A:气象学家使用人造卫星和雷达观察飓风 B:从多媒体数据库中发现有趣的模式 C:机动车辆管理者把GPS安装在汽车上,以便更好地监管和引导车辆 D:动物学家把遥感设备安装在野生动物身上,以便分析生态行为答案:气象学家使用人造卫星和雷达观察飓风;机动车辆管理者把GPS安装在汽车上,以便更好地监管和引导车辆;动物学家把遥感设备安装在野生动物身上,以便分析生态行为3.数据挖掘生命周期的数据理解阶段,起于原始数据收集,止于熟悉数据、识别数据质量问题。
()A:对 B:错答案:错4.以下关于数据挖掘规律的描述中,不正确的是()。
A:业务知识是数据挖掘过程每一步的中心 B:对所有领域的每个数据挖掘问题,总有模式可循。
C:数据准备超过数据挖掘过程的3/4 D:给定应用的正确模型只能通过实验发现答案:数据准备超过数据挖掘过程的3/45.关于数据挖掘生命周期的部署阶段,说法正确的是()。
A:部署阶段要完成模型的创建 B:执行部署步骤的通常是数据分析师 C:部署通常是数据挖掘项目的终点 D:建立模型的目的不能仅仅是增加对数据的了解答案:部署阶段要完成模型的创建6.“8,000”和“10,000”表示:()。
A:数据 B:信息 C:知识 D:智慧答案:数据7.“8,000米是飞机飞行最大高度”与“10,000米的高山”表示:()。
A:数据 B:知识 C:信息 D:智慧答案:信息8.“飞机无法飞过高山”表示:()。
A:知识 B:智慧 C:数据 D:信息答案:知识9.数据取样时,除了要求抽样时严把质量关外,还要求抽样数据必须在足够范围内有代表性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Methodology & Practice )
一、问题的提出
数据挖掘的方法越来越多、越来越复杂,如果某个环
节没有做好,数据挖掘工作就可能失败。因此,掌握
好方法论是学习数据挖掘的关键,根据作者多年数据 挖掘经验,在国内外先进经验的基础上,发展了一套 有效的习惯性方法。本章将把这些实践活动总结出的 有序步骤,作为数据挖掘的方法论来展示。数据挖掘 是一个自然的迭代过程,有些过程需要多次重复进行, 完全跳过某个过程不一定恰当。
2. 获取不能使用的知识
卫生监督中的“知信行”模型
知:知识和学习,是基础;(信:信念和态度,是动力);行:产生 促进健康行为、消除危害健康行为等行为改变的过程,是目标。 。 以上结果表明经培训后,知识得分下降…
数据挖掘方法论的目的是 避免获得不真实的知识,以 及任何没有用的知识。更积 极的理解是,数据挖掘方法 论的目标是确保数据挖掘得 到稳定的模型,以便将该模 型用于要解决的社会、企业 和医学问题。
从聚类分析结果中可以看出, 随着高血压病程的持续,心脏的形 态变化日益严重,且某些节段的பைடு நூலகம் 度与病程的关系十分密切。
都是是向心性肥厚吗?
2.1.2获取真实但无用的知识
1. 获取已知的知识
建立了一棵决策树 嗓子痛
no yes
链球菌感染咽炎 no
发烧
yes
过敏
感冒
获取已知的知识确实可以给我们一个有用的提示,从技术角度来说,这 表明数据挖掘工作确有成效,而且数据本身也已经相当精确,这是非常令人 鼓舞的。如果数据和所应用的数据挖掘技术足以发现已知正确的事实,据此 可以相信其他发现也可能为真。
小结
这里所说的数据挖掘和模型建立,不是要求发现放之
四海而皆准的真理,也不是要去发现崭新的自然科学定理
和纯数学公式,更不是什么机器定理证明。 实际上,所有发现的模型和知识都是相对的,是有特 定前提和约束条件,面向特定领域的,同时还要能够易于 被用户理解。最好能用自然语言表达所发现的结果。
10.0 9.0
8.0
7.0 6.0 5.0 4.0 3.0 2.0 A B C D
公共知识题 岗位知识题 行为分
F
培训次数增加
2.2假设测试
1. 产生假设
例如:假设餐饮服务业的员工经过卫生知识的培训,在有
了卫生知识的基础上,认真工作。当下次卫生监督执法检
查中各项指标均为优秀。
2. 测试假设 假设测试是科学家和统计学家惯于花费心血研究的事情。
骤,参见下图。
进行数据挖掘的时候,
首先要将实际问题转化
为数据挖掘问题,能否 转换为恰当的数据挖掘
问题是进行数据挖掘的
关键。
数据挖掘的方法可以简单的概括为5个步骤
(亦可参照书上细化的11个步骤) 定义问题:清晰地定义出业务问题,包括业务理解和数据理解,要确定数据挖 掘的目的。 数据准备:数据准备包括:选择数据--在大型数据库和数据仓库目标中提取数 据挖掘的目标数据集;数据预处理--进行数据再加工,包括检查数据的完整性 及数据的一致性、去噪声,填补丢失的域,删除无效数据等。 数据挖掘和建模:根据数据功能的类型和和数据的特点选择相应的算法,在净 化和转换过的数据集上进行数据挖掘。 结果分析和模型评估:对数据挖掘的结果进行解释和评价,转换成为能够最终 被用户理解的知识。 模型的运用:将分析所得到的模型集成到业务信息系统的组织结构中去。
获取不真实的知识比获取无用的知识更加危险,因 为人们可能依据这些不正确的信息做出重要的决策;如 果依据不正确的信息进行医学决策,那将是灾难性的。
心脏形态B超检查数据的“病变形 态分类”是将二维超声测量的高血压患 者心肌20个节段的厚度,与正常者的数 据放在一起,用最小距离聚类分析 (Minimum Distance Clusters)的方 法将心脏形态分成不同的类型。 例如,高血压病程与心脏形变
假设是一种解释,它的正确性可以由分析数据来检验。这
些数据或者仅仅由观察收集,或者由实验生成。当结果显 示,用于医院做决策的这些假设是不正确的时候,假设测 试是最有价值的。( “知信行”模型)
2.3 数据挖掘的方法
为了尽可能避免获取不真实或者真实但无用的知识, 必须采取恰当的方法。本节将数据挖掘的方法分为几个步
2.1为什么需要方法
数据挖掘是从过去的数据中获取知识,帮助未来更好决
策。本章介绍的实践方法主要为了避免知识获取过程中出
现以下两个不希望的结果: 获取了不真实的知识; 获取了真实但无用的知识。 这就像水手要学会绕开海上的漩涡和海中的暗礁等危险
一样,数据挖掘人员需要了解如何避免这些常见的陷阱。
2.1.1获取不真实的知识